Clustering Social Audiences in Business Information Networks

Abstract

TBusiness information networks involve diverse users and rich content and have emerged as important platforms for enabling business intelligence and business decision making. A key step in an organizations business intelligence process is to cluster users with similar interests into social audiences and discover the roles they play within a business network. In this article, we propose a novel machine-learning approach, called CBIN, that co-clusters business information networks to discover and understand these audiences. The CBIN framework is based on co-factorization. The audience clusters are discovered from a combination of network structures and rich contextual information, such as node interactions and node-content correlations. Since what defines an audience cluster is data-driven, plus they often overlap, pre-determining the number of clusters is usually very difficult. Therefore, we have based CBIN on an overlapping clustering paradigm with a hold-out strategy to discover the optimal number of clusters given the underlying data. Experiments validate an outstanding performance by CBIN compared to other state-of-the-art algorithms on 13 real-world enterprise datasets.

Publication
Pattern Recognition