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ABSTRACT

Attributed graphs refer to graphs where both node links and node attributes are observable for analysis.
Attributed graph embedding enables joint representation learning of node links and node attributes. Dif-
ferent from classical graph embedding methods such as Deepwalk and node2vec that first project node
links into low-dimensional vectors which are then linearly concatenated with node attribute vectors as
node representation, attributed graph embedding fully explores data dependence between node links
and attributes by either using node attributes as class labels to supervise structure learning from node
links, or reversely using node links to supervise the learning from node attributes. However, existing at-
tributed graph embedding models are designed in continuous Euclidean spaces which often introduce
data redundancy and impose challenges to storage and computation costs. In this paper, we study a new
problem of discrete embedding for attributed graphs that can learn succinct node representations. Specif-
ically, we present a Binarized Attributed Network Embedding model (BANE for short) to learn binary node
representation by factorizing a Weisfeiler-Lehman proximity matrix under the constraint of binary node
representation. Furthermore, based on BANE, we propose a new Low-bit Quantization for Attributed Net-
work Representation learning model (LQANR for short) to learn even more compact node representation
of bit-width values. Theoretical analysis and empirical studies on real-world datasets show that the new
discrete embedding models outperform benchmark methods.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Attributed graphs are popularly used to describe a large body
of networks where both node links and node attributes are ob-
servable for analysis. Typical examples of attributed graphs include
social network data, academic citation data, and protein-protein
interaction data [1]. To obtain knowledge from attributed graphs,
graph embedding models are proposed to project node links into
low-dimensional vectors. Then, the projected vectors are linearly
concatenated with node attribute vectors to represent the nodes
for downstream learning tasks such as link prediction [2], node
classification [3], and social network recommendations [4,5].

The key idea of graph embedding is to design a mapping func-
tion which converts graph nodes into low-dimensional vectors.
In general, a mapping function should fulfill three principles: 1)
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Scalability. Real-world graphs are naturally large-scale. Thus, graph
embedding models should be able to handle large-scale graphs
efficiently. 2) Sparsity. Generally there are only a few number
of nodes labeled for training in a graph. Thus, graph embedding
models are expected to learn low-dimensional vectors to reduce
the number of weight parameters of downstream learning models.
3) Adaptability. Graphs are often evolving with time. Embedding
mapping functions should be able to adapt with time and avoid
frequently repetitive training.

Considering the above principles, a class of graph embedding
models has been proposed. DeepWalk [6] represents the seed work
which borrows the idea of word embedding, treats nodes as words
and generates short random walks as sentences. Then, linguistic
models such as Skip-gram are applied to the random walks and
obtain node representations. Based on DeepWalk, node2vec [7] in-
troduces the biased random walk that enables breadth first search
(BFS) and depth first search (DFS) neighborhood exploration. Based
on DeepWalk and node2vec, a number of sophisticated graph em-
bedding models are proposed for handling large-scale networks.
For example, LINE [8] uses a breadth-first search strategy to gener-
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ate context nodes on large-scale networks. GraphAttention [9] uses
an attention model that can learn multi-scale representations for
link prediction. SDNE [10] learns node representations where the
proximity between two-hop neighbors is maintained by using a
depth auto-encoder.

The above graph embedding models fall into a two-stage learn-
ing category, where node links are vectorized independently with-
out using any auxiliary information from node attributes. As a
result, they are incapable of capturing data dependence between
node links and attributes, which is often referred to as plain graph
embedding. To enable exploitation of the dependence information
between node links and node attributes, attributed graph embed-
ding models are proposed to jointly learn from node links and at-
tributes. The principle is to use node attributes as class labels to
supervise structure learning from node links, or vice versa. For
example, the work [11] uses textual attributes to supervise ran-
dom walks on networks and derives the Text-associated Deep-
Walk (TADW) model. On the contrary, the work [12] reversely uses
node links to supervise the factorization of attributed matrices.
The work [13] mutually uses node links and attributes as labels
to supervise the learning from each other. Generally, attributed
graph embedding outperforms plain graph embedding by consid-
ering data dependence between node attributes and node links.

However, existing attributed network embedding models are
developed in continuous Euclidean spaces. By embedding the de-
pendence information of node attributes and links, the learned
vectors may contain redundant information that degenerates com-
putation efficiency and increases storage cost, especially when net-
works are very large. Imagining the task of k-nearest neighbor
search to recommend the top-k most similar friends in a large net-
work of size n, assuming the representation vector is of length d,
the similarity search will take time O(n2d). Thus, compact node
representation is preferred to speedup computation and reduce
storage cost. For example, if we use binary embedding and encode
each node with 128 bits, we can store a data set of 1 million nodes
with only 16M memory. Moreover, the speed of low-bit computa-
tion is faster than floating numbers, because the expensive oating-
point multiplication operation can be replaced by a sequence of
cheaper and faster bit shift operations of fixed-point numbers.

Recently, discrete representation learning has attracted increas-
ing attention and a number of hash algorithms and binary code
learning have been proposed to learn discrete representations in
Hamming spaces. The idea of hashing algorithms and binary cod-
ing [14] is to encode high-dimensional feature vectors of docu-
ments, images and videos to compact binary codes, while preserv-
ing the similarity structure in the original space. In particular, bi-
nary code learning can generate succinct representations by encod-
ing high-dimensional data into a set of short binary codes with
similarity preservation. Binary coding is also referred to as hash-
ing which maps data to discrete Hamming spaces [15]. The binary
codes can facilitate representation and search of massive data be-
cause it only needs a relatively small size of binary bits to rep-
resent a data item, and binary computation in Hamming space is
efficient by using the bit operations.

In this paper, we study the problem of discrete attributed graph
embedding. The key challenge is to aggregate information of both
node links and attributes for discrete node representation. Consider-
ing matrix factorization as the discrete graph embedding frame-
work [13,16], the challenges of discrete embedding for attributed
networks can be summarized as follows:

e Challenge 1: How to design a proximity matrix to capture
data dependence between node links and node attributes in
attributed graphs. To our best knowledge, none of existing
network proximity matrices encodes both node links and at-
tributes.
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 Challenge 2: How to design a fast algorithm to solve the dis-
crete representation learning problem. Existing models for em-
bedding attributed networks are formulated in the Euclidean
space. However, factorizing a network proximity matrix under
binary constraints falls into the integer programming category
which requires new efficient algorithms.

+ Challenge 3: How to theoretically and empirically prove the ef-
fectiveness and efficiency of the learning model.

To solve the above challenges, we present a new Binarized At-
tributed Network Embedding model (BANE for short). Inspired by the
Weisfeiler-Lehman graph kernels [17], we define a new Weisfeiler-
Lehman proximity matrix to capture data dependence between
node links and attributes. Then, based on the new proximity ma-
trix, we formulate a Weisfeiler-Lehman matrix factorization learn-
ing function under the binary representation constraint. The learn-
ing problem falls into the category of mixed integer optimization
and we use an efficient cyclic coordinate descent (CCD) algorithm
[18] as the solution. We theoretically prove the advantages of the
Weisfeiler-Lehman proximity matrix by analyzing its connections
with Weisfeiler-Lehman graph kernels [19], Laplacian smoothing
[20], and Graph Convolutional Networks (GCNs) [21]. Furthermore,
based on BANE, we present a low-bit quantization model that can
learn even more compact node representation of bit-width val-
ues. Experimental results on real-world datasets validate the per-
formance of the proposed methods. The framework of the learning
models is illustrated in Fig. 1.

The contributions of the paper are summarized as follows:

» We first study the problem of discrete embedding learning for
attributed graphs, and present a new Binarized Attributed Net-
work Embedding model (BANE for short) as the solution.

We define a new Weisfeiler-Lehman proximity matrix to en-
code data dependence between node links and node attributes,
based on which a new Weisfeiler-Lehman matrix factorization is
presented to learn binary representation. Moreover, we theoret-
ically prove the connections between the proposed Weisfeiler-
Lehman matrix and Weisfeiler-Lehman graph kernels, Laplacian
smoothing, and Graph Convolutional Networks (GCNs).

Based on BANE, we further propose a Low-Bit Quantization for
Attributed Network Representation learning model (LQANR for
short). LQANR can learn more compact node representation of
bit-width values with stably high accuracy. Also, we introduce
a new mixed-integer based alternating direction method of multi-
pliers (ADMM) algorithm to solve LQANR.

We conduct experiments to validate the performance of the
proposed models. The Matlab codes' and Pyhthon codes® are
available online.

The paper is an extension of its former conference ver-
sion [22], where more theoretical and empirical studies are added
in Sections 5 and 6. In addition, a low-bit quantization model
LQANR is also added for comparisons. The rest of the paper is or-
ganized as follows. Section 2 surveys related work. Section 3 intro-
duces the preliminaries. Section 4 introduces the learning models
of BANE and LQANR. Section 5 discusses the advantages of the pro-
posed methods. Section 6 conducts experiments, and we conclude
the work in the last section.

2. Related work

Graph Embedding. Graph embedding is also called as net-
work embedding or graph representation learning. Current graph

T MATLAB codes: https://github.com/ICDM2018-BANE/BANE.
2 Python codes: https://github.com/benedekrozemberczki/BANE.
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Fig. 1. The conceptual framework of the Binarized Attributed Network Embedding (BANE). Given an attributed network G = {V,E, X}, derive a Weisfeiler-Lehman proximity
matrix P = (I — yD-'L)kX by aggregating structure matrix A and attribute matrix X. Factorizing matrix P into a binary node representation matrix B and an auxiliary matrix
Z. In the figure, the colored cells and arrows explain the formulation of matrix P from the perspective of feature propagation. Given a target node i, the blue cells in the
structure matrix A highlight non-zero entries corresponding to the neighbouring nodes of i. The red arrows denotes that the feature vectors of these non-zero entries will
be propagated to the target node i. The blue arrows pointing to the target node i denote that a new feature vector of node i is formulated by aggregating feature vectors of
itself and its neighboring nodes. Such an feature propagation will be repeated for k times and generate the final matrix P.

embedding methods can be categorized into plain graph embed-
ding [23] and attributed graph embedding [24]. Different from plain
graph embedding that independently vectorizes node links with-
out using auxiliary information from node attributes, attributed
graph embedding jointly models their dependence, by using node
attributes as class labels to supervise the learning of node links,
or vice versa. A typical attributed graph embedding model is the
TADW model [11] that uses textual attributes to supervise random
walks on networks. LANE [13] learns node representations for at-
tributed networks by embedding the network structure proximity,
attribute affinity and label proximity into a unified latent repre-
sentation. AANE [12] learns node embedding by using symmet-
ric matrix factorization on attribute affinity matrix, and simultane-
ously minimizing the representation difference between connected
nodes. PPNE [25] learns node representations for attributed net-
works through jointly optimizing two objectives, i.e., the structure-
driven objective and the attribute-driven objective. Similar works
include Dynamic Attributed Network Embedding (DANE) [26] and
Diffusion Network Embedding (DNE) [16].

A number of graph neural networks [27] are also developed to
learn node embeddings from attributed networks. The early and
most important work is Graph Convolutional Network (GCNs) [21].
GCNs take node attributes as input and construct node represen-
tations through the convolution of neighboring node representa-
tions at each hidden layer. The last layer is used to predict node
labels by minimizing a cross-entropy loss. GraphSAGE [28] takes
node content features as node representations, and then itera-
tively updates node representations by aggregating representations
of neighboring nodes. Graph Attention Network (GAT) [9] then im-
ports the self-attention mechanism into GCN to make the graph
convolution performed in a more intelligent way. Graph Isomor-
phism Network (GIN) [29] creates injective multiset functions for
the neighbor aggregation and generalizes the Weisfeiler-Lehman
test. GraphNAS [30] can automatically design the best graph neural
architecture using reinforcement learning.

Weisfeiler-Lehman Graph Kernels. Graph kernels [19] can be
intuitively understood as functions measuring the similarity of
pairs of graphs. The most common graph kernels are random walk
kernels, shortest-path kernels, graphlet kernels, and Weisfeiler-
Lehman graph kernels [17]. A random-Walk kernel measures the
similarity of labeled graphs by comparing the random walks on
graphs. Shortest-path kernels are similar to random-walk graph
kernels but the walk paths are formed from the shortest paths.
The graphlet kernels count the number of substructures, graphlets,

in the graphs. Weisfeiler-Lehman Graph Kernels enumerate the
shared subtrees in graphs. Learning to Hash. Hashing or binary
coding [14] encodes high-dimensional feature vectors of docu-
ments, images and videos to compact binary codes, while preserv-
ing similarity structure in the original space. The binary codes can
facilitate to represent and search of massive data because it only
needs about one hundred binary bits to represent one data item,
and binary computation in Hamming space is efficient by using
the bit operations. Many learning-based hashing algorithms have
been developed according to different scenarios. For example, the
unsupervised methods [31], supervised methods [18], deep learn-
ing based hashing methods [32]. To the best of our knowledge,
no prior studies have been focused on seeking binary representa-
tion for attributed network to preserve both network structure and
node attributes.

Low-bit Quantization for Compression. Quantization methods
including hashing are used to encode real-valued data to low-bit
discrete data while preserving similarity structure in the origi-
nal space [14]. The low-bit codes can facilitate representation and
search of massive data because it only needs a relatively small size
of bits to represent one data item, and computation in Hamming
space is efficient by using the bit operations. Most Hashing meth-
ods use one single bit —1/+1 to quantize each projected dimen-
sion [33], such as the spectral hashing [31], supervised discrete
hashing [18] and deep learning based hashing methods [32]. There
are also works quantizing real-valued data to multiple-bit codes
using Hashing method [33], such as double bit quantization, g-bit
Manhattan quantization, and Variable Bit Quantization. Recently
discrete network embedding approach is proposed to learn binary
codes for plain network [34], and randomized hashing method
[35] and binarized network embedding [22] are proposed for com-
pressing embedding for attributed networks.

In this paper, we aim to learn discrete node representations for
attributed networks by leveraging the strength of the state-of-the-
art graph embedding, Weisfeiler-Lehman graph kernels, learning to
hash, and low-bit quantization for compression methods.

3. Preliminaries

An attributed graph can be represented as G = {V, E, X}, where
V = {y;}!; denotes nodes, E = {eij};f].:1 denotes undirected edges,
and X = {x;}! | € R™f denotes attribute vectors of the nodes with
f being the dimension of attribute vectors. In addition, the struc-
ture of network G can be derived from edges in E, denoted as an
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adjacency matrix A, where A;; =1 if e;; € E, otherwise, A;; = 0. By
adding a self-loop to each node in the network, we have A=A +1,
where [ is an identity matrix. D = diag(dj. ..., dy) is a degree ma-
trix of A, with d; = > d;; being the degree of node v;.

Given the attributed network G, we wish to embed each node
v; €V into a d-dimensional vector b; € {—1,+1}d in a Hamming
space, where b; is the ith row of matrix B € R**4, Ideally, matrix
B can preserve the structure information A and the attribute infor-
mation X in the original network G.

The key question is to design a proximity matrix which can
jointly describe structure A and attribute X. For example, TADW
[11] derives the proximity matrix by using the textual attributes
X to supervise the random walk of structure A. The process can
be taken as using the random walk kernel (supervised by node at-
tributes) on graphs for node representation.

Instead of using random walk graph kernels, we use the
Weisfeiler-Lehman graph kernels [17] to generate a new proxim-
ity matrix P that encodes both node attributes in X and edges in
A. Specifically, we define the Weisfeiler-Lehman proximity matrix as
follows,

Definition 1. (Weisfeiler-Lehman Proximity Matrix). Given a net-
work G with adjacency matrix A and attribute matrix X, let D be a
degree matrix of A and [ = D — A, the Weisfeiler-Lehman proxim-
ity matrix P is defined as P = (I — yD-1L)¥X, where y €[0,1] is a
tradeoff parameter, and k is the number of aggregation layers.

Because the above Weisfeiler-Lehman proximity matrix is based
on the Weisfeiler-Lehman graph kernels, the matrix naturally cap-
tures data dependence between node links and attributes. In par-
ticular, the proximity matrix has the following properties:

Property 1. The Weisfeiler-Lehman proximity matrix enables
aggregation of node attributes and links from neighboring
nodes to a target node. Parameter k controls the number of
layers of neighboring nodes joining the aggregation. If k =1
and y =1, matrix P equals a one-layer Weisfeiler-Lehman
graph kernel (see Section 5.1 for details).

Property 2. The Weisfeiler-Lehman proximity matrix enables
the tradeoff of node aggregation between neighboring nodes
and a target node, where y is the smoothing parameter.
That is, matrix P is actually a k-layer Laplacian smoothing
[20] of the network (see Section 5.2 for details).

Property 3. When y =1, matrix P defines a variant of k-layer
graph convolutional networks (see Section 5.3 for details).

In Section 5, we analyze the above properties by discussing the
connections between the new proximity matrix and the Weisfeiler-
Lehman graph kernels, Laplacian smoothing, and graph convolu-
tional networks (GCNs).

4. The proposed methods

In this section, we first derive the learning function of the Bina-
rized Attributed Network Embedding model (BANE) and a Cyclic Co-
ordinate Descent (CCD) [18] algorithm in Section 4.1. Then, we for-
mulate the learning function of Low-Bit Quantization for Attributed
Network Representation learning model (LQANR) and an efficient
mixed-integer based alternating direction method of multipliers algo-
rithm in Section 4.2.

4.1. Binarized attributed network embedding (BANE)

Based on Definition 1, we factorize the Weisfeiler-Lehman prox-
imity matrix P = (I — yD-'L)¥X which jointly encodes node at-
tributes and links into a binary node representation matrix B and
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an auxiliary matrix Z. Formally, the learning function of the bina-
rized Weisfeiler-Lehman matrix factorization can be defined as fol-
lows,

o1 5-17)k 2 %52
n;,lzn EH(I—VD L)X_BZ||F+§”Z”F’ (M

st.: Be{-1,+1}"4 Z e R™,

where « is a regularization parameter with respect to the auxiliary
matrix Z. Due to the binary constraint with respect to matrix B,
Eq. (1) is NP-hard. Next, we introduce an efficient algorithm as the
solution.

We present an alternating algorithm to solve Eq. (1). It updates
one parameter at a time and converges fast.

Z -Step. Given B, solve the sub-problem with respect to Z in
Eq. (1). The loss function can be written as follows,

.1 o o
min 2 (1 - yD~'D)X — BZ|I? + S 11217 2)
— _tr(P'BZ) + %tr(ZTBTBZ) n %tr(ZTZ).

Note P = (I — yD-'L)¥X, and tr(.) is the trace norm. By calculat-
ing the derivative of Eq. (2), we derive a closed form solution as
follows,

Z= (B"B+al) 'B"P. (3)

B -Step. It is difficult to solve B due to the discrete constraint.
Given Z fixed, rewrite the objective function in Eq. (1) with respect
to B as follows,

min 21— yD~'D)X — B2 4)

= %tr(ZTBTBZ) —tr(BTPZ"),
st.:Be{-1,+1}™4

Under the observation that a closed-form solution for one column
of B can be achieved by fixing all the other columns, the algorithm
iteratively learns one bit of B at a time.

Let b! be the Ith column of B, and B’ the matrix of B excluding
bl. Then, b' is the Ith bit for all the n samples. Similarly, let g' be
the Ith column of Q = PZT, Q' the matrix of Q excluding ¢/, z' the
Ith row of Z and Z’ the matrix of Z excluding z!. Then we obtain

tr(Z"B"BZ) = ZZ"BTb' + const. (5)
Following the same logic, we obtain
tr(B"Q) = (g")Tb' + const. (6)

Plugging Eqs. (5) and (6) back into Eq. (4), we obtain the opti-
mization problem with respect to b' as follows,

IT}}I] ZIz’TB’TbI _ (ql)TbI (7)
— (le’TB’T _ (ql)T)bl

st bl e{-1, 1)1
Eq.(7) has a closed form solution as follows,

b' = sign(q' — BZ'(2)"). (8)

By using this method, each bit b can be computed based on the
pre-learned d — 1 bits of B'. The convergence of the alternating op-
timization is guaranteed theoretically, because every iteration de-
creases the objective function value and the objective function has
a lower bound.

The details of the algorithm are given in Algorithm 1. Empiri-
cal results demonstrate that the algorithm takes a few iterations
to converge. For example, in our experiments B is iteratively com-
puted and the algorithm converges fast in about 3 — 10 iterations.
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Algorithm 1 Binarized Attributed Network Embedding (BANE).

Input: Graph structure A, node attribute X, dimension d, # of it-
erations t; and t,, parameters k, y, o
Output: Binary node representation matrix B
: Initialize Z, B randomly
: Repeat until converge or reach t;
: Z-Step: Calculate Z using Eq. (3)
: B-Step: Repeat until converge or reach t,
for[=1,.-..,d do
update b' using Eq. (3)
: end for
: return matrix B

0 g U AW N =

4.2. Low-bit quantization for attributed network representation
learning (LQANR)

In this part, we discuss the challenging problem of designing
a more compact discrete learning model than BANE. Specifically,
considering the binary constraint of B in Eq. (1), how to learn
a much sparser and smaller representation matrix B with low-
bit values? The question is equivalent to embedding each node

v; € V into a d-dimensional low-bit vector b; € {-2N, ..., -21 -1,
0, 1,...,2”}”’, where N is an integer which determines the bit-
width.

In fact, there has been a series of methods [14] proposed to re-
duce the size of network parameters. From the perspective of low-
bit quantization for convolutional neural networks, low-bit com-
pression of deep neural networks has been popularly studied re-
cently, such as training binary neural networks with weights con-
strained to +1 and -1, ternary networks, and extremely low-bit
neural networks. Compared to full-precision models, these com-
pressed models are sparse and much smaller, which can potentially
be accelerated with customized circuits and deployed to mobile
devices. In particular, the early work [36] pointed out that net-
work weights have a significant redundancy, and proposed to re-
duce the number of parameters by exploiting the linear structure
of network, which motivated a line of low-rank matrix and tensor
factorization based compression algorithms. The achievement in
low-rank matrix and tensor factorization based compression moti-
vates to learn low-bit quantization for attributed network embed-
ding based on matrix factorization.

Consider an attributed network G, we need to embed each node
v; eV into a d-dimensional low-bit vector b; € {-2N, ..., -21 1,
0,1,...,2N} where N is an integer which determines the bit-
width. b; is the ith row of matrix B € R"¢, Matrix B should pre-
serve the structure information A and the attribute information X
in G. The representation learning function can be formulated by
simultaneously learning the low-bit node representation and the
layer-wise aggregation weights. Assume that «; is the importance
weight of matrix P, = (D-1A)¥X, matrix B < R™¢ is the low-bit
node representation, matrix Z, € R™/ is an auxiliary matrix with
respect to layer k. Then, the learning problem can be formulated
as follows,

K K
; _ 2 2
. > ollPe—BZelIF + B Y 1 Zeli7, 9)
k=0 k=0
st.: Be{=2N,...,-2',-20,0,20 2", .. 2Ny,

K
Zak = 1,ak > 0, Zk € Rdxf,
i=1
where § is a regularization parameter with respect to auxiliary
matrices Z, K is the total number of layers we consider in the
model. A large layer number K may cause over-smoothing, while
a small K cannot fully take advantage of network information. Due
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to the integer constraint over the representation matrix B, Eq. (9) is
hard to solve and requires an efficient algorithm.

We present an efficient algorithm to iteratively optimize vari-
ables Z;, B and «. The algorithm updates one parameter at a time
and converges very fast.

Z -Step. Given B and « fixed, solve the sub-problem with re-
spect to Z;, in Eq. (9). The loss function becomes,

K K
min Y CorllPe— BZllF + B ) I1ZilIF (10)
ko k=0 k=0

K K K
=Y aytr(Z{B"BZy )~ Y autr(P{BZy)+B Y tr(Z;Zy)
k=0 k=0 k=0
where tr(.) is a trace norm. By calculating the derivative of
Eq. (10), we derive a closed form solution as follows,
Z; = (xB"B + al) 1ot BT P,. (11)

B -Step. It is difficult to solve B due to the discrete constraint.
Given Z;, and « fixed, rewrite the objective function in Eq. (9) with
respect to B as follows,

K

min > ol P — BZi|I. (12)
k=0

sit.: Be{=2N, ..., —21,-200,20 21 .. 2Nywd

Due to the discrete constraint, the optimization problem above is
NP-hard.

Here, we introduce an auxiliary variable Q to decouple the pa-
rameters in the objective and the discrete constraint. The idea is
largely motivated by the successful application of ADMM in mixed
integer programs [37]. Then, the objective function in Eq. (12) can
be written as,

K

IEEH §ak|“)k - BZ |1} +1c(Q), (13)
k=

st.:B=Q, Qe{-2N ... —2',-200,202" .. 2Nywd

where I. is defined as an indicator function. Ic(Q) =0 if Q ¢
{=2N ..., =20,0,20 ... 2N}; otherwise, I-(Q) =-+oco. The aug-
mented Lagrange of Eq. (13), for parameter p > 0, can be formu-
lated as,

K
Ly(B.Q.A) = Y ollP — BZ||? +1c(Q) (14)

k=0
P P
A LR R R DTS

Equation (14) can be solved by repeating the following iterations,

B! := arg mingL, (B, Q', 1Y), (15)
Q! :=arg minyL, (B!, Q, A1), (16)
)\.H] = )\.t +Bt+l _ Qt+l. (‘17)

Benefit from the decoupling of ADMM, Eq. (15) is an unconstrained
objective function. We can easily calculate the gradient with re-
spect to matrix B,

dL,(B,Qt, A K K
% = > 204BZ\Z; - Y 204RZ; (18)

k=0 k=0
+p(B—Q + 1Y)
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The closed form solution is given in Eq. (18), where I is an identity
matrix.
K 1/k
B+ = | Y Rz + pQ — pA! > ZiZi + pl ). (19)
k=0 k=0
In order to solve Q, Eq. (16) can be rewritten as,

min lQ— B — Az, (20)

st.r Qef{=2N, ..., =21,-200,2021 ... 2Ny=d

The optimal solution of Q is

Q=[] @&+, (21)
0,41,42,... 4N

where []g 11 1.y denotes the projection of (B! + A%) with re-
spect to the discrete set. After either the predefined iterations or
the convergence of ADMM, Q is assigned to B and the algorithm
continues to update o and Z;.
o -Step. Given Z, and B fixed, rewrite the objective function in
Eqg. (9) with respect to « as follows,
K
min ) o |IP — BZ¢ll. (22)
k=0

K
st.ry o=1,0,>0.
k=0

The optimal solution to « in Eq. (22) is o, = 1 corresponding
to the minimum ||B, — BZ||Z and oy = 0 otherwise. This solution
means that only one order of P, is finally selected. However, the
solution of a single order does not meet our objective on explor-
ing the complementary property of multiple orders to get a better
embedding.

Alternatively, we use a trick based on the work [38] to avoid
the single order solution. We set ], < a; with r > 1 and obtain
the Lagrange of Eq. (23) as below,

K

K
Lia,n) =) apllP—BZllF —n{ D o —1]. (23)
k=0 k=0

By setting the derivative of L(«, ) with respect to o, and 7, to

zero, we obtain
Rl =y (R—BG) —n =0, (24)
om K joy—1=0.

Then, ¢, can be solved as follows,
oy = (/IR — BZ||3)"/ D (25)
< 1/(0-1)"
(Xkoo 1/11Pc — BZ(II?)

Because ||, — BZ,<||§ > 0, we have ¢, > 0 naturally.

The details of the algorithm are given in Algorithm 2. Empirical
studies show that the algorithm takes a few iterations to converge.
For example, in our experiments B is iteratively computed and con-
verges around 2 — 10 iterations.

5. Performance analysis

In this section, we answer the question why the Weisfeiler-
Lehman proximity matrix P in Definition 1 can effectively capture
data dependence between node links and attributes. The proxim-
ity matrix P is built on the Weisfeiler-Lehman graph kernels [17],
which essentially is an information aggregation process that ag-
gregates neighboring nodes’ information to a target node. The pa-
rameter k in matrix P controls the number of layers of neighbor-
ing nodes, and the parameter y controls the degree of Laplac-
ing smoothing. Next, we discuss the connections of matrix P with
Weisfeiler-Lehman graph kernels, Laplacian smoothing and GCNs.
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Algorithm 2 Low-Bit Quantization for Attributed Network Repre-
sentation Learning.

Input: Graph structure A, node attribute X, dimension d, # of it-

erations t; and t,, parameters K, 8, p, 1, N
Output: Low-bit representation matrix B
1: Initialize Z, B, A randomly, Let auxiliary matrix Q = B
: Repeat until converge or reach t;

Z,-Step: Calculate Z;, byZ, = (c;B"B + al)~'a;BTP,

B-Step: Repeat until converge or reach t,

Update B usingB™*! = (ZF g axPZl + pQ° -
PA) N (Choo ZiZy + pD)
Update Q using Q = [Jg 11,4 on(B7! +45)

7: Update A using Aft1 := AL 4 Bt+1 _ Qt+1

(1/||P—~BZ |2/ ¢=D
(Choo VIR—BZ V=D

9 R wN

@

8: «-Step: Calculateq; =

9: return matrix B

5.1. Connection with Weisfeiler-Lehman graph kernels

The idea of aggregating information from neighboring nodes to
a target node originated from the Weisfeiler-Lehman graph ker-
nels [17], where the parameter k controls the layers of neighbor-
ing nodes joining the information aggregation. The original idea of
the Weisfeiler-Lehman algorithm is to augment the node labels by
the sorted set of node labels of their neighboring nodes, and then
compress these augmented labels into new, short labels.

Theorem 1. Let k=1, y =1, and P= (I— yD-10)kX, then P is a
one-layer Weisfeiler-Lehman graph kernel.

Proof. When y =1,k =1, then P = D-'AX = P(). Let h(*) be the
information of node v; in the kth iteration, and N; be the neigh-
bors of v;. Define a linear aggregation function, integrating neigh-
boring nodes’ information and the target node’s information under
the Weisfeiler-Lehman algorithm, we can obtain the following in-
formation propagation rule,

(k) _ 3y (k=1) (k=1)
h =hD + 3 hi= . (26)
JeN;
Such an information propagation rule can be further rewritten into
a compact matrix form as follows,

H® = AHK*-D), (27)
where A =A+1, which adds a self-loop to each nogle in the net-
work. D = d~iag(d1 ..... dn) is the degree matrix of A. Normalizing
the matrix A by its degree matrix D, we obtain

H® = p-1AH*-D, (28)

At the beginning of the aggregation, i.e., k=1, H® =X, then
H®D =pM, Thus PM is a one layer Weisfeiler-Lehman graph
kernel. O

Apparently, Weisfeiler-Lehman graph kernel is essentially the
process of aggregating neighboring nodes’ information towards the
target node.

5.2. Connection with laplacian smoothing

We analyze the relationship between matrix P and the Lapla-
cian smoothing [20]. Given the representation h; of node v;, the
laplacian smoothing can be considered as a new representation of
a target node by using a weighted information aggregation of the
target node itself and its neighbors, i.e.,

d::
y=Q0=-ph+y) =h, yelo1] (29)

jeN; “i
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where d;; denotes an element of matrix A (the adjacency matrix
with self-loop), and J, is the degree of node v;.

Theorem 2. The Weisfeiler-Lehman proximity —matrix P=
(I— yD-'I)* « X is a k-layer network Laplacian smoothing.

Proof. Given an input matrix H*-1, the new representation H®*
can be learned by a function with a parameter matrix W -1, By
following Eq. (29) on each dimension of H*-1), we have

Y = [(1 =)D 4y 3 BpkD kD, (30)
jen; Yi
Then, the compact matrix form can be written as follows,
H® = [(1 - y)H* D 4 y D1 AH*-D W kD (31)
— [H(k—l) _ VD—l (D _A)H(k—l)]w(k—l)
= (- yD'DH*Dw k-,
After repeated Laplacian smoothing calculations on attributes X,
we obtain the update rule,
HY = (- yD'Dxw© (32)
H® = (- yD '[)HOYWD
=(I—-yD 'D)2XWwOW®

HO = (1 - y D DXWOW® ),

Let W=WOW®  wk-1 then H® = (1— yDD)kX - W =
P -W. This result shows that our Weisfeiler-Lehman proximity ma-
trix P is a k-layer Laplacian smoothing. O

The k-layer Laplacian smoothing enables a node to incorporate
deep information from neighbors. Our experiments also validate
the method.

5.3. Connection with graph convolutional networks

The Weisfeiler-Lehman proximity matrix P defines a variant of
graph convolutional networks.

Theorem 3. Let y =1, W € R™<4, then Z=P-W is a k-layer graph
convolutional network.

Proof. Let y =1, then the update rule is H® = (-
D'I)H®Dwk-1_ By replacing the normalized Laplacian ma-
trix D-'L with a symmetrically normalized Laplacian matrix
D-2iD-2H®*-D, the update rule becomes,

H® = D3 AD & Dw k-1, (33)

This is exactly a one-layer graph convolutional network with
a linear activation function. The update rule is an alternative of
graph convolutional networks. Similarly, the k-layer graph convo-
lutional network becomes H® =P.W. O

Theorem 3 indicates that the Weisfeiler-Lehman proximity ma-
trix resembles the layer-wise information aggregation matrix in
GCNs. While GCNs use a nonlinear activation function as the out-
put, our algorithm employs a binary mapping (hashing) for em-
bedding. Furthermore, we restrict y € [0, 1] and gain more flexibil-
ity in incorporating a target node’s information and its neighboring
nodes’ information.

6. Experiments

In this section, we evaluate the performance of BANE and
LQANR on node classification and link prediction tasks. Node clas-
sification is popularly used to estimate the performance of network
embedding methods. The link prediction task is a popular testbed
for evaluating model efficiency.
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Table 1

Dataset Description.
Datasets # Nodes  # Edges x|E|  # Attributes  # Labels
Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Wiki 2405 17,981 4973 19
BlogCatalog 5196 171,743 8189 6

6.1. Experimental setup

Datasets. Four real-world attributed networks are used as
testbed. They are popularly used in previous work [11,13]. Statis-
tics of the datasets are summarized in Table 1.

+ Cora contains 2708 machine learning papers from seven classes
and 5429 links. The links are citation relationships between the
documents. Each document is described by a binary vector of
1433 dimensions indicating the presence of the corresponding
word.

Citeseer contains 3312 publications from six classes and 4732
links. Similar to Cora, the links are citation relationships be-
tween the documents and each paper is described by a binary
vector of 3703 dimensions.

Wiki contains 2405 documents from 19 classes and 17,981
links. It is a co-occurrence network of words appearing in the
first million bytes of Wikipedia dump.

BlogCatalog is a blogger community, where users interact with
each other and form a network. Users are allowed to generate
keywords as a short description of their blogs. These keywords
are severed as node attributes. Users also register their blogs
under predefined categories, where are set as labels.

Baseline Methods. We compare our method with state-of-the-
art methods. DeepWalk and node2vec use plain network structure
for embedding. TADW, HSCA and LANE use both network structure
and attributes.

- DeepWalk [6] involves language modeling techniques to ana-
lyze the truncated random walks on a graph. It embeds the
walking tracks as sentences, and each vertex corresponds to a
unique word.

Node2vec [7] uses a biased random walk algorithm that can
efficiently explore neighborhood architecture.

TADW [11] incorporates textual features of nodes into network
representation learning under the framework of matrix factor-
ization. It factorizes network structure matrix into the product
of three matrices by applying the inductive matrix completion.
Then, it builds a unified matrix for network representations by
concatenating the two decomposed matrix.

HSCA [39] proposes to explicitly enforce the homophily prop-
erty of connected nodes in the learned representation space
so as to learn an effective network representation. By simul-
taneously augmenting homophily, structural context, and node
attributes, the representations can better capture the interplay
between node content information and network structure.
LANE [13] models the structural proximities in the attributed
network and labels based on pairwise similarities. Then, it
jointly maps them into an identical embedding space via three
relevant correlation projections.

Settings and Metrics. For fair comparisons, we set the embedding
dimension d = 100 for all baselines. All the parameters are set to
be the default values. For node classification, we randomly sam-
ple a portion of labeled nodes for training and the rest for test-
ing. The training ratios range from 10% to 90% with an increasing
step of 20%. We use 10-fold cross validation and repeat the testing
for 10 times. The performance of all the methods are evaluated in
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Table 2

Node Classification Results (d=100).
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Micro-F1 (%)

Macro-F1(%)

Datasets  Ratios 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Cora DeepWalk 6371 73.50 7883 8029 8120 61.02 71.65 77.63 79.08 79.83
Node2vec ~ 67.10 77.30 8122 82.68 8352 6656 7650 80.14 81.61 8228
TADW 8150 8497 8578 8623 8693 7971 8335 8426 8444 8535
HSCA 7521 8125 8510 8597 8638 7342 80.10 8401 8441 84.82
LANE 6721 7015 7338 7691 80.81 6639 6849 7267 7532  79.95
BANE 81.88 8532 8635 87.06 8830 80.23 8426 8519 8576 87.11
Citeseer ~ DeepWalk 4324  49.06 5441 5616 5631 4057 4565 4933 5032  49.17
Node2vec 4856 5577 6255 63.66 63.69 4678 53.92 5809 5942  60.47
TADW 6938 7148 7218 7275 72.84 6180 6462 6583 6654 67.03
HSCA 69.47 7154 7261 73.66 7396 61.62 6480 6598 6670 67.21
LANE 5381 6072 6165 6358 6777 5033 57.05 5814 60.63 63.60
BANE 7024 7255 73.78 7455 75.08 6237 6573 67.63 6844 69.35
Wiki Deepwalk 5695 6144 6371 6533 6655 4536 4837 5063 5228 5281
Node2vec  57.83 6225 6370 6531 6636 4588 4990 5078 5222  52.04
TADW 67.04 7125 7236 7319 7433 4676 5145 5276 53.07 53.22
HSCA 68.75 71.87 7335 7471 7705 4630 5203 5357 5457  54.90
LANE 6295 69.04 7045 7201 7324 4638 5073 5234 5462 5512
BANE 7141 77.07 7891 7976 8049 4681 54.83 5695 5843 58.04
BlogCatalog DeepWalk ~ 69.58  78.24 7937 80.78 81.12 6865 7685 7846 80.01 80.54
Node2vec 7243  79.05 8236 8340 8495 7154 7727 8081 8095 82.03
TADW 8250 8656 8782 8920 89.78 8229 8635 87.60 89.04 89.53
HSCA 82.10 8589 8764 89.01 8947 8156 8536 87.02 8843  89.11
LANE 8523 8856 89.64 89.89 90.08 8505 8827 89.35 89.59 89.95
BANE 8621 89.04 8955 89.85 89.88 8571 8874 8930 8955 89.59
terms of Micro-F1 and Macro-F1. For link prediction, we randomly Table3
sample 90% neighbors of each node for training and the rest for Link Prediction Results on the Four Datasets.
testing. We also repeat the recommendation procedure 10 times Cora  Wiki  BlogCatalog  Citeseer
and evaluate the performance of all the methods in terms of AUC, Deepwalk 8310 8046  63.29 30.56
which represents the probability that a randomly selected unob- Node2vec 8159 7891  60.31 80.24
served link is more similar than a randomly selected non-existent TADW 89.77 89.86  60.40 93.80
one. HSCA 87.01 8745 6035 93.50
LANE 86.07 7721 5897 77.18
BANE 93.50 9090 61.44 95.59

6.2. Node classification results

For all the datasets, we reduce the dimension of node attributes
to 200 by using SVD decomposition on X. The preprocessing re-
duces the number of parameters in factorization. We use SVM for
node classification. The embedding dimension d is set to 100 and
the regularization parameter « is set to 0.001.

Table 2 lists the results of node classification. We summarize
as follows. First, BANE significantly outperforms DeepWalk and
node2vec on all the four datasets with respect to both Micro-F1
and Macro-F1 under five different training ratios from 10% to 90%.
The results indicate that combining node links and attributes can
substantially improve embedding accuracy. Second, BANE outper-
forms all the structure and attributes embedding algorithms on
Cora, Citeseer and Wiki in terms of both Micro-F1 and Macro-F1
under different training ratios. The classification results are signif-
icantly higher than the other baseline methods by 3% on the Wiki
dataset. The accuracy is marginally lower than LANE on the Blog-
Catalog dataset when training ratio increasing from 50% to 90%.
The results indicate the effectiveness and robustness of BANE to
handle both structure and attribute information. Third, BANE is
the only binarized representation method. The results show that
binary representation does not necessarily lead to accuracy loss. In
fact, it may avoid the trap of over-fitting. Fourth, BANE performs
stably better than all the other benchmarks when the training ratio
is low. For example, the Micro-F1 result on Wiki with 10% train-
ing reaches 0.714, which is much higher than the second highest
0.687 from HSCA. The accuracy results of most baseline methods
drop rapidly when the training ratio decreases, because their node
representations are noisy and inconsistent from training to testing.

Instead, BANE learns jointly from node links and attributes by us-
ing high layer Weisfeiler-Lehman matrix. Thus, the results of BANE
contain less noise and are more robust.

6.3. Link prediction results

Table 3 shows the results of link predictions on the four
datasets. We randomly sample 90% neighbors of each node for
training and the rest for testing. We measure the performance by
AUC. The observations are as follows. First, our method signifi-
cantly outperforms baselines on Cora, Wiki and Citeseer. The AUC
scores reach 93.5% on Cora and 95.6% on Citeseer. Second, convert-
ing real-valued numbers into binary representation improves the
link prediction accuracy. This is because the binary representation
can alleviate the over-fitting problem and it is more intuitional to
express the Yes/No option for recommendation. Moreover, binary
representation can replace the dot-product similarity computation
with bit-wise Hamming distance. Thus, the speed of training can
be significantly improved.

6.4. Parameter study

We test the three parameters, tradeoff parameter y, the layer
of aggregation k, and the embedding dimension d.

6.4.1. Tradeoff parameter y and the layer parameter k
We test parameter k by varying its value from 1 to 6, and y
from O to 1 with a stepsize of 0.1. The training ration is set to
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Fig. 2. Node classification results in terms of Micro-F1 with respect to parameters y and k. (a) Cora, (b) Citeseer, (c) Wiki, and (d) BlogCatalog.

0.9. The Micro-F1 results on the four datasets are shown in Fig. 2.
From the figure, we have the following observations. First, the Cora
and Citeseer datasets reflect similar patterns. The classification ac-
curacy increases with y and achieves the highest value when y
reaches 0.6 to 0.8. After that, the accuracy gradually drops. When
y =0, we only use the node attributes, so the classification results
are the lowest. For example, 0.7 on Cora and 0.67 on Citeseer. Gen-
erally, when k falls into the range of 4 to 6, we obtain the best re-
sults, which shows that the number of layers of node neighbors is
important. Second, on Wiki the best result is observed when k = 1.
Increase k results in lower accuracy results. When y between 0
and 0.3, we obtain the best performance. Then, the accuracy drops
with increasing y. Third, on BlogCatalog when y is less than 0.4,
a larger k obtains a better accuracy result. However, when y is
large, a small k shows better accuracy and the overall result drops
quickly.

6.4.2. Node embedding dimension d

We test the embedding dimension d from 20 to 300 with a
stepsize of 20. The node classification results on the datasets are
shown in Fig. 3a. We can observe that the performance of network
embedding improves with d increasing to 160. Then, the results
become stable when code length continuously increases to 300.

The link prediction results with varying embedding dimension
d are shown in Fig. 3b. With the increasing of embedding dimen-
sion, the AUC scores increase rapidly to top when the dimension
ranges from 60 to 100. Then, the results remain stable when in-
creasing d, until the dimension reaches 260. The results show that

the binary representation can deliver competitive link prediction
results even though the embedding dimension is low.

6.5. Binarized vs real-valued Weisfeiler-Lehman matrix factorization

We also compare the original binary BANE model with its real-
valued variant (BANE-r for short) by removing the binary con-
straint in Eq. (1).

The overall procedure is the same as BANE. We can easily get
the closed form solution for both B and Z at each update. Table 4
shows the classification accuracy on the four datasets with training
ratios range from 10% to 90% and the embedding dimension d =
100.

When comparing BANE-r with BANE, we can observe that the
real-valued embedding receives slightly higher accuracy results
than binary embedding on Cora, Citeseer and Blogcatalog when the
training ratios increase from 30% to 90%. Nevertheless, if the train-
ing ratio is as low as 10%, the binary embedding beats the real-
valued embedding. For example, the classification Micro-F1 on the
Citeseer dataset with 10% training ratio is 70.24 of BANE versus
67.91 of BANE-r. On the Wiki dataset, the Micro-F1 scores of BANE
are higher than that of BANE-r at all training ratios, but the Macro-
F1 scores are lower.

From the comparison results, we can conclude that the binary
embedding BANE obtains competitive embedding results as real-
valued embedding, especially when the training ratio is low. The
reasons may be as follows: First, binary constraints can be viewed
as adding non-linear features to the linear matrix factorization,
so linear classification on binary codes is equivalent to learning a
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Table 4
Node classification results between real-valued embedding and binarized embedding.
Micro-F1 Macro-F1
Datasets Models  10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Cora BANE-r 8094 86.70 87.56 87.87 89.00 79.75 85.64 8646 86.61 87.92
BANE 81.88 8532 86.35 87.06 8830 80.23 84.26 85.19 8576  87.11
Citeseer BANE-r 6791 7415 75.17 7582 7601 61.77 69.11 7047 71.18 71.78
BANE 7024 7255 73.78 7455 75.08 6237 6573 67.63 6844 69.35
Wiki BANE-r 63.82 71.04 7476 7565 7744 4871 60.55 65.53 67.20 72.21
BANE 7141 7707 7891 79.76 8049 46.81 54.83 5695 5843 58.04
Blogcatalog ~ BANE-r  82.75 89.07 90.39 91.15 92.02 8247 8890 90.23 91.01 91.83
BANE 86.21 89.04 8955 89.95 89.88 8571 8874 8930 89.75 89.59
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Fig. 4. Comparison BANE with VGAE for Link Prediction.

nonlinear classifier on the original data. Second, the limited two
values of binary codes can alleviate the possible over-fitting prob-
lem and obtain encouraging results, even when the training ratio
is very small.

6.6. Comparison with GCNs

We also compare our algorithm with a variant of GCNs, i.e.,
the Variational Graph Auto-Encoders (VGAE) [40], which learns a
GCN as an autoencoder for link prediction. VGAE uses 85%, 5%, 10%
edges for training, validation, and testing. To simulate the settings
of VGAE as close as possible, we randomly select 85% edges for
training and 10% for testing for BANE. We repeat the process 10
times and calculate their average. The results are shown in Fig. 4.

The results show that BANE beats VGAE for the given link
prediction task. This is because the tradeoff parameter y in the
Weisfeiler-Lehman proximity matrix provides extra flexibility to
model data dependence between node links and attributes. How-
ever, finding the best parameter y to fully unleash the power of
the BANE model is not a trivial work, we will consider to use auto-
mated machine learning to search the best parameter in the future
work.

10

Fig. 5. Speedup of link prediction by LQANR.

6.7. Low-bit quantization representation (LQANR)

6.7.1. Speedup of LQANR

As shown in Fig. 5, low-bit representation also accelerates link
prediction speed by replacing the dot-product similarity compu-
tation with bit-wise Hamming distance. The figure shows the
speedup of 100 and 200 dimension nearest search via hamming
distance compared to dot-product. The results show that large-
sized networks gain significant speedup.

6.7.2. Parameter study

We test four parameters, bit-width decided by N, embedding
dimension d, proximity matrix maximum order K and weights of
P, impacted by r.

First, we study different kinds of bit-width for discrete node
embedding. We test binary quantization, ternary quantization, one-
bit shift quantization and two-bits shift quantization. The node
classification result on the Cora dataset with respect to different
bit-width values is shown in Table 5. We can observe that the
classification accuracy increases with bit-width. For example, the
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Table 5
Node classification (Micro-F1) w.r.t. bit-width.
Bit-width 10% 30% 50% 70% 90%
(1,-1) 80.16  84.13 849 85.38  86.33
(-1,0,1) 83.00 8591 86.74 87.27  87.70
(-2,-1,0,1,2) 8340 86.46 8722 87.68  88.33
(-4, .., 4) 83.51 86.53 87.34 87.70 88.85
Table 6
Node classification (Micro-F1) w.r.t. K on Cora.
Order K 10% 30% 50% 70% 90%
K=2 8229 8546 8597 86.12 86.37
K=3 82.69 8558 8644 86.90 87.56
K=4 82.67 85.62 86.62 8736 87.44
K=5 83.00 8591 86.74 87.27 87.70
K=6 8263 8570 8643 87.03  88.11

Micro-F1 score increases from 80.16 when B is represented by {-
1,1} to 83.51 when B is represented by {-4,-2,...,2,4}.

Second, we test the embedding dimension d from 20 to 200
with a stepsize of 20. The link prediction results are shown in
Fig. 6a. We can observe that the performance of network embed-
ding improves with d increasing from 20 to 100, and then remains
stable when code length continuously increases. On the BlogCat-
alog dataset, the link prediction results are the lowest. This is
because BlogCatolog contains more complicated structure and at-
tribute information than the other datasets.

Third, we test node classification with different K. The results
on Cora with K arranging from 2 to 6 are shown in Table 6. It
shows that K =5 is the best choice for Cora in many cases. The
reason is that when K is too large, it can cause over-smoothing
for node attributes. However, small K cannot fully propagate node
attribute information in networks (Table 7).

Last, we test weights of P,. Different k-hop matrices capture dif-
ferent steps of neighboring node attributes. The layer-wise weights
oy, are impacted by r. We test on different datasets and find the
best node classification results with the best parameter r. r is usu-
ally between 1 and 10 for the tested datasets. We plot the distri-

Table 7
Node Classification Results (d=100).

bution of o on Citeseer with K =5 and r = 1.6. From Fig. 6b, we
can observe that the higher order P, contributes heavier weights,
which means combining more layers leads to better results.

6.7.3. Comparison

We compare LQANR with BANE on Cora, Citeseer, and BlogCat-
alog with respect to Micro-F1 and Macro-F1 under different train-
ing ratios. The results validate that LQANR performs slightly better
than BANE, which is also very effectiveness and robustness. More-
over, LQANR can obtain any low-bit embedding, which is more
flexible and accurate to capture attributed network information.

7. Conclusions

In this paper we study a new problem of discrete embedding for
attributed networks, where we define a new Weisfier-Lehman prox-
imity matrix to jointly encode data dependence between node links
and attributes. Based on the new proximity matrix, we formu-
late a new binarized Weisfier-Lehman matrix factorization model
to obtain binary node representation. Moreover, we extend the bi-
nary representation learning to even low-bit quantization learn-
ing for attributed networks. Theoretical studies show the close
connections of the new proximity matrix with Weisfier-Lehman
graph kernels, network smoothing, and graph convolutional net-
works (GCNs). Empirical results also validate the promising re-
sults compared with popular network embedding models. In the
future, we will consider to use the automated machine learning
methods (AutoML) to search the best parameters for the proposed
BANE model. We expect that the Weisfier-Lehman proximity ma-
trix can precisely capture data dependence between node links and
attributes for any given large networks with minimal human ef-
forts.
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Micro-F1 (%)

Macro-F1(%)

Datasets Models  10% 30% 50% 70% 90% 10% 30% 50% 70% 90%
Cora BANE 81.88 8532 8635 87.06 8830 8023 8426 8519 8576 87.11
LQANR  83.00 85.91 86.74  87.27  88.21 81.79 8479 8557 8595 86.95
Citeseer BANE 7024 7255 7378 7455 75.08 6237 65.73 67.63 6844  69.35
LQANR  70.41 7273 7380 74.67 7520 6294 66.11 6780 68.72  69.62
BlogCatalog ~ BANE 86.21 89.04 89,55 89.85 89.88 85.71 88.74 89.30 89.55  89.59
LQANR  86.24 89.29 89.95 9044 90.75 85091 89.10 89.79  90.31 90.55

1



H. Yang, L. Chen, S. Pan et al.

References

[1] X. Pan, H.-B. Shen, Scoring disease-microrna associations by integrating dis-
ease hierarchy into graph convolutional networks, Pattern Recognit. 105 (2020)
107385.

[2] W. Zan, C. Zhou, H. Yang, Y. Hy, L. Guo, iWalk: interest-aware random walk for

network embedding, in: 2018 International Joint Conference on Neural Net-

works (IJCNN), IEEE, 2018, pp. 1-8.

H. Yang, L. Chen, M. Lei, L. Niu, C. Zhou, P. Zhang, Discrete embedding for latent

networks, in: C. Bessiere (Ed.), Proceedings of the Twenty-Ninth International

Joint Conference on Artificial Intelligence, IJCAI-20, International Joint Confer-

ences on Artificial Intelligence Organization, 2020, pp. 1223-1229. Main track

[4] F. Xiong, X. Wang, S. Pan, H. Yang, H. Wang, C. Zhang, Social recommendation
with evolutionary opinion dynamics, IEEE Trans. Syst. Man Cybern. (2018).

[5] P. Wang, P. Zhang, C. Zhou, Z. Li, H. Yang, Hierarchical evolving Dirichlet pro-

cesses for modeling nonlinear evolutionary traces in temporal data, Data Min.

Knowl. Discov. 31 (1) (2017) 32-64.

B. Perozzi, R. Al-Rfou, S. Skiena, DeepWalk: online learning of social represen-

tations, in: Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, 2014, pp. 701-710.

[7] A. Grover, ]. Leskovec, node2vec: scalable feature learning for networks, in:
KDD, ACM, 2016, pp. 855-864.

[8] J. Tang, M. Qu, M. Wang, M. Zhang, ]. Yan, Q. Mei, Line: large-scale information

network embedding, in: WWW, 2015, pp. 1067-1077.

P. Velickovi¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph at-

tention networks, in: International Conference on Learning Representations,
2018.
[10] D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016, pp. 1225-1234.

[11] C. Yang, Z. Liu, D. Zhao, M. Sun, E.Y. Chang, Network representation learning
with rich text information, in: [JCAI, 2015, pp. 2111-2117.

[12] X. Huang, J. Li, X. Hu, Accelerated attributed network embedding, in: SDM,
SIAM, 2017, pp. 633-641.

[13] X. Huang, J. Li, X. Hu, Label informed attributed network embedding, in:
WSDM, ACM, 2017, pp. 731-739.

[14] J. Wang, T. Zhang, N. Sebe, H.T. Shen, et al, A survey on learning to hash,
TPAMI (2017).

[15] W. Wu, B. Li, L. Chen, X. Zhu, C. Zhang, k-ary tree hashing for fast graph clas-
sification, TKDE (2017).

[16] Y. Shi, M. Lei, H. Yang, L. Niu, Diffusion network embedding, Pattern Recognit.
88 (2019) 518-531.

[17] N. Shervashidze, P. Schweitzer, EJ.v. Leeuwen, K. Mehlhorn, K.M. Borgwardt,
Weisfeiler-Lehman graph kernels, JMLR 12 (Sep) (2011) 2539-2561.

[18] F. Shen, C. Shen, W. Liu, H. Tao Shen, Supervised discrete hashing, in: CVPR,
2015, pp. 37-45.

[19] S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, K.M. Borgwardt, Graph ker-

nels, JMLR 11 (Apr) (2010) 1201-1242.

G. Taubin, A signal processing approach to fair surface design, in: Proceedings

of the 22nd Annual Conference on Computer Graphics and Interactive Tech-

niques, ACM, 1995, pp. 351-358.

[21] J. Gu, Z. Wang, ]. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,

J. Cai, et al., Recent advances in convolutional neural networks, Pattern Recog-

nit. 77 (2018) 354-377.

H. Yang, S. Pan, P. Zhang, L. Chen, D. Lian, C. Zhang, Binarized attributed

network embedding, in: 2018 IEEE International Conference on Data Mining

(ICDM), IEEE, 2018, pp. 1476-1481.

S. Yan, D. Xu, B. Zhang, H.-]. Zhang, Q. Yang, S. Lin, Graph embedding and

extensions: a general framework for dimensionality reduction, TPAMI 29 (1)

(2007) 40-51.

S. Chang, W. Han, J. Tang, G.-J. Qi, C.C. Aggarwal, T.S. Huang, Heterogeneous

network embedding via deep architectures, in: KDD, ACM, 2015, pp. 119-128.

C. Li, S. Wang, D. Yang, Z. Li, Y. Yang, X. Zhang, J. Zhou, PPNE: property pre-

serving network embedding, in: International Conference on Database Systems

for Advanced Applications, Springer, 2017, pp. 163-179.

[26] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, H. Liu, Attributed network embedding

for learning in a dynamic environment, in: CIKM, ACM, 2017, pp. 387-396.

[27] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive survey

on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. (2020).

[28] W.L. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large

graphs, NIPS, 2017.

K. Xu, W. Hu, J. Leskovec, S. Jegelka, How powerful are graph neural networks?

in: International Conference on Learning Representations, 2018.

Y. Gao, H. Yang, P. Zhang, C. Zhou, Y. Hu, Graph neural architecture search,

in: C. Bessiere (Ed.), Proceedings of the Twenty-Ninth International Joint Con-

ference on Artificial Intelligence, IJCAI-20, International Joint Conferences on

Artificial Intelligence Organization, 2020, pp. 1403-1409. Main track

[31] W. Liu, C. Mu, S. Kumar, S.-F. Chang, Discrete graph hashing, in: NIPS, 2014,

pp. 3419-3427.

F. Shen, Y. Xu, L. Liy, Y. Yang, Z. Huang, H.T. Shen, Unsupervised deep hashing

with similarity-adaptive and discrete optimization, TPAMI (2018).

I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Binarized neural

networks, in: Proceedings of the 30th International Conference on Neural In-

formation Processing Systems, 2016, pp. 4114-4122.

13

[6

[9]

[20]

[22]

[23]

[24]

[25]

[29]

(30]

(32]

[33]

12

Pattern Recognition 123 (2022) 108368

[34] X. Shen, S. Pan, W. Liu, Y. Ong, Q. Sun, Discrete network embedding, in: IJCAI,
2018, pp. 3549-3555.

[35] W. Wu, B. Li, L. Chen, C. Zhang, Efficient attributed network embedding via
recursive randomized hashing, in: IJCAI-18, 2018, pp. 2861-2867.

[36] M. Denil, B. Shakibi, L. Dinh, M.A. Ranzato, N. de Freitas, Predicting parameters
in deep learning, Advances in Neural Information Processing Systems, vol. 26,
2013.

[37] C. Leng, H. Li, S. Zhu, R. Jin, Extremely low bit neural network: Squeeze the
last bit out with ADMM, AAAI, 2017.

[38] T. Xia, D. Tao, T. Mei, Y. Zhang, Multiview spectral embedding, TSMC-B 40 (6)
(2010) 1438-1446.

[39] D. Zhang, ]. Yin, X. Zhu, C. Zhang, Homophily, structure, and content aug-
mented network representation learning, in: ICDM, IEEE, 2016, pp. 609-618.

[40] T.N. Kipf, M. Welling, Variational graph auto-encoders, NIPS Workshop on
Bayesian Deep Learning, 2016.

Hong Yang is a Senior Postdoctoral Scientist with Faculty
of Medicine and Health, the University of Sydney, Aus-
tralia. She received PhD from the Australian Artificial In-
telligence Institute (AAII), University of Technology Syd-
ney, Australia. She obtained her Master degree from Uni-
versity of Chinese Academy of Sciences, and her Bachelor
degree from Xidian University. Her research interests in-
clude graph data analytics and medical image processing.
She has published 16 research papers in major data min-
ing journals and conferences.

Ling Chen is an Associate Professor with the Australian
Artificial Intelligence Institute (AAII), University of Tech-
nology Sydney, Australia. She received PhD from Nanyang
Technological University, Singapore. Her research interests
include data mining and machine learning, especially on
structured data such as graph data and spatio-temporal
data. She also works on social network and social me-
dia analysis and applications. Her papers appear in ma-
jor conferences and journals including KDD, IJCAI, IEEE
TNNLS and IEEE TKDE.

Shirui Pan received PhD in computer science from the
University of Technology Sydney, Australia. He is currently
a lecturer with the Faculty of Information Technology,
Monash University, Australia. Prior to this, he was a Lec-
turer with the School of Software, University of Technol-
ogy Sydney. His research interests include data mining
and machine learning. To date, Dr Pan has published over
60 research papers in top-tier journals and conferences,
including the IEEE Transactions on Neural Networks and
Learning Systems (TNNLS), IEEE Transactions on Knowl-
. edge and Data Engineering (TKDE), IEEE Transactions on
Cybernetics (TCYB), KDD, AAAI, and CVPR.

Haishuai Wang is a Visiting Assistant Professor of
Biomedical Informatics at Harvard University, and a
tenure-track Assistant Professor of Computer Science at
Fairfield University. Prior to that, he was a Research Fel-
low at Harvard University and Postdoc Fellow at Wash-
ington University in St. Louis. He completed PhD in Com-
puter Science from the University of Technology Sydney
and Washington University in St. Louis. His research ar-
eas include data mining, machine learning and health in-
formatics. His research focuses on developing machine
learning algorithms to analyze complex data, ranging
from clinical data, time series data, biological data, to
large-scale networks.

Peng Zhang is a Professor with Guangzhou University,
China. He received PhD from University of the Chinese
Academy of Sciences. He was a lecturer with University
of Technology Sydney, an associate professor with Chinese
Academy of Sciences, and a senior staff engineer with the
Alibaba Group. He has been researching into data mining,
data streams, and social network analysis, with over 150
publications in TPAMI, TKDE, TNNLS, KDD, WWW, ICDM,
AAA], IJCAI etc. He has served on many program com-
mittees of international conferences, including PC mem-
ber for KDD, ICLR, ICML, NeurlPS, IJCAI, and AAAI confer-
ences. He also served as the founding editorial board of
Springer Annals of Data Science, and Springer Journal of

Big Data.


http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0040

	Discrete embedding for attributed graphs
	1 Introduction
	2 Related work
	3 Preliminaries
	4 The proposed methods
	4.1 Binarized attributed network embedding (BANE)
	4.2 Low-bit quantization for attributed network representation learning (LQANR)

	5 Performance analysis
	5.1 Connection with Weisfeiler-Lehman graph kernels
	5.2 Connection with laplacian smoothing
	5.3 Connection with graph convolutional networks

	6 Experiments
	6.1 Experimental setup
	6.2 Node classification results
	6.3 Link prediction results
	6.4 Parameter study
	6.4.1 Tradeoff parameter  and the layer parameter 
	6.4.2 Node embedding dimension 

	6.5 Binarized vs real-valued Weisfeiler-Lehman matrix factorization
	6.6 Comparison with GCNs
	6.7 Low-bit quantization representation (LQANR)
	6.7.1 Speedup of LQANR
	6.7.2 Parameter study
	6.7.3 Comparison


	7 Conclusions
	Declaration of Competing Interest
	References


