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a b s t r a c t 

Business information networks involve diverse users and rich content and have emerged as important 

platforms for enabling business intelligence and business decision making. A key step in an organizations 

business intelligence process is to cluster users with similar interests into social audiences and discover 

the roles they play within a business network. In this article, we propose a novel machine-learning ap- 

proach, called CBIN, that co-clusters business information networks to discover and understand these 

audiences. The CBIN framework is based on co-factorization. The audience clusters are discovered from a 

combination of network structures and rich contextual information, such as node interactions and node- 

content correlations. Since what defines an audience cluster is data-driven, plus they often overlap, pre- 

determining the number of clusters is usually very difficult. Therefore, we have based CBIN on an over- 

lapping clustering paradigm with a hold-out strategy to discover the optimal number of clusters given 

the underlying data. Experiments validate an outstanding performance by CBIN compared to other state- 

of-the-art algorithms on 13 real-world enterprise datasets. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Due to advancements in web techniques and the rapid growth

f social networks, many enterprises and organizations are seiz-

ng these opportunity to offer timely feedback and provide tailored

ervices to their social media audiences. In this article, we define a

usiness information network (BIN) as a social network where peo-

le share similar interests in business products or activities. There

re two main kinds of BIN [1] : private BINs for example, networks

esigned for the employees of a company or members of an in-

ustry association; and public BINs, such as Second Life, Twitter,

acebook, or LinkedIn, where each entity has a user account pro-

ided by the platform. We have concentrated on public BINs in this

aper since they are more customer facing. 

By validating our framework on 13 real-world public BIN

atasets, we attempt to: (1) prove that our work can be applied in

eal-world business applications and that it benefits the enterprise

r organization; (2) explore the underlying knowledge of BINs and
∗ Corresponding author. 
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ry to automatically provide meaningful explanations of each de-

ected cluster. 

BINs have many applications in real business world. For in-

tance, a BIN is managed by an enterprise through their official ac-

ount on a social media platform (e.g., Facebook or Twitter), where

ll its social audiences (i.e., customers, business partners, and fol-

owers) can post their views (textual content) and interact (links)

ith each another. BINs are also good tools for acquiring business

ntelligence. According to Barnetta [2] , the majority of Fortune 500

ompanies like Toyota, IBM, DE, and Sears have significantly opti-

ized their business workflow by virtue of BINs. Moreover, in the

K, the State of Social Enterprise Survey 2013 [3] , reports that 32%

f social enterprises increased their volume of business in 2012.

INs have also been successfully used for other practical applica-

ions, such as advertising [4] , online recruitment [5] , and market-

ng [6,7] . 

Fig. 1 provides an example of the business intelligence work-

ow behind Sony Pictures Twitter activity. The social audiences,

heir Twitter followers, and all their information, including their

riendships, profiles, and post messages, are fed into an automatic

lustering engine that segments the social audiences into groups.

he social audiences in each group show similar interests or pref-

rences for Sony Pictures products. For example, users that have

iscussed movies might form one audience, whiles users who have

https://doi.org/10.1016/j.patcog.2019.107126
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.107126&domain=pdf
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Fig. 1. An example of the business intelligence workflow behind the Twitter account of Sony Pictures Entertainment. The loop contains three main sections: a. automatic 

audiences, the Twitter followers, and their interests (derived from a clustering engine); b. an enterprise service tunnel; c. and sales and marketing analysis. Business partners 

and customers are divided into two groups according to the different services or products they are interested in with the people in each group sharing similar interests. 

For example, the members of one audience like the Evil Dead and After Earth two popular movies made by Sony Pictures, while the members another audience are mostly 

interested in its TV shows like Marry Me and Wheel. Note that customers may be members of two audiences simultaneously, and audiences may have overlapping interests. 

The different services or products of interest to each audience are delivered via an enterprise service tunnel, and the feedback data received through this tunnel are analyzed 

from a sales and marketing perspective to provide better services to the audience. 
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tweeted about TV shows could form another. Each group is then

referred to the appropriate enterprise service tunnel based on their

common preferences. Feedback from the enterprise service tunnel

is delivered to the sales and marketing department, which is an-

alyzed to further enhance service and product offerings to each

audience. Obviously, the automatic clustering engine is the key to

this entire business intelligence workflow. More specifically, accu-

rately identifying the social audience clusters (SACs), and particu-

larly their shared interests, makes a big difference in an enterprises

ability to improve their offerings through tailored products and

services to targeted users. Additionally, the ability to tailor prod-

ucts and services to specific audiences can dramatically reduce the

cost of sales. 

In this article, we focus on using a machine-learning approach

to automatically discover SACs. A SAC is defined as a group of

users who share similar interests or business roles within an en-

terprise. Intuitively, finding a SAC seems like it should be easy to

accomplish with almost any network topology-based clustering al-

gorithm, such as AgmFit [8] or BigClam [9] (both are available on

SNAP 2 ). However, these algorithms only consider a networks topol-
2 http://snap.stanford.edu/ . 

a  

o  
gy when clustering and so cannot provide much insight into the

ole a SAC plays in the network. Further, these approaches assume

hat the users (nodes) are densely connected, which is not usually

he case with BINs. The poor performance of these clustering ap-

roaches on BIN datasets has proven this point. 

More insight could be gained into the groups role with an al-

orithm based on relational topic discovery, like Balasubramanyan

nd Cohen [10] or a nonnegative matrix factorization method such

s the one outlined in Cai et al. [11] . However, these approaches

ssume that node contents and networks are highly consistent

nd that the network (graph) follows manifold assumptions [11,12] ,

.e., the data reside smoothly over a low-dimensional space so the

anifold regularization results in good clusters. Unfortunately, this

s not true for BINs where node and network consistency is rela-

ively low. 

Beyond these disadvantages, even if existing tools could be used

o find these audiences, there are still more limitations to over-

ome. Most tools would cluster each user into a single audience.

onsequently, users could not hold two or more roles in the net-

ork, and this limitation does not fit many business models. Also,

nalysts would have to specify a threshold value for the number

f clusters to find. But, in reality, users are often part of many au-

http://snap.stanford.edu/
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c

iences, and the number of audiences is hard to define because

hey are data- and/or purpose-driven, and tend to have strong sea-

onal and event-centric characteristics. Hence, the clustering pro-

ess needs to accommodate overlaps, and the optimal number of

roups needs to be determined automatically. 

In this article, we propose CBIN, a novel method for discovering

ACs within BINs. CBIN is based on nonnegative matrix factoriza-

ion (NMF), where network information and node content are inte-

rated to produce clustering results via a consensus principle. CBIN

aturally provides better insights into user interests whether cus-

omer or business partner as it simultaneously clusters data points

nd features from social media. We further propose a heuristic ap-

roach to set the threshold for overlapping clusters. The optimal

umber of groups is automatically determined by minimizing the

econstructed error with a hold-out method. 

Our main contributions are summarized below: 

1. We propose a novel algorithm for discovering SACs in BINs,

which advances existing works that focus on generic infor-

mation networks, like personal or academic network analy-

sis. 

2. We propose an effective overlapping co-clustering algo-

rithm that simultaneously clusters social audiences and fea-

tures into an automatically-determined number of optimal

groups. Considering both audiences and features provides a

deeper comprehension of the functional roles of business

customers. 

3. We conducted experiments on 13 real-world enterprise

datasets. The results indicate that CBIN has outstanding

performance compared to the current state-of-the-art ap-

proaches. 

. Related work 

Business information networks (BINs) are important in a wide

ange of applications: as social media support systems, in market-

ng [13] and advertising [14] , in customer relationship management

15] , etc. Moreover, understanding the social audiences within BINs

s a crucial aspect of business intelligence and decision making.

n an attempt to find sought-after audiences, Lo et al. [16] pro-

osed a method for ranking social audiences on Twitter according

o their value. In this article, we propose to cluster social audi-

nces in BINs with some understanding of their functional rele-

ance to the company. From a technical perspective, discovering

ACs in BINs is closely related to clustering problems in a network

etting. 

Some algorithms only leverage textual information during clus-

ering for example, Dam and Veldens [17] MCA K-means approach

o clustering Facebook users using collected profile information. Al-

ernatively, community detection approaches, such as AgmFit [8] ,

igClam [9] , GDPSO [18] and Diffusion [19] , only rely on network

tructures to generate clusters. However, both these types of ap-

roaches only consider a single slice of information, which can

ead to suboptimal results. 

Co-clustering algorithms consider both textual information and

etwork topologies. For instance, Gu and Zuo [12] and Wang et al.

20] both use NMF to factorize a user-feature matrix and then use

he network structure to regularise the objective function. Rela-

ional topic model approaches, such as [10,21] , use the network

tructure and the text simultaneously but, as mentioned above,

here are consistency assumptions about the nodes and the net-

ork structure that may not be true in real-world BINs. NMF-based

ethods [11,22] assume that the data resides in a manifold, but

etwork data is known to follow power law distributions. The joint

atrix factorization (JMF) model [23] was specifically designed for

attern recognition and data integration. There are also emerg-
ng network embedding-based methods [24,25] or graph neural

etwork-based methods [26] , which learn the compact represen-

ation for each node so that clustering new representations can be

one easily. 

Algorithms that can create overlapping clusters of network data

re a relatively recent advancement [27,28] . Leskovec and McAuley

27] studied the problem of discovering social groups in a user’s

ersonal network on social media platforms. By calculating the

imilarity between the users’ profiles, the method proposed in

27] is capable of assigning one user to multiple clusters. Yang

t al. [28] proposed the CENSA algorithm to model the interactions

etween the network structure and the node attributes. Although

oth meet the needs of overlapping clustering tasks, and they can

pecify which attributes are useful for forming a community, they

o not group features into clusters to provide better interpretations

f the topics that users are interested in. 

Compared to existing studies, our research advances this work

rom generic information network analysis into BIN mining. Our

ramework has the following attractive properties: (1) it is specif-

cally designed for BINs; (2) it enables increased freedom to ad-

ress the inconsistencies in network structures and node content;

nd (3) it provides interpretable meanings for the SACs. 

. Problem definition 

A BIN is defined as G = { V, E } . V = 

⋃ { v i } i =1 , ... , n denotes the

et of social audiences in a BIN, and, e i , j = < v i , v j > ∈ E indicates

n edge encoding the link between two audiences. A matrix

 s ∈ R 

n ×n 
+ is applied to further simplify the network informa-

ion. If a link relationship exists between audiences v i and v j ,

 W s ] ij = 1 ; otherwise, [ W s ] ij = 0 . The user-feature vector X ·i ∈ R 

m + 
s associated with each audience v i . Thus, the user-feature correla-

ion of all audiences is embedded in a matrix X ∈ R 

m ×n 
+ , where

 = [ X ·1 , . . . , X ·n ] with each column in X indicating a node in-

tance. Specifically, we leverage the TF-IDF to rank the m most sig-

ificant features in the data set to construct a binary user-feature

orrelation matrix X where X ij = 1 if the j th user contains the i th 
eature, and X ij = 0 otherwise. 

The aim of SAC discovering and understanding SACs is to au-

omatically and simultaneously segment the audiences and fea-

ures into an optimal number of clusters. Given that aim, the

udiences V = 

⋃ { v i } i = 1 , ··· , n in a BIN are clustered into k SACs

 = [ C 1 , . . . , C k ] . Following the similar operation of audience clus-

ering, the features of the audiences V are also clustered into q

lusters Q = [ Q 1 , . . . , Q q ] to understand the functions of SACs in a

IN. Every feature in a cluster is a special interest of the audiences

n the BIN. To this end, a possible clustering result for an audi-

nce would be G = [ G 1 ·; . . . ; G n ·] ∈ R 

n ×k 
+ , where G ij corresponds to

he degree of membership of the i -th audience for cluster C j . Note

hat G ≥ 0 , which means that all elements of G are nonnegative.

imilarly, a possible clustering result for a feature would be the

atrix F ∈ R 

m ×q where F ij corresponds to the degree of member-

hip of the i th feature for cluster Q j . Again, F ≥ 0 , indicating that

ll entries of F are nonnegative. 

It is worth highlighting that SACs are groups of users with inter-

ctions over common interests. Unlike existing community detec-

ion algorithms [8] , our proposed SAC discovery method, CBIN, has

wo unique features: (1) nodes can overlap multiple node groups,

.e., C i ∩ C j � = ∅ , which reflect situations in which a node plays dif-

erent roles in different SACs; and (2) the optimal amount of SACs

an be determined automatically. 

. CBIN algorithm 

This section outlines the technical details of CBIN for SAC dis-

overy, then extends CBIN into an overlapping clustering setting. 
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Fig. 2. Overall framework of the CBIN algorithm. Given a business social network, CBIN factorizes three channels of information via a consensus principle, i.e., the node- 

feature content matrix X , the network topology structure W s , and the feature-feature correlations W f . After the factorization, CBIN clusters the nodes into ( G ) and the 

features into ( F ) and further extends G to account for overlapping clusters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k  

a

 

w  

b  

f  

G  

r

a
 

 

J  

w  

f  

t  

t

 

c  

s  

t  

a  

a  

s  

p  

t  

<

 

a  

C

 

s  

T  

o

J

 

 

c  

t

m  
4.1. CBIN for SAC discovery 

The data used to cluster the audiences is drawn from two main

sources: the networks topological structures and the nodes con-

tents. All audiences are represented as a user-feature matrix X ,

which comprises the actual feature values (contents) to stamp

the user-feature of the BIN. To capture the links between audi-

ences, pairwise connections inside the BIN are listed in an n × n

matrix W s . More significantly, as the audiences in an SAC inter-

act over similar interests in content and interactions, we explicitly

explore the correlations between audience features ( W f ) need to

be explicitly explored and used to inform the clustering process.

Here, SACs can be discovered and clustered through a factorization

method that factorizes the feature correlations matrix ( W f ), the

user-feature ( X ) and the network structure ( W s ), we use a factor-

ization based methods to factorize X , W s , and W f separately, but

then enforces consensus between the results. The overall frame-

work for CBIN is shown in Fig. 2 . The essential difference between

CBIN and other existing NMF-based algorithms like [11,12,20] is

that only the user-feature matrix is factorized, rather than com-

prehensively leveraging all the network information from different

perspectives. 

User-feature matrix factorization: 

The user-feature matrix X provides a tabular mapping between

users and features. Using NMF [29] , X is factorized into two non-

negative matrices G and F by minimizing the error function with a

Frobenius norm: 

argmin 

F , G 

J 1 = || X − F G 

� || 2 F , s.t. F ≥ 0 , G ≥ 0 , (1)

where F G 

� is the approximation of X . The resulting clusters of

users and features are naturally exposed in G and F [11,12,20,30] .

For example, a node v i can be assigned to the cluster C j � , where j � 

is determined by Eq. (2) : 

j � = argmax 
j=1 , ··· ,k 

G i, j (2)

In reality, because the two-factor NMF in Eq. (1) is restrictive,

i.e., the number of clusters for q and k have to be equal, we have

introduced an additional factor S ∈ R 

q ×k 
+ to compensate for the dif-

ferent scales of X , F and G . This leads to an extension of NMF,

called NMTF [31,32] : 

argmin 

F , G 

J 2 = || X − F S G 

� || 2 F , s.t. F ≥ 0 , G ≥ 0 , (3)

S provides increased degrees of freedom such that the low-rank

matrix representation remains accurate, while the values of q and
 can be different. The mapping information between node clusters

nd feature clusters is recorded in S . 

Network topology structure matrix factorization: 

The adjacency matrix W s holds pairwise user connections,

hich provides topological information to discover the similarity

etween the users for co-clustering. In practice, the matrix W s is

actorized into an n × k matrix G s and its transposition G 

� 
s , where

 s ∈ R 

n ×k 
+ is an indicator matrix that shows the potential clustering

esults if only the topological information were to be leveraged: 

rgmin 

G s 

J 3 = || W s − G s G 

� 
s || 2 F , s.t. G s ≥ 0 , (4)

It is worth mentioning that G ∈ R 

n ×k in J 2 and G s ∈ R 

n ×k in

 3 each contains separated factorization results for the entire net-

orked but from different perspectives. In this way, W s and X are

actorized while retaining the maximum freedom to find the op-

imal results. The consensus function later enforces consensus be-

ween these two sets of results to produce the optimal outcome. 

Feature correlation matrix factorization: 

To enhance the feature clustering performance, pairwise feature

orrelations are also captured using the matrix W f ∈ R 

m ×m 

+ . We as-

ume that the features X j· and X i · will be assigned to the same fea-

ure cluster, when they are highly associated, say, for words that

lways co-occur. Thus, correlation measurement approaches, such

s a neighbor-based method [12] or heat kernels [33] , are rea-

onable choices for constructing W f . In our experiments, we sim-

ly applied a linear kernel [ W f ] i j = < X i ·, X j· >, where X i · indicates

he embedding of the i th column of features across all users, while

 X i ·, X j· > measures the similarity between X i · and X j·. 
The factorization of the feature matrix W f is similar to Eq. (4) :

rgmin 

F f 

J 4 = || W f − F f F 
� 
f || 2 F , s.t. F f ≥ 0 , (5)

onsensus factorization: 

Through the above factorizations, J 2 , J 3 and J 4 are cluster

chemes of the entire network based on different sources of data.

o unify the results, we jointly formulate J 2 , J 3 and J 4 into a single

bjective with a consensus function: 

 5 = || X − F S G 

� || 2 F + α|| W s − G s G 

� 
s || 2 F + β|| W f − F f F 

� 
f || 2 F 

+ ρ
(|| G − G s || 2 F + || F − F f || 2 F 

)
, 

s.t. F ≥ 0 , G ≥ 0 , F f ≥ 0 , G s ≥ 0 , (6)

The aim of Eq. (6) is to factorize W f (user-features), X (feature

orrelations), and W s (network structures) separately, then enforce

he consensus between each set of results. For example, || G − G s || 2 F 
inimizes the difference between G and G s , which represents the
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2

O (nmkt) + # interation × O (nmr) + O (n log n ) . 
otential clusters from the user-features matrix and a purer topo-

ogical structure respectively. Similarly, || F − F f || 2 F enforces that F

hould be maximally consistent with F f . α and β are responsible

or balancing each factorization. ρ is a consistency trade-off. Intu-

tively, a large ρ would lead to a G that is close to G s and an F that

s close to F f ; however, a small ρ would mean G and G s are inde-

endent of each other. Our approach provides increased degrees

f freedom to exploit the inconsistencies between content and the

opological structure, which a typical characteristic of BINs as dis-

ussed in the Introduction. 

Algorithm optimization 

The objective function Eq. (6) is processed with regard to F f , F ,

 s , G and S , which is not convex when simultaneously considering

ll variables. In this case, Eq. (6) is optimized with regard to one

ariable while fixing the others. This procedure is repeated until

he function converges. 

If G is optimized first while fixing the others, the Lagrange func-

ion for Eq. (6) is: 

 = || X − F S G 

� || 2 F + ρ|| G − G s || 2 F + λG G (7)

y conducting the partial derivatives with respect to G zero, we

ave 

∂L 

∂ G 

= −2 X 

� F S + 2 GS � F � F S + 2 ρG − 2 ρG s + λG = 0 (8)

hich leads to an update of G with following rule: 

 ← G �
X 

� F S + ρG s 

GS � F � F S + ρG 

; (9) 

ere “�” means the Hadamar product (“. ∗” in MatLab), i.e. ( A �

 ) i j = ( A ) i j · ( B ) i j . Similarly, we can update G s , F f , F , and S are up-

ated as follows: 

 ← F �
XGS � + ρF f 

FSG 

� GS � + ρF 
; (10) 

 s ← G s �
ρG + 2 αW 

� 
s G s 

2 αG s G 

� 
s G s + ρG s 

; (11) 

 f ← F f �
ρF + 2 βW 

� 
s F f 

2 βF f F 
� 
f F f + ρF f 

; (12) 

 ← S �
F � XG 

F � FSG 

� G 

, (13) 

hese parameters will be iteratively updated until reaching the

onvergence to obtain the clustering result matrices: 

ˆ 
 = F + F f ; ˆ G = G + G s (14) 

We assign a user v i to a cluster C j � where j � is defined as: 

j � = argmax 
j=1 , ··· ,k 

ˆ G i, j (15) 

.2. Automatic overlapping clusters 

The formulation in Eq. (15) only represents partial progress be-

ause it can only deal with single hard cluster membership prob-

ems, i.e., where each node is assigned to a single cluster. In BINs,

sers often belong to different audiences and audiences often play

ifferent roles, i.e., nodes belong to more than one cluster and

lusters overlap. Hence, this section discusses the process for de-

ermining how to the clusters overlap. 

Overlapping clusters. The strategy in most current clustering al-

orithms is to assign a node to the cluster with the highest prob-

bility of membership. Our strategy is to condition a possibility

hreshold for each cluster and assign a node to a cluster if it ex-

eeds that possibility threshold. Technically, the initial clustering
esults could be derived using Eqs. (6) and (15) , which could then

e used to fine-tune the clustering overlap results. However, using

 threshold means the process can be automated. In specific terms,

he scheme operates as follows: a threshold γ j is assigned to each

luster C j and, rather than assigning node v i to a single cluster C j � 

ia Eq. (15) , v i is assigned to any cluster C j as long as ˆ G i, j ≥ γ j . 

Suppose the initialized groups obtained from Eq. (15) are C =
 C 1 , C 2 , . . . , C k } , where C j = 

⋃ { v i } is the set of nodes in each cluster.

he membership value for each node v i ∈ C j , in 

ˆ G is ˆ G i, j . C j will

ave a set of membership values P j = 

⋃ 

v i ∈ C j { ̂  G i, j } . Next, P j is sorted

o get its minimum value: 

j = min P j (16) 

here γ j is the minimum threshold for assigning a node to cluster

 j . Thus the final clustering result of the j -th cluster is: 

f (v i ) = C j : if ˆ G i, j ≥ γ j , j = 1 · · · k (17)

hus, through Eq. (17) , CBIN can automatically generate overlap-

ing clusters. 

This SAC discovery method is outlined in Algorithm 1. The in-

uts are the network structure matrix W s , the user-feature ma-

rix X , the number of feature clusters q , and the number of node

lusters k as inputs. The algorithm initializes n × k matrix G and

 × q matrix F using a k-means algorithm in Steps 2-3. In Steps

-10, G s , G , F s , F and S are iteratively updated until convergence

r the maximum number of iterations S max is reached. (In our ex-

eriments, S max was 80.) The clustering results for the nodes from

atrix ˆ G , and the clustering results for the features from matrix
ˆ 
 are determined in Step 11. In Steps 14-16, CBIN fine-tunes the

lustering overlap results by first finding the threshold γ j for each

luster group C j in Steps 15-16, and then assigning the nodes with

embership values not less than γ j to cluster C j . 

Determining the optimal number of clusters . To automatically de-

ermine the optimal number of clusters k , we propose empirical

esting with a hold-out strategy. A subset of X and W s is held-out

s the test set and the rest is used for training. The training sub-

et for X and W s is factorized and the reconstruction errors for the

est entries are predicted, which leads to a revised objective func-

ion: 

 6 = || Y � X − F S G 

� || 2 F + α|| Y � W s − G s G 

� 
s || 2 F 

+ β|| W f − F f F 
� 
f || 2 F 

+ ρ
(|| G − G s || 2 F + || F − F f || 2 F 

)
, 

s.t. F ≥ 0 , G ≥ 0 , F f ≥ 0 , G s ≥ 0 , (18) 

here Y ∈ R 

n ×n 
+ is binary. If the entry Y i, j = 1 , it is used for train-

ng, otherwise it is used for testing. 

Then the reconstruction error on the test entries ( Y i, j = 0 ) is

omputed as follows: 

econsErr = ||¬ Y � X − F S G 

� || 2 F + ||¬ Y � W s − G s G 

� 
s || 2 F (19)

here Y is the negation of ¬ Y . Specifically, Y i j = 0 if ¬ Y i j = 1, other-

ise 1. During these parameter tuning-style experiments, k is var-

ed from k min to k max until the reconstruction error ReconsErr does

ot decrease. Hence, the number of clusters k is determined em-

irically. 

Time complexity . In brief, the time complexity of Algorithm 1

s as follows. Initializing the k-means algorithm in Step 2 has lin-

ar time complexity, i.e., O ( nmkt ) [34] , where n is the number of

 -dimensional vectors, k is the number of clusters and t is the

umber of iterations needed until convergence. Steps 5 to 9 em-

loy multiplicative update rules, and the time complexity for each

tep is O ( nmr ) [35,36] , where r = max (k, q ) . Thus, the time com-

lexity for the matrix factorization is # interation × O (nmr) . In Step

1, sorting costs O ( n log n ). Thus, the total time complexity is 
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Algorithm 1 CBIN: Clustering Business Information Networks. 

Require: user-feature matrix X = [ x ·1 , . . . , x ···n ] ∈ R 

d×n 
+ , 

Network structure matrix W s ∈ R 

n ×n 
+ ; 

k : number of node clusters; 

q : number of feature clusters. 

1: Constructed W f ∈ R 

m ×m 

+ , i.e., [ W f ] i j = < x i ·, x j· > 

2: Initialize G ∈ R 

n ×k 
+ and F ∈ R 

m ×q 
+ using k -means on X and X 

� , 
respectively; 

3: Initialize G s = G and F f = F ; 

4: repeat 

5: // Update potential audiences clustering matrix G with Eq. 

(9) 

6: G ← G �
X � F S + ρG s 

GS � F � F S + ρG 
; 

7: // Update potential feature clustering matrix F with Eq. (10) 

8: F ← F �
XGS � + ρF f 

FSG � GS � + ρF 
; 

9: // Update audience indicator matrix G s with Eq. (11) 

10: G s ← G s �
ρG +2 αW 

� 
s G s 

2 αG s G 
� 
s G s + ρG s 

; 

11: // Update feature indicator matrix F f with Eq. (12) 

12: F f ← F f �
ρF +2 βW 

� 
s F f 

2 βF f F 
� 
f 

F f + ρF f 
; 

13: // Update feature-audience mapping matrix S with Eq. (13) 

14: S ← S � F � XG 

F � FSG � G 
; 

15: until Converges; 

16: // Final clustering results for audiences and features 

17: ˆ G = G + G s ;~~~ˆ F = F + F f ; 

18: 

19: // Overlapping Clustering 

20: Get the initial clustering result { C 1 , C 2 , . . . , C k } , where C j = ⋃ { v i } according to Eq. (15); 

21: Get the threshold γ j for cluster C j according to Eq. (16); 

22: Overlapping Clustering according to Eq. (17). 
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5. Experiments 

We evaluated CBIN on a series of real-world business social net-

works. Our aim was to show that: (1) CBIN offers outstanding per-

formance when clustering users (SAC discovery); (2) CBIN clusters

features and provides a meaningful understanding of the topics in

networks; and (3) the correlations between the feature clusters

and the node clusters provides insights into the role of each SAC

in the BIN. 

5.1. Experimental setup 

5.1.1. Business information networks datasets 

To evaluate CBIN and conduct the experiments, we assembled

13 real-world datasets from Twitter. These datasets cover various

industries, including sports associations, motor enterprises, politi-

cal parties, and news agencies. Each enterprise has an official Twit-

ter homepage, and their online followers are manually managed

with Twitter lists . Each of the followers on a list shares some com-

mon interests or have a similar relationship to the enterprise. Each

enterprise hires dedicated employees to manually categorize the

users into the different lists. Ref er to Fig. 1 for an example of a

business intelligence workflow based on a Twitter list. 

As Twitter users have limited profile information, we shaped

each followers interests by collecting and processing their most re-

cent 100 tweets (retrieved in March 2015). Specifically, we took the

top 10 0 0 most frequent words or phrases marked with a hashtag

# (to indicate an event) or the @ sign (to mention a user) to de-

note all the interests in one dataset. Table 1 contains the details

of the datasets: the screen name of each organization, the number
f followers, the number of labeled followers, the number of edges

links) between followers, the number of tweets by a follower, the

umber of lists (clusters), and a brief description of each enter-

rise. To evaluate CBINs performance, we regarded the Twitter lists

rom each enterprise as the ground truth user labels. If two users

elonged to the same list, we considered them as one cluster. 

.1.2. Baselines 

To validate CBINs performance, we compared it to nine relevant

lgorithms. These algorithms included approaches that only lever-

ge either textual information or topological information, as well

s approaches that consider both. The algorithms that only con-

ider either textual or topological information were: 

• BigClam [9] , which combines NMF with the block stochastic

gradient descent to detect communities based on topological

information. 
• AgmFit [8] is a community detection algorithm based on

community-affiliation models; and 

• K-means , a classical and effective unsupervised approach. We

only used textual information with k-means in these exper-

iments. 

The baseline algorithms that consider both textual and topolog-

cal information include relational topic models [10] , NMF based

lgorithms [11,12,20] , and the state-of-the-art algorithms in [27,28] .

he specific algorithms selected for comparison were: 

• Censa [28] , a statistics-based model that uses the interac-

tions between node content and the network structure for

more accurate community detection; 
• Circle [27] , an attributed graph clustering algorithm that

handles overlapping hard-membership for graph clustering; 
• Block-LDA [10] , an LDA based relational topic model method

that considers both textual and topological information for

clustering tasks; 
• FNMTF [20] , an NMF-based co-clustering method, which tar-

gets large scale of datasets; 
• DRCC [12] , which extracts nodes and features from network

information to construct a user graph and a feature graph

for clustering; and 

• GNMF [11] , which adds an encoded k-NN graph as a regular-

ization term to the objective function of the classical NMF

method. 

In order to be able to use NMF-based methods [11,20] ,the

anifold graphs ( k -NN graphs) needed to be replaced with net-

ork structures for regularization. However, in practice, the net-

ork structures may be not the same as the k -NN graphs. It is

orth noting that although NMF-based methods and relational

opic models [10] can cluster nodes and features simultaneously,

hey are not designed to overlap clusters. However, Circle [27] and

ensa [28] can overlap clusters, but cannot provide any interpre-

ation of the resulting clusters at the feature level. By comparison,

BIN not only simultaneously clusters nodes and features in a busi-

ess social network, but it also enables clusters to be overlapped

or SAC discovery. 

Table 2 summarily compares the all ten conducted algorithms. 

.1.3. Evaluation metrics 

Although CBIN is unsupervised, we evaluated its performance

y comparing the predicted clusters C = { C 1 , . . . , C k } with the

anually-labeled ground truth C = { C 1 , . . . , C k } . Ideally, the pre-

icted clusters should be consistently aligned with the ground

ruth. 

We applied a balanced error rate (BER) [27,37] to calculate the

rror between the predicted clusters C and the ground truth C . The
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Table 1 

Business social network datasets used in this article. 

Companies Total Nodes Labeled Edges Tweets List Industry Description 

ABCNews 845,196 729 43,032 69,018 17 Media News division of Australian Broadcasting Corpo. 

NBA 17,387,126 137 2,036 12,402 7 Sport National Basketball Association 

TwitterAU 210,194 531 13,718 45,324 13 Internet Media Twitter Inc. Australia Branch 

SonyPictures 1,454,582 129 186 10,801 5 Film Entertainment Sony Pictures Entertainment Corporation Australian 

Labor 111,447 346 11,484 9,646 5 Political Party Labour Party in Australia 

WhiteHouse 7,377,128 161 3,925 13,503 5 Political Organization White House 

Automobile 

MercedesBenz 1,434,283 142 1,174 11,846 7 Manufacturer Mercedes-Benz Automobile Manufacturer Corpo 

Techreview 452,766 155 1,220 14,024 7 Technical Media MIT Technology Review 

Cambridge_Uni 214,640 529 4,125 47,329 12 University Cambridge University 

The_Nationals 22,253 27 173 1,941 3 Political Party The National Party in Australia 

Greens 68,607 154 2,384 13,078 9 Political Party The Greens Party in Australia 

MGM_Studios 835,751 68 621 6,414 6 Film Entertainment Disney Metro Goldwyn Mayer Hollywood Studio 

BBCNews 5,019,860 624 16,974 61,533 11 Media British Broadcasting Corporation 

Table 2 

Comparison of CBIN with other algorithms. 

Ours K-Means BigClam AgmFit Censa FNMTF GNMF DRCC Nips BLOCK-LDA 

Content ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Structure ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Overlapping ∗ ∗ ∗ ∗

Explain Clusters ∗

Auto-determine Clusters number ∗ ∗ ∗ ∗
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Table 3 

BER scores for auto-detecting K methods. 

Auto Ber_loss Ours BigClam AgmFit Censa 

ABCNews 0.19 0.303 0.484 0.413 

NBA 0.007 0.125 0.368 0.105 

Twitte rAU 0.045 0.313 0.467 0.249 

SonyPictures 0.357 0.376 0.461 0.414 

AustralianLabor 0.132 0.229 0.332 0.23 

WhiteHouse 0.037 0.281 0.447 0.315 

MercedesBenz 0.046 0.227 0.403 0.295 

Techreview 0.317 0.297 0.435 0.342 

Cambridge_Uni 0.091 0.264 0.421 0.242 

The_Nationals 0.102 0.133 0.212 0.228 

Greens 0.222 0.295 0.44 0.327 

MGM_Studios 0.126 0.269 0.261 0.263 

BBCNews 0.116 0.233 0.138 0.138 
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3 http://snap.stanford.edu/ . 
alculation is defined as follow: 

ER 

(
C, C 

)
= 

1 

2 

( ∣∣C/ C 
∣∣

| C | + 

∣∣C c / C c ∣∣
| C c | 

) 

(20) 

BER assigns equal importance to false positives and false nega-

ives, so that trivial or random predictions incur an error rate of 0.5

n average. Such a measure is preferable to, say, a 0/1 loss, which

ssigns an extremely low error rate to trivial predictions. 

We also used F 1 scores as an evaluation metric (F-measure)

38] . F 1 scores consider both the precision and recall of the clus-

ering result. Only results with a high precision and recall rate pro-

uce good F 1 scores. 

.1.4. Parameter study 

For a fair comparison, following [11,20] , we conducted experi-

ents with varied parameter settings for each baseline and took

he best settings for each. With CBIN, we varied α, β , and σ from

.2 to 2 in steps of 0.2. For DRCC [12] , GNMF [11] , and FNMTF [20] ,

e set λ = μ where λ was tuned by searching the grid {0.1, 1, 10,

0 0, 50 0, 10 0 0} as described in their paper. For AgmFit, we set the

arameter e (edge probability between the nodes that do not share

ny community) by searching the grid{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

.8, 0.9, 1.0} and chose the best value as the final result. For the

ircle method, we set the regularization parameter λε ∈ {0, 1, 10,

00} as described in their paper. 

We conducted the experiments to let CBIN empirically deter-

ine the number of clusters k and compared its performance with

he existing overlapping algorithms: BigClam [9] , AgmFit [8] , and

ensa [28] . 

We also fixed the value of k in the range of 3, 5, 7, 9, 11 to

ompare a broad range of algorithms on clustering tasks. We tested

ach setting for every algorithm on each dataset 30 times and used

he average of the values as the report score. 

Unless otherwise specified, we set k min = 2, k max = 10 and Z = 30

or CBIN to automatically determine the value of k . 

.2. Experimental results 

This section presents the results of the experiments on a user

lustering task. We assumed the number of clusters k was un-
nown and compared CBIN with the overlapping clustering algo-

ithms first, and then specified the value of k , and compared the

erformance of all algorithms. 

.2.1. Overlapping clustering 

This section compares the results for the overlapping clustering

ethods: BigClam, AgmFit, and Censa, all of which are available on

he SNAP platform 

3 . Note that the Circle source code does not pro-

ide automatic clustering functionality. Therefore, even though it

s technically an overlapping method, we have not included its re-

ults in this section. Instead, we have only reported Circles results

ith a given k in the next subsection. 

Looking at Tables 3 and 4 , we can see that CBIN dramatically

utperformed the other algorithms. For example, CBIN achieved F 1 
cores of 0.988 and 0.925 on the NBA and White House datasets,

hile Censa only achieved F 1 scores of 0.791 and 0.295. 

Overall, CBIN outperformed the other algorithms in 12 of the

3 real-world datasets according to BER and surpassed all the

aselines in terms of F 1 scores. One reason could be that algo-

ithms like BigClam and AgmFit only leverage topological struc-

ures when clustering users, and ignore any contextual information

http://snap.stanford.edu/
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Fig. 3. White House data set result comparison. From left to right, the network graph comes from our algorithm, the ground truth, BigClam, Censa and AMGFit. Each color 

represents a cluster. The purer color of a cluster, the better performance. 

Fig. 4. Average performance on different numbers of detected k clusters. (A) BER 

score (smaller is better), (B) F 1 score (larger is better). 

Table 4 

F1 scores for auto-detecting K methods. 

Auto F1 Score Ours BigClam AgmFit Censa 

ABCNews 0.515 0.317 0.038 0.171 

NBA 0.988 0.729 0.27 0.791 

TwitterAU 0.829 0.376 0.072 0.44 

SonyPictures 0.419 0.257 0.085 0.167 

AustralianLabor 0.765 0.487 0.345 0.478 

WhiteHouse 0.925 0.244 0.115 0.295 

MercedesBenz 0.85 0.528 0.202 0.405 

Techreview 0.445 0.371 0.138 0.255 

Cambridge_Uni 0.692 0.453 0.159 0.521 

The_Nationals 0.869 0.549 0.593 0.403 

Greens 0.589 0.45 0.137 0.358 

MGM_Studios 0.715 0.456 0.485 0.427 

BBCNews 0.752 0.447 0.179 0.712 
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hat might provide complementary knowledge. As a consequence,

heir results were suboptimal. Alternatively, algorithms like Censa,

hich consider both topological information and textual informa-

ion, are based on the assumption that the communities generate

oth the topological structure and its textual features. However,

ensa specifically assumes that the networks links are highly con-

istent with or high dependent on the users attributes, which is

ot always true in BINs. As previously discussed, the network links

nd user attributes in BINs tend to be the opposite âhighly incon-

istent. As a result, Censas performance was only comparable to

igClam. 

.2.2. Case study 

The clustering results in Fig. 3 show that the clusters predicted

y CBIN were almost perfectly aligned with the ground truth. How-

ver, the results from the other baselines contained noticeable er-

ors. For example, BigClam misclassified a large group of users in

luster A. 
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Table 5 

BER score with K = 5. 

K = 5 Ber_loss Ours K-Means BigClam AgmFit Censa FNMTF GNMF DRCC Nips BLOCK-LDA 

ABCNews 0.23 0.324 0.409 0.468 0.411 0.343 0.431 0.324 0.188 0.343 

NBA 0.027 0.192 0.153 0.186 0.138 0.291 0.302 0.175 0.215 0.185 

Twitte rAU 0.039 0.288 0.402 0.436 0.401 0.213 0.359 0.137 0.185 0.418 

SonyPictures 0.290 0.343 0.344 0.449 0.338 0.413 0.469 0.307 0.415 0.113 

AustralianLabor 0.126 0.348 0.27 0.197 0.279 0.409 0.364 0.36 0.214 0.079 

WhiteHouse 0.037 0.381 0.36 0.268 0.363 0.392 0.462 0.413 0.21 0.125 

MercedesBenz 0.115 0.407 0.245 0.281 0.259 0.398 0.352 0.343 0.234 0.193 

Techreview 0.271 0.436 0.116 0.416 0.122 0.429 0.454 0.44 0.335 0.263 

Cambridge_Uni 0.092 0.426 0.355 0.403 0.358 0.351 0.472 0.348 0.206 0.317 

The_Nationals 0.036 0.419 0.094 0.176 0.119 0.241 0.22 0.322 0.247 0.308 

Greens 0.333 0.343 0.261 0.287 0.256 0.365 0.364 0.333 0.183 0.301 

MGM_Studios 0.083 0.349 0.239 0.203 0.202 0.394 0.468 0.204 0.187 0.265 

BBCNews 0.113 0.394 0.221 0.371 0.223 0.398 0.458 0.386 0.187 0.303 

Average 0.156 0.358 0.267 0.318 0.267 0.357 0.398 0.321 0.231 0.247 

Table 6 

F1 score with K = 5. 

K = 5 F1 Score Ours K-Means BigClam AgmFit Censa FNMTF GNMF DRCC Nips BLOCK-LDA 

ABCNews 0.432 0.215 0.181 0.075 0.177 0.294 0.216 0.222 0.46 0.686 

NBA 0.922 0.641 0.698 0.633 0.728 0.467 0.393 0.61 0.458 0.368 

Twitte rAU 0.834 0.444 0.203 0.133 0.207 0.44 0.28 0.687 0.484 0.833 

SonyPictures 0.527 0.42 0.33 0.113 0.337 0.338 0.192 0.501 0.348 0.224 

AustralianLabor 0.783 0.366 0.457 0.603 0.442 0.302 0.341 0.397 0.632 0.157 

WhiteHouse 0.924 0.297 0.285 0.459 0.279 0.311 0.217 0.265 0.504 0.248 

MercedesBenz 0.757 0.238 0.516 0.42 0.486 0.291 0.363 0.36 0.482 0.383 

Techreview 0.462 0.224 0.757 0.176 0.746 0.248 0.242 0.218 0.367 0.522 

Cambridge_Uni 0.713 0.229 0.295 0.197 0.289 0.244 0.155 0.237 0.366 0.633 

The_Nationals 0.962 0.356 0.737 0.622 0.716 0.663 0.658 0.528 0.676 0.593 

Greens 0.379 0.346 0.51 0.447 0.523 0.318 0.319 0.34 0.517 0.597 

MGM_Studios 0.776 0.458 0.515 0.552 0.583 0.297 0.189 0.578 0.462 0.522 

BBCNews 0.748 0.291 0.577 0.252 0.559 0.303 0.16 0.285 0.51 0.605 

Average 0.681 0.348 0.466 0.396 0.467 0.347 0.286 0.402 0.482 0.49 

Table 7 

F1 score with K = 9. 

K = 9 Ber_loss Ours K-Means BigClam AgmFit Censa FNMTF GNMF DRCC Nips BLOCK-LDA 

ABCNews 0.274 0.374 0.353 0.37 0.344 0.345 0.411 0.359 0.223 0.365 

NBA 0.043 0.322 0.129 0.16 0.144 0.342 0.352 0.287 0.231 0.248 

TwitterAU 0.142 0.268 0.276 0.328 0.277 0.261 0.371 0.201 0.225 0.271 

SonyPictures 0.339 0.473 0.387 0.442 0.391 0.411 0.36 0.366 0.357 0.259 

AustralianLabor 0.118 0.36 0.256 0.291 0.227 0.375 0.32 0.336 0.234 0.3455 

WhiteHouse 0.089 0.486 0.266 0.281 0.302 0.397 0.458 0.383 0.227 0.334 

MercedesBenz 0.148 0.481 0.234 0.281 0.28 0.418 0.392 0.355 0.274 0.181 

Techreview 0.313 0.475 0.3 0.306 0.319 0.421 0.468 0.405 0.304 0.21 

Cambridge_Uni 0.054 0.447 0.16 0.371 0.131 0.397 0.481 0.384 0.231 0.235 

The_Nationals 0.272 0.377 0.202 0.237 0.227 0.259 0.271 0.279 0.197 0.308 

Greens 0.34 0.428 0.295 0.328 0.301 0.402 0.441 0.409 0.249 0.337 

MGM_Studios 0.135 0.398 0.239 0.324 0.225 0.394 0.27 0.219 0.237 0.242 

BBCNews 0.179 0.418 0.118 0.262 0.13 0.427 0.475 0.402 0.239 0.213 

Average 0.19 0.408 0.247 0.306 0.254 0.373 0.39 0.337 0.248 0.273 
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.2.3. Experimental results on node clustering with user-specified k 

To compare CBIN with all baselines, including both the over-

apping and non-overlapping methods, we specified the number of

lusters ( k ) in a user clustering task. The results for K = 5, 9, and 11

re shown in Tables 5, 6, 7, 8, 9 and 10 . These results show that

BIN outperformed the other baselines in most cases. 

Algorithms such as AgmFit, BigClam, and k-means only consider

extual information about users or the topological information of

he network, ignoring the other sources of information. As a result,

hese algorithms cannot fully leverage different sources of infor-

ation available in the BIN and, therefore, produced suboptimal

erformance. 

By contrast, our algorithm maximizes the degree of freedom to

xplore the distinct information encoded in the networked data,

hich leads to an increase in performance. 
m  
Interestingly, the algorithms that use both topological informa-

ion and textual information, like Censa, Block-LDA, Circle, FNMTF,

RCC, and GNMF did not outperform algorithms like BigClam and

-means, which only leverage one source of information. These ex-

eriments confirm that there is a risk of confusing the model when

ntegrating multiple sources of information. The GNMF, DRCC, and

NMTF methods are all NMF-based algorithms regularized by a

anifold graph (k-NN graph). However, real-world network struc-

ures usually follow a power law distribution, which is different

rom a k-NN graph. In addition, in a k-NN graph, a node is sup-

osed to be connected to its k nearest neighbors, which is calcu-

ated using feature values, so the links are highly consistent with

he node contents. This is, unfortunately, not the case for BINs

here topological information is typically highly inconsistent with

he textual information. As a result, the algorithms that draw on

ultiple sources of information did not perform as well. By com-
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Table 8 

BER score with K = 11. 

K = 9 F1 Score Ours K-Means BigClam AgmFit Censa FNMTF GNMF DRCC Nips BLOCK-LDA 

ABCNews 0.366 0.192 0.257 0.226 0.272 0.174 0.231 0.159 0.319 0.729 

NBA 0.941 0.437 0.709 0.652 0.689 0.419 0.399 0.501 0.432 0.493 

TwitterAU 0.625 0.434 0.455 0.35 0.453 0.415 0.285 0.529 0.329 0.54 

SonyPictures 0.451 0.172 0.24 0.116 0.224 0.308 0.441 0.414 0.426 0.513 

Australian Labor 0.798 0.405 0.433 0.378 0.49 0.325 0.462 0.445 0.574 0.689 

WhiteHouse 0.825 0.122 0.357 0.356 0.32 0.297 0.207 0.321 0.494 0.665 

MercedesBenz 0.714 0.115 0.521 0.41 0.43 0.249 0.263 0.3750 0.396 0.359 

Techreview 0.384 0.161 0.3480 0.321 0.303 0.261 0.193 0.253 0.371 0.418 

Cambridge_Uni 0.81 0.187 0.684 0.261 0.741 0.205 0.097 0.274 0.315 0.469 

The_Nationals 0.549 0.385 0.586 0.468 0.404 0.624 0.566 0.578 0.734 0.593 

Greens 0.375 0.165 0.295 0.379 0.414 0.256 0.177 0.211 0.351 0.669 

MGM_Studios 0.723 0.275 0.239 0.258 0.534 0.27 0.473 0.671 0.389 0.478 

BBCNews 0.678 0.244 0.76 0.459 0.732 0.237 0.093 0.279 0.406 0.426 

Average 0.634 0.254 0.453 0.402 0.462 0.311 0.299 0.385 0.426 0.542 

Table 9 

BER score with K = 11. 

K = 11 Ber_loss Ours K-Means BigClam AgmFit Censa FNMTF GNMF DRCC Nips BLOCK-LDA 

ABCNews 0.307 0.387 0.323 0.316 0.335 0.386 0.424 0.386 0.238 0.197 

NBA 0.036 0.296 0.129 0.142 0.148 0.349 0.329 0.241 0.241 0.27 

TwitterAU 0.063 0.229 0.299 0.202 0.324 0.289 0.349 0.26 0.249 0.222 

SonyPictures 0.338 0.469 0.387 0.442 0.389 0.401 0.369 0.368 0.362 0.245 

Australian Labor 0.106 0.357 0.238 0.261 0.23 0.398 0.354 0.389 0.272 0.385 

WhiteHouse 0.092 0.479 0.276 0.228 0.315 0.393 0.407 0.399 0.212 0.328 

MercedesBenz 0.118 0.483 0.231 0.288 0.295 0.428 0.389 0.378 0.276 0.193 

Techreview 0.298 0.464 0.342 0.352 0.342 0.416 0.469 0.421 0.333 0.233 

Cambridge_Uni 0.159 0.444 0.238 0.343 0.238 0.416 0.483 0.397 0.272 0.165 

The_Nationals 0.113 0.356 0.122 0.108 0.228 0.264 0.259 0.28 0.222 0.212 

Greens 0.314 0.403 0.314 0.343 0.327 0.418 0.433 0.401 0.258 0.36 

MGM_Studios 0.157 0.39 0.218 0.324 0.263 0.345 0.272 0.251 0.24 0.311 

BBCNews 0.244 0.432 0.162 0.25 0.138 0.433 0.479 0.402 0.262 0.191 

Average 0.18 0.399 0.252 0.277 0.275 0.38 0.386 0.352 0.264 0.255 

Table 10 

F1 score with K = 11. 

K = 11 F1 Score Ours K-Means BigClam AgmFit Censa FNMTF GNMF DRCC Nips BLOCK-LDA 

ABCNews 0.338 0.132 0.281 0.294 0.318 0.168 0.198 0.164 0.271 0.393 

NBA 0.95 0.461 0.709 0.698 0.633 0.393 0.433 0.565 0.418 0.5368 

TwitterAU 0.808 0.539 0.406 0.601 0.359 0.363 0.275 0.44 0.278 0.443 

SonyPictures 0.439 0.21 0.24 0.119 0.233 0.332 0.42 0.394 0.43 0.487 

Australian Labor 0.86 0.395 0.458 0.396 0.478 0.306 0.408 0.346 0.494 0.767 

WhiteHouse 0.863 0.149 0.31 0.43 0.295 0.291 0.313 0.297 0.502 0.652 

MercedesBenz 0.787 0.103 0.52 0.367 0.405 0.233 0.271 0.318 0.383 0.383 

Techreview 0.442 0.201 0.267 0.221 0.255 0.247 0.176 0.248 0.342 0.463 

Cambridge_Uni 0.652 0.167 0.527 0.316 0.527 0.174 0.087 0.256 0.261 0.329 

The_Nationals 0.85 0.403 0.619 0.661 0.403 0.624 0.624 0.558 0.697 0.407 

Greens 0.413 0.249 0.389 0.335 0.358 0.222 0.169 0.246 0.341 0.714 

MGM_Studios 0.704 0.257 0.515 0.298 0.427 0.318 0.463 0.463 0.413 0.612 

BBCNews 0.554 0.205 0.658 0.495 0.712 0.223 0.079 0.28 0.363 0.381 

Average 0.666 0.267 0.454 0.402 0.416 0.299 0.301 0.352 0.399 0.505 

 

 

 

 

 

 

 

 

 

Table 11 

Keywords and explanation in word clouds. 

TCNathan A tropical cyclone which lashed North Queensland 

qanda Question and Answer, an ABC politic TV show 

Auspol Australian Policy/Politic 

qld Queensland, the second largest state in Australia 

ausunions Australian Unions 

 

c  

t  

l  

t  

f  
parison, our algorithm extracts the best ingredients from both the

topological structure and the textual information through the pro-

posed consensus factorization framework. Hence, the performance

is outstanding compared to the other nine algorithms. 

The average performance of each algorithm is illustrated in

Fig. 4 , which shows that our algorithm had low BER scores and

higher F 1 scores for different K values. 

5.3. Word cloud: understanding the feature groups 

One noticeable property of CBIN is its capacity to group node

features into clusters to provide a better understanding of a SACs

interests in relation to the organization. 

The clustering results are shown in Fig. 5 demonstrate that each

word cloud is indeed very meaningful in practice. Table 11 lists the

most frequent word in each word cloud along with its meaning. 
The results in Table 11 indicate that the feature clusters dis-

overed by CBIN indeed provide an alternative understanding of

he users interests. For instance, the keyword qld(meaning Queens-

and, the second-largest and third-most-populated state in Aus-

ralia) is larger than other words. This means that Queensland is

requently discussed on Twitter because the members of the group
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Fig. 5. Feature word clouds on the AustralianLabor dataset. Each word cloud represents a word cluster. The larger a word in a cloud, the more frequent it is discussed online. 

Fig. 6. Clustering performance w.r.t . different α, β values. 
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ostly come from Queensland or care about things that happen in

ueensland. 

.4. Parameter sensitivity 

We varied α, β , and σ from 0.3 to 2.0, to validate the perfor-

ance of CBIN in terms of F 1 score, and the results are shown in

ig. 6 . We have omitted the diagram for σ due to space limitations.

s the value of α increased from 0.3 to 1.5, each dataset generated

ery similar results in terms of both BER and F 1 scores. However,

erformance plummeted when α was further increased. The re-

ults of the F 1 and BER scores in terms of β were similar to the

esults observed when changing the values for α. 

. Conclusion and future work 

We argue that business intelligence networks (BINs), which are

riven by relationships, policies, and business interests, are sig-

ificant enablers of business intelligence and decision making for

ompanies. However, the ability to accurately identify multiple au-

iences and to treat users as complex entities with overlapping

nterests is key to how intelligent a business intelligence system

s. To this end, we devised a factorization-based co-clustering ap-

roach to identify and group audiences with similar interests in a

IN. The method, called CBIN, discovers social audience based on

oth network topology and user features, such as interests, posts,

nd profiles, to provide overlapping audience clusters with insights

nto the functional relevance those audiences have to the organiza-

ion. 
The main benefits of this approach, as compared to similar al-

orithms, are that CBIN is an advancement to current clustering

esearch on generic social information networks, such as personal

r academic network analysis. Further, CBIN simultaneously co-

actorizes information from several perspectives: topological struc-

ure (audiences), textual features (user data), and the correlations

etween features. A consensus principle integrates these three dif-

erent sets of results to effectively overcome inconsistencies in the

IN for optimal clustering performance. The end result is support

or a business intelligence tool that can provide an in-depth func-

ional comprehension of a companys customers and other social

udiences. 

We validated the effectiveness of CBIN through a series of ex-

eriments on 13 real-world enterprise datasets against nine other

lassical and state-of-the-art algorithms. 

As with all studies, this research has some limitations that are

pportunities for future research. To date, we have only evaluated

ur algorithm on business networks with ground truth labels. In

he future, we plan to conduct evaluations with larger-scale labeled

INs. As enterprises and organizations prefer the simple but effec-

ive principle for decision-making, we also plan to further explore

ow to automatically determine the models clustering parameters

ith automatic machine learning techniques. 
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