
Pattern Recognition 123 (2022) 108368

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Discrete emb e dding for attribute d graphs

Hong Yang

a , Ling Chen

b , Shirui Pan

c , Haishuai Wang

d , Peng Zhang

e , ∗

a Faculty of Medicine and Health, The University of Sydney, Australia
b Faculty of Information Technology, University of Technology Sydney, Australia
c Faculty of Information Technology, Monash University, Australia
d Department of Computer Science and Engineering, Fairfield University, USA
e Cyberspace Institute of Advanced Technology, Guangzhou University, China

a r t i c l e i n f o

Article history:

Received 1 March 2021

Revised 23 September 2021

Accepted 9 October 2021

Available online 15 October 2021

Keywords:

Attributed graphs

Graph embedding

Weisfeiler-Lehman graph kernels

Learning to hash

Low-bit quantization

a b s t r a c t

Attributed graphs refer to graphs where both node links and node attributes are observable for analysis.

Attributed graph embedding enables joint representation learning of node links and node attributes. Dif-

ferent from classical graph embedding methods such as Deepwalk and node2vec that first project node

links into low-dimensional vectors which are then linearly concatenated with node attribute vectors as

node representation, attributed graph embedding fully explores data dependence between node links

and attributes by either using node attributes as class labels to supervise structure learning from node

links, or reversely using node links to supervise the learning from node attributes. However, existing at-

tributed graph embedding models are designed in continuous Euclidean spaces which often introduce

data redundancy and impose challenges to storage and computation costs. In this paper, we study a new

problem of discrete embedding for attributed graphs that can learn succinct node representations. Specif-

ically, we present a Binarized Attributed Network Embedding model (BANE for short) to learn binary node

representation by factorizing a Weisfeiler-Lehman proximity matrix under the constraint of binary node

representation. Furthermore, based on BANE, we propose a new Low-bit Quantization for Attributed Net-

work Representation learning model (LQANR for short) to learn even more compact node representation

of bit-width values. Theoretical analysis and empirical studies on real-world datasets show that the new

discrete embedding models outperform benchmark methods.

© 2021 Elsevier Ltd. All rights reserved.

1

o

s

s

i

g

l

c

f

c

t

I

(

p

S

e

e

o

m

t

3

m

f

m

w

a

m

o

h

0

. Introduction

Attributed graphs are popularly used to describe a large body

f networks where both node links and node attributes are ob-

ervable for analysis. Typical examples of attributed graphs include

ocial network data, academic citation data, and protein-protein

nteraction data [1] . To obtain knowledge from attributed graphs,

raph embedding models are proposed to project node links into

ow-dimensional vectors. Then, the projected vectors are linearly

oncatenated with node attribute vectors to represent the nodes

or downstream learning tasks such as link prediction [2] , node

lassification [3] , and social network recommendations [4,5] .

The key idea of graph embedding is to design a mapping func-

ion which converts graph nodes into low-dimensional vectors.

n general, a mapping function should fulfill three principles: 1)
∗ Corresponding author.

E-mail addresses: h.yang@usydney.edu.au (H. Yang), Ling.chen@uts.edu.au

L. Chen), shirui.pan@monash.edu.au (S. Pan), hwang@fairfield.edu (H. Wang),

.zhang@gzhu.edu.cn (P. Zhang).

t

(

o

b

F

ttps://doi.org/10.1016/j.patcog.2021.108368

031-3203/© 2021 Elsevier Ltd. All rights reserved.
calability. Real-world graphs are naturally large-scale. Thus, graph

mbedding models should be able to handle large-scale graphs

fficiently. 2) Sparsity. Generally there are only a few number

f nodes labeled for training in a graph. Thus, graph embedding

odels are expected to learn low-dimensional vectors to reduce

he number of weight parameters of downstream learning models.

) Adaptability. Graphs are often evolving with time. Embedding

apping functions should be able to adapt with time and avoid

requently repetitive training.

Considering the above principles, a class of graph embedding

odels has been proposed. DeepWalk [6] represents the seed work

hich borrows the idea of word embedding, treats nodes as words

nd generates short random walks as sentences. Then, linguistic

odels such as Skip-gram are applied to the random walks and

btain node representations. Based on DeepWalk, node2vec [7] in-

roduces the biased random walk that enables breadth first search

BFS) and depth first search (DFS) neighborhood exploration. Based

n DeepWalk and node2vec, a number of sophisticated graph em-

edding models are proposed for handling large-scale networks.

or example, LINE [8] uses a breadth-first search strategy to gener-

https://doi.org/10.1016/j.patcog.2021.108368
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108368&domain=pdf
mailto:h.yang@usydney.edu.au
mailto:Ling.chen@uts.edu.au
mailto:shirui.pan@monash.edu.au
mailto:hwang@fairfield.edu
mailto:p.zhang@gzhu.edu.cn
https://doi.org/10.1016/j.patcog.2021.108368

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

a

a

l

p

d

i

o

r

n

e

b

d

t

s

e

d

W

n

T

t

g

e

d

p

v

p

w

s

w

t

r

s

e

w

t

p

c

i

l

H

i

m

i

n

i

s

i

c

c

r

e

e

n

i

w

n

t

W

L

n

t

i

i

a

[

W

w

[

b

l

u

f

m

s

i

L

g

d

o

p

t

2

w

1 MATLAB codes: https://github.com/ICDM2018-BANE/BANE .
2 Python codes: https://github.com/benedekrozemberczki/BANE .
te context nodes on large-scale networks. GraphAttention [9] uses

n attention model that can learn multi-scale representations for

ink prediction. SDNE [10] learns node representations where the

roximity between two-hop neighbors is maintained by using a

epth auto-encoder.

The above graph embedding models fall into a two-stage learn-

ng category, where node links are vectorized independently with-

ut using any auxiliary information from node attributes. As a

esult, they are incapable of capturing data dependence between

ode links and attributes, which is often referred to as plain graph

mbedding . To enable exploitation of the dependence information

etween node links and node attributes, attributed graph embed-

ing models are proposed to jointly learn from node links and at-

ributes. The principle is to use node attributes as class labels to

upervise structure learning from node links, or vice versa. For

xample, the work [11] uses textual attributes to supervise ran-

om walks on networks and derives the Text-associated Deep-

alk (TADW) model. On the contrary, the work [12] reversely uses

ode links to supervise the factorization of attributed matrices.

he work [13] mutually uses node links and attributes as labels

o supervise the learning from each other. Generally, attributed

raph embedding outperforms plain graph embedding by consid-

ring data dependence between node attributes and node links.

However, existing attributed network embedding models are

eveloped in continuous Euclidean spaces. By embedding the de-

endence information of node attributes and links, the learned

ectors may contain redundant information that degenerates com-

utation efficiency and increases storage cost, especially when net-

orks are very large. Imagining the task of k-nearest neighbor

earch to recommend the top-k most similar friends in a large net-

ork of size n , assuming the representation vector is of length d,

he similarity search will take time O (n 2 d) . Thus, compact node

epresentation is preferred to speedup computation and reduce

torage cost. For example, if we use binary embedding and encode

ach node with 128 bits, we can store a data set of 1 million nodes

ith only 16M memory. Moreover, the speed of low-bit computa-

ion is faster than floating numbers, because the expensive oating-

oint multiplication operation can be replaced by a sequence of

heaper and faster bit shift operations of fixed-point numbers.

Recently, discrete representation learning has attracted increas-

ng attention and a number of hash algorithms and binary code

earning have been proposed to learn discrete representations in

amming spaces. The idea of hashing algorithms and binary cod-

ng [14] is to encode high-dimensional feature vectors of docu-

ents, images and videos to compact binary codes, while preserv-

ng the similarity structure in the original space. In particular, bi-

ary code learning can generate succinct representations by encod-

ng high-dimensional data into a set of short binary codes with

imilarity preservation. Binary coding is also referred to as hash-

ng which maps data to discrete Hamming spaces [15] . The binary

odes can facilitate representation and search of massive data be-

ause it only needs a relatively small size of binary bits to rep-

esent a data item, and binary computation in Hamming space is

fficient by using the bit operations.

In this paper, we study the problem of discrete attributed graph

mbedding. The key challenge is to aggregate information of both

ode links and attributes for discrete node representation . Consider-

ng matrix factorization as the discrete graph embedding frame-

ork [13,16] , the challenges of discrete embedding for attributed

etworks can be summarized as follows:

• Challenge 1 : How to design a proximity matrix to capture

data dependence between node links and node attributes in

attributed graphs. To our best knowledge, none of existing

network proximity matrices encodes both node links and at-

tributes.
2
• Challenge 2 : How to design a fast algorithm to solve the dis-

crete representation learning problem. Existing models for em-

bedding attributed networks are formulated in the Euclidean

space. However, factorizing a network proximity matrix under

binary constraints falls into the integer programming category

which requires new efficient algorithms.

• Challenge 3 : How to theoretically and empirically prove the ef-

fectiveness and efficiency of the learning model.

To solve the above challenges, we present a new Binarized At-

ributed Network Embedding model (BANE for short). Inspired by the

eisfeiler-Lehman graph kernels [17] , we define a new Weisfeiler-

ehman proximity matrix to capture data dependence between

ode links and attributes. Then, based on the new proximity ma-

rix, we formulate a Weisfeiler-Lehman matrix factorization learn-

ng function under the binary representation constraint. The learn-

ng problem falls into the category of mixed integer optimization

nd we use an efficient cyclic coordinate descent (CCD) algorithm

18] as the solution. We theoretically prove the advantages of the

eisfeiler-Lehman proximity matrix by analyzing its connections

ith Weisfeiler-Lehman graph kernels [19] , Laplacian smoothing

20] , and Graph Convolutional Networks (GCNs) [21] . Furthermore,

ased on BANE, we present a low-bit quantization model that can

earn even more compact node representation of bit-width val-

es. Experimental results on real-world datasets validate the per-

ormance of the proposed methods. The framework of the learning

odels is illustrated in Fig. 1 .

The contributions of the paper are summarized as follows:

• We first study the problem of discrete embedding learning for

attributed graphs, and present a new Binarized Attributed Net-

work Embedding model (BANE for short) as the solution.

• We define a new Weisfeiler-Lehman proximity matrix to en-

code data dependence between node links and node attributes,

based on which a new Weisfeiler-Lehman matrix factorization is

presented to learn binary representation. Moreover, we theoret-

ically prove the connections between the proposed Weisfeiler-

Lehman matrix and Weisfeiler-Lehman graph kernels, Laplacian

smoothing, and Graph Convolutional Networks (GCNs).

• Based on BANE, we further propose a Low-Bit Quantization for

Attributed Network Representation learning model (LQANR for

short). LQANR can learn more compact node representation of

bit-width values with stably high accuracy. Also, we introduce

a new mixed-integer based alternating direction method of multi-

pliers (ADMM) algorithm to solve LQANR.

• We conduct experiments to validate the performance of the

proposed models. The Matlab codes 1 and Pyhthon codes 2 are

available online.

The paper is an extension of its former conference ver-

ion [22] , where more theoretical and empirical studies are added

n Sections 5 and 6. In addition, a low-bit quantization model

QANR is also added for comparisons. The rest of the paper is or-

anized as follows. Section 2 surveys related work. Section 3 intro-

uces the preliminaries. Section 4 introduces the learning models

f BANE and LQANR. Section 5 discusses the advantages of the pro-

osed methods. Section 6 conducts experiments, and we conclude

he work in the last section.

. Related work

Graph Embedding . Graph embedding is also called as net-

ork embedding or graph representation learning. Current graph

https://github.com/ICDM2018-BANE/BANE
https://github.com/benedekrozemberczki/BANE

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

Fig. 1. The conceptual framework of the Binarized Attributed Network Embedding (BANE) . Given an attributed network G = { V, E, X} , derive a Weisfeiler-Lehman proximity

matrix P = (I − γ ˜ D −1 ˜ L) k X by aggregating structure matrix A and attribute matrix X . Factorizing matrix P into a binary node representation matrix B and an auxiliary matrix

Z. In the figure, the colored cells and arrows explain the formulation of matrix P from the perspective of feature propagation. Given a target node i , the blue cells in the

structure matrix A highlight non-zero entries corresponding to the neighbouring nodes of i . The red arrows denotes that the feature vectors of these non-zero entries will

be propagated to the target node i . The blue arrows pointing to the target node i denote that a new feature vector of node i is formulated by aggregating feature vectors of

itself and its neighboring nodes. Such an feature propagation will be repeated for k times and generate the final matrix P.

e

d

g

o

g

a

o

T

w

t

a

s

r

o

n

w

d

i

D

l

m

G

t

t

l

n

t

o

p

c

p

t

t

a

i

p

k

L

s

g

k

T

i

s

c

m

i

f

n

a

t

b

u

i

n

t

n

i

d

n

s

o

s

o

s

h

a

u

M

d

c

[

p

a

a

h

3

V

a
mbedding methods can be categorized into plain graph embed-

ing [23] and attributed graph embedding [24] . Different from plain

raph embedding that independently vectorizes node links with-

ut using auxiliary information from node attributes, attributed

raph embedding jointly models their dependence, by using node

ttributes as class labels to supervise the learning of node links,

r vice versa. A typical attributed graph embedding model is the

ADW model [11] that uses textual attributes to supervise random

alks on networks. LANE [13] learns node representations for at-

ributed networks by embedding the network structure proximity,

ttribute affinity and label proximity into a unified latent repre-

entation. AANE [12] learns node embedding by using symmet-

ic matrix factorization on attribute affinity matrix, and simultane-

usly minimizing the representation difference between connected

odes. PPNE [25] learns node representations for attributed net-

orks through jointly optimizing two objectives, i.e., the structure-

riven objective and the attribute-driven objective. Similar works

nclude Dynamic Attributed Network Embedding (DANE) [26] and

iffusion Network Embedding (DNE) [16] .

A number of graph neural networks [27] are also developed to

earn node embeddings from attributed networks. The early and

ost important work is Graph Convolutional Network (GCNs) [21] .

CNs take node attributes as input and construct node represen-

ations through the convolution of neighboring node representa-

ions at each hidden layer. The last layer is used to predict node

abels by minimizing a cross-entropy loss. GraphSAGE [28] takes

ode content features as node representations, and then itera-

ively updates node representations by aggregating representations

f neighboring nodes. Graph Attention Network (GAT) [9] then im-

orts the self-attention mechanism into GCN to make the graph

onvolution performed in a more intelligent way. Graph Isomor-

hism Network (GIN) [29] creates injective multiset functions for

he neighbor aggregation and generalizes the Weisfeiler-Lehman

est. GraphNAS [30] can automatically design the best graph neural

rchitecture using reinforcement learning.

Weisfeiler-Lehman Graph Kernels . Graph kernels [19] can be

ntuitively understood as functions measuring the similarity of

airs of graphs. The most common graph kernels are random walk

ernels, shortest-path kernels, graphlet kernels, and Weisfeiler-

ehman graph kernels [17] . A random-Walk kernel measures the

imilarity of labeled graphs by comparing the random walks on

raphs. Shortest-path kernels are similar to random-walk graph

ernels but the walk paths are formed from the shortest paths.

he graphlet kernels count the number of substructures, graphlets,

t

3
n the graphs. Weisfeiler-Lehman Graph Kernels enumerate the

hared subtrees in graphs. Learning to Hash . Hashing or binary

oding [14] encodes high-dimensional feature vectors of docu-

ents, images and videos to compact binary codes, while preserv-

ng similarity structure in the original space. The binary codes can

acilitate to represent and search of massive data because it only

eeds about one hundred binary bits to represent one data item,

nd binary computation in Hamming space is efficient by using

he bit operations. Many learning-based hashing algorithms have

een developed according to different scenarios. For example, the

nsupervised methods [31] , supervised methods [18] , deep learn-

ng based hashing methods [32] . To the best of our knowledge,

o prior studies have been focused on seeking binary representa-

ion for attributed network to preserve both network structure and

ode attributes.

Low-bit Quantization for Compression. Quantization methods

ncluding hashing are used to encode real-valued data to low-bit

iscrete data while preserving similarity structure in the origi-

al space [14] . The low-bit codes can facilitate representation and

earch of massive data because it only needs a relatively small size

f bits to represent one data item, and computation in Hamming

pace is efficient by using the bit operations. Most Hashing meth-

ds use one single bit −1 / +1 to quantize each projected dimen-

ion [33] , such as the spectral hashing [31] , supervised discrete

ashing [18] and deep learning based hashing methods [32] . There

re also works quantizing real-valued data to multiple-bit codes

sing Hashing method [33] , such as double bit quantization, q-bit

anhattan quantization, and Variable Bit Quantization. Recently

iscrete network embedding approach is proposed to learn binary

odes for plain network [34] , and randomized hashing method

35] and binarized network embedding [22] are proposed for com-

ressing embedding for attributed networks.

In this paper, we aim to learn discrete node representations for

ttributed networks by leveraging the strength of the state-of-the-

rt graph embedding, Weisfeiler-Lehman graph kernels, learning to

ash, and low-bit quantization for compression methods.

. Preliminaries

An attributed graph can be represented as G = { V, E, X} , where

 = { v i } n i =1
denotes nodes, E = { e i j } n i, j=1

denotes undirected edges,

nd X = { x i } n i =1
∈ R n × f denotes attribute vectors of the nodes with

f being the dimension of attribute vectors. In addition, the struc-

ure of network G can be derived from edges in E, denoted as an

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

a

a

w

t

v
s

B

m

j

[

X

b

t

W

i

A

f

D

w

d

i

t

o

t

t

c

L

t

4

r

o

m

N

m

r

4

i

t

a

r

l

s

w

m

E

s

o

E

m

N

i

f

Z

B

G

t

s

o

i

b

t

l

t

t

m

s

b

p

t

c

a

c

t

p

djacency matrix A , where A i j = 1 if e i j ∈ E, otherwise, A i j = 0 . By

dding a self-loop to each node in the network, we have ˜ A = A + I,

here I is an identity matrix. ˜ D = diag (̃ d 1 , . . . , ˜ d n) is a degree ma-

rix of ˜ A , with

˜ d i =

∑

j ˜ a i j being the degree of node v i .
Given the attributed network G , we wish to embed each node

 i ∈ V into a d-dimensional vector b i ∈ {−1 , +1 } d in a Hamming

pace, where b i is the i th row of matrix B ∈ R n ×d . Ideally, matrix

 can preserve the structure information A and the attribute infor-

ation X in the original network G .

The key question is to design a proximity matrix which can

ointly describe structure A and attribute X . For example, TADW

11] derives the proximity matrix by using the textual attributes

to supervise the random walk of structure A . The process can

e taken as using the random walk kernel (supervised by node at-

ributes) on graphs for node representation.

Instead of using random walk graph kernels, we use the

eisfeiler-Lehman graph kernels [17] to generate a new proxim-

ty matrix P that encodes both node attributes in X and edges in

 . Specifically, we define the Weisfeiler-Lehman proximity matrix as

ollows,

efinition 1. (Weisfeiler-Lehman Proximity Matrix). Given a net-

ork G with adjacency matrix A and attribute matrix X , let ˜ D be a

egree matrix of ˜ A and

˜ L =

˜ D − ˜ A , the Weisfeiler-Lehman proxim-

ty matrix P is defined as P = (I − γ ˜ D

−1 ˜ L) k X , where γ ∈ [0 , 1] is a

radeoff parameter, and k is the number of aggregation layers.

Because the above Weisfeiler-Lehman proximity matrix is based

n the Weisfeiler-Lehman graph kernels, the matrix naturally cap-

ures data dependence between node links and attributes. In par-

icular, the proximity matrix has the following properties :

Property 1. The Weisfeiler-Lehman proximity matrix enables

aggregation of node attributes and links from neighboring

nodes to a target node. Parameter k controls the number of

layers of neighboring nodes joining the aggregation. If k = 1

and γ = 1 , matrix P equals a one-layer Weisfeiler-Lehman

graph kernel (see Section 5.1 for details).

Property 2. The Weisfeiler-Lehman proximity matrix enables

the tradeoff of node aggregation between neighboring nodes

and a target node, where γ is the smoothing parameter.

That is, matrix P is actually a k -layer Laplacian smoothing

[20] of the network (see Section 5.2 for details).

Property 3. When γ = 1 , matrix P defines a variant of k -layer

graph convolutional networks (see Section 5.3 for details).

In Section 5 , we analyze the above properties by discussing the

onnections between the new proximity matrix and the Weisfeiler-

ehman graph kernels, Laplacian smoothing, and graph convolu-

ional networks (GCNs).

. The proposed methods

In this section, we first derive the learning function of the Bina-

ized Attributed Network Embedding model (BANE) and a Cyclic Co-

rdinate Descent (CCD) [18] algorithm in Section 4.1 . Then, we for-

ulate the learning function of Low-Bit Quantization for Attributed

etwork Representation learning model (LQANR) and an efficient

ixed-integer based alternating direction method of multipliers algo-

ithm in Section 4.2 .

.1. Binarized attributed network embedding (BANE)

Based on Definition 1 , we factorize the Weisfeiler-Lehman prox-

mity matrix P = (I − γ ˜ D

−1 ˜ L) k X which jointly encodes node at-

ributes and links into a binary node representation matrix B and
4
n auxiliary matrix Z. Formally, the learning function of the bina-

ized Weisfeiler-Lehman matrix factorization can be defined as fol-

ows,

min

B,Z

1

2

‖ (I − γ ˜ D

−1 ˜ L) k X − BZ ‖

2
F +

α

2

‖ Z ‖

2
F , (1)

.t. : B ∈ {−1 , +1 } n ×d , Z ∈ R

d× f ,

here α is a regularization parameter with respect to the auxiliary

atrix Z. Due to the binary constraint with respect to matrix B ,

q. (1) is NP-hard. Next, we introduce an efficient algorithm as the

olution.

We present an alternating algorithm to solve Eq. (1) . It updates

ne parameter at a time and converges fast.

Z -Step . Given B , solve the sub-problem with respect to Z in

q. (1) . The loss function can be written as follows,

in

Z

1

2

‖ (I − γ ˜ D

−1 ˜ L) k X − BZ ‖

2
F +

α

2

‖ Z ‖

2
F , (2)

= −t r(P T BZ) +

1

2

t r(Z T B

T BZ) +

α

2

t r(Z T Z) .

ote P = (I − γ ˜ D

−1 ˜ L) k X , and tr(.) is the trace norm. By calculat-

ng the derivative of Eq. (2) , we derive a closed form solution as

ollows,

 = (B

T B + αI) −1 B

T P . (3)

 -Step . It is difficult to solve B due to the discrete constraint.

iven Z fixed, rewrite the objective function in Eq. (1) with respect

o B as follows,

min

B

1

2

‖ (I − γ ˜ D

−1 ˜ L) k X − BZ‖

2
F (4)

=

1

2

tr(Z T B

T BZ) − tr(B

T P Z T) ,

.t. : B ∈ {−1 , +1 } n ×d .

Under the observation that a closed-form solution for one column

f B can be achieved by fixing all the other columns , the algorithm

teratively learns one bit of B at a time.

Let b l be the lth column of B , and B ′ the matrix of B excluding

l . Then, b l is the lth bit for all the n samples. Similarly, let q l be

he lth column of Q = P Z T , Q

′ the matrix of Q excluding q l , z l the

th row of Z and Z ′ the matrix of Z excluding z l . Then we obtain

r(Z T B

T BZ) = z l Z
′ T B

′ T b l + const. (5)

Following the same logic, we obtain

r(B

T Q) = (q l) T b l + const. (6)

Plugging Eqs. (5) and (6) back into Eq. (4) , we obtain the opti-

ization problem with respect to b l as follows,

min

b l
z l Z

′ T B

′ T b l − (q l) T b l (7)

= (z l Z
′ T B

′ T − (q l) T) b l

.t. : b l ∈ {−1 , +1 } n ×1

Eq.(7) has a closed form solution as follows,

l = sign (q l − B

′ Z ′ (z l) T) . (8)

By using this method, each bit b can be computed based on the

re-learned d − 1 bits of B ′ . The convergence of the alternating op-

imization is guaranteed theoretically, because every iteration de-

reases the objective function value and the objective function has

 lower bound.

The details of the algorithm are given in Algorithm 1 . Empiri-

al results demonstrate that the algorithm takes a few iterations

o converge. For example, in our experiments B is iteratively com-

uted and the algorithm converges fast in about 3 − 10 iterations.

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

Algorithm 1 Binarized Attributed Network Embedding (BANE).

Input: Graph structure A , node attribute X , dimension d, # of it-

erations t 1 and t 2 , parameters k , γ , α
Output: Binary node representation matrix B

1: Initialize Z, B randomly

2: Repeat until converge or reach t 1
3: Z-Step : Calculate Z using Eq. (3)

4: B-Step : Repeat until converge or reach t 2
5: for l = 1 , · · · , d do

6: update b l using Eq. (3)

7: end for

8: return matrix B

4

l

a

c

a

b

v
0

w

d

b

p

c

s

n

p

b

d

w

d

o

f

l

v

d

v

0

w

s

i

s

l

w

n

r

a

B

w

m

m

a

t

h

a

a

s

w

E

Z

B

G

r

s

D

N

r

l

i

b

s

w

{

m

l

L

E

B

Q

λ

B

o

s

.2. Low-bit quantization for attributed network representation

earning (LQANR)

In this part, we discuss the challenging problem of designing

 more compact discrete learning model than BANE. Specifically,

onsidering the binary constraint of B in Eq. (1) , how to learn

 much sparser and smaller representation matrix B with low-

it values? The question is equivalent to embedding each node

 i ∈ V into a d-dimensional low-bit vector b i ∈ {−2 N , . . . , −2 1 , −1 ,

 , 1 , . . . , 2 N } d , where N is an integer which determines the bit-

idth.

In fact, there has been a series of methods [14] proposed to re-

uce the size of network parameters. From the perspective of low-

it quantization for convolutional neural networks, low-bit com-

ression of deep neural networks has been popularly studied re-

ently, such as training binary neural networks with weights con-

trained to +1 and -1, ternary networks, and extremely low-bit

eural networks. Compared to full-precision models, these com-

ressed models are sparse and much smaller, which can potentially

e accelerated with customized circuits and deployed to mobile

evices. In particular, the early work [36] pointed out that net-

ork weights have a significant redundancy, and proposed to re-

uce the number of parameters by exploiting the linear structure

f network, which motivated a line of low-rank matrix and tensor

actorization based compression algorithms. The achievement in

ow-rank matrix and tensor factorization based compression moti-

ates to learn low-bit quantization for attributed network embed-

ing based on matrix factorization.

Consider an attributed network G , we need to embed each node

 i ∈ V into a d-dimensional low-bit vector b i ∈ {−2 N , . . . , −2 1 , −1 ,

 , 1 , . . . , 2 N } d , where N is an integer which determines the bit-

idth. b i is the i th row of matrix B ∈ R n ×d . Matrix B should pre-

erve the structure information A and the attribute information X

n G . The representation learning function can be formulated by

imultaneously learning the low-bit node representation and the

ayer-wise aggregation weights. Assume that αk is the importance

eight of matrix P k = (̃ D

−1 ˜ A) k X , matrix B ∈ R n ×d is the low-bit

ode representation, matrix Z k ∈ R d× f is an auxiliary matrix with

espect to layer k . Then, the learning problem can be formulated

s follows,

min

,Z 0 , ... ,Z K ,α

K ∑

k =0

αk ‖ P k − BZ k ‖

2
F + β

K ∑

k =0

‖ Z k ‖

2
F , (9)

s.t. : B ∈ {−2

N , . . . , −2

1 , −2

0 , 0 , 2

0 , 2

1 , . . . , 2

N } n ×d ,

K ∑

i =1

αk = 1 , αk ≥ 0 , Z k ∈ R

d× f ,

here β is a regularization parameter with respect to auxiliary

atrices Z k , K is the total number of layers we consider in the

odel. A large layer number K may cause over-smoothing, while

 small K cannot fully take advantage of network information. Due
5
o the integer constraint over the representation matrix B , Eq. (9) is

ard to solve and requires an efficient algorithm.

We present an efficient algorithm to iteratively optimize vari-

bles Z k , B and α. The algorithm updates one parameter at a time

nd converges very fast.

Z -Step . Given B and α fixed, solve the sub-problem with re-

pect to Z k in Eq. (9) . The loss function becomes,

min

Z k

K ∑

k =0

αk ‖ P k − BZ k ‖

2
F + β

K ∑

k =0

‖ Z k ‖

2
F (10)

=

K ∑

k =0

αk tr(Z T k B

T BZ k)−
K ∑

k =0

αk tr(P T k BZ k) + β
K ∑

k =0

tr(Z T k Z k)

here tr(.) is a trace norm. By calculating the derivative of

q. (10) , we derive a closed form solution as follows,

 k = (αk B

T B + αI) −1 αk B

T P k . (11)

 -Step . It is difficult to solve B due to the discrete constraint.

iven Z k and α fixed, rewrite the objective function in Eq. (9) with

espect to B as follows,

min

B

K ∑

k =0

αk ‖ P k − BZ k ‖

2
F , (12)

.t. : B ∈ {−2

N , . . . , −2

1 , −2

0 , 0 , 2

0 , 2

1 , . . . , 2

N } n ×d .

ue to the discrete constraint, the optimization problem above is

P-hard.

Here, we introduce an auxiliary variable Q to decouple the pa-

ameters in the objective and the discrete constraint. The idea is

argely motivated by the successful application of ADMM in mixed

nteger programs [37] . Then, the objective function in Eq. (12) can

e written as,

min

B,Q

K ∑

k =0

αk ‖ P k − BZ k ‖

2
F + Ic(Q) , (13)

.t. : B = Q, Q ∈ {−2

N , . . . , −2

1 , −2

0 , 0 , 2

0 , 2

1 , . . . , 2

N } n ×d ,

here I c is defined as an indicator function. I C (Q) = 0 if Q ∈
−2 N , . . . , −2 0 , 0 , 2 0 , . . . , 2 N } ; otherwise, I C (Q) = + ∞ . The aug-

ented Lagrange of Eq. (13) , for parameter ρ > 0 , can be formu-

ated as,

 ρ (B, Q, λ) =

K ∑

k =0

αk ‖ P k − BZ k ‖

2
F + Ic(Q) (14)

+

ρ

2

‖ B − Q + λ‖

2
F −

ρ

2

‖ λ‖

2
F .

quation (14) can be solved by repeating the following iterations,

t+1 := arg min B L ρ (B, Q

t , λt) , (15)

t+1 := arg min Q L ρ (B

t+1 , Q, λt) , (16)

t+1 := λt + B

t+1 − Q

t+1 . (17)

enefit from the decoupling of ADMM, Eq. (15) is an unconstrained

bjective function. We can easily calculate the gradient with re-

pect to matrix B ,

∂L ρ (B, Q

t , λt)

∂B

=

K ∑

k =0

2 αk BZ k Z
T
k −

K ∑

k =0

2 αk P k Z
T
k (18)

+ ρ(B − Q

t + λt) .

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

T

m

B

I

s

T

Q

w

s

t

c

E

s

t

m

s

i

e

t

t

L

z{

α

s

F

v

5

L

d

i

w

g

r

i

i

W

Algorithm 2 Low-Bit Quantization for Attributed Network Repre-

sentation Learning.

Input: Graph structure A , node attribute X , dimension d, # of it-

erations t 1 and t 2 , parameters K, β , ρ , r, N

Output: Low-bit representation matrix B

1: Initialize Z k , B , λ randomly, Let auxiliary matrix Q = B

2: Repeat until converge or reach t 1
3: Z k -Step : Calculate Z k by Z k = (αk B

T B + αI) −1 αk B
T P k

4: B -Step : Repeat until converge or reach t 2
5: Update B using B t+1 = (

∑ K
k =0 αk P k Z

T
k

+ ρQ

t −
ρλt) −1 (

∑ K
k =0 αk Z k Z

T
k

+ ρI)

6: Update Q using Q =

∏

0 , ±1 , ±2 , ... , ±N (B t+1 + λt)

7: Update λ using λt+1 := λt + B t+1 − Q

t+1

8: α-Step : Calculate αk =

(1 / ‖ P k −BZ k ‖ 2 F
) 1 / (r−1)

(
∑ K

k =0
1 / ‖ P k −BZ k ‖ 2 F

) 1 / (r−1)
.

9: return matrix B

5

a

n

i

t

t

c

T

o

P

i

b

b

t

f

h

S

a

H

w

w

t

H

H

k

p

t

5

c

l

a

t

y

he closed form solution is given in Eq. (18) , where I is an identity

atrix.

t+1 =

(

K ∑

k =0

αk P k Z
T
k + ρQ

t − ρλt

) −1 (

K ∑

k =0

αk Z k Z
T
k + ρI

)

. (19)

n order to solve Q , Eq. (16) can be rewritten as,

min

Q
‖ Q − B

t+1 − λt ‖

2
F , (20)

.t. : Q ∈ {−2

N , . . . , −2

1 , −2

0 , 0 , 2

0 , 2

1 , . . . , 2

N } n ×d .

he optimal solution of Q is

 =

∏

0 , ±1 , ±2 , ... , ±N

(B

t+1 + λt) , (21)

here
∏

0 , ±1 , ±2 , ... , ±N denotes the projection of (B t+1 + λt) with re-

pect to the discrete set. After either the predefined iterations or

he convergence of ADMM, Q is assigned to B and the algorithm

ontinues to update α and Z k .

α -Step . Given Z k and B fixed, rewrite the objective function in

q. (9) with respect to α as follows,

min

α

K ∑

k =0

αk ‖ P k − BZ k ‖

2
F , (22)

.t. :

K ∑

k =0

αk = 1 , αk ≥ 0 .

The optimal solution to α in Eq. (22) is αk = 1 corresponding

o the minimum ‖ P k − BZ k ‖ 2 F
and αk = 0 otherwise. This solution

eans that only one order of P k is finally selected. However, the

olution of a single order does not meet our objective on explor-

ng the complementary property of multiple orders to get a better

mbedding.

Alternatively, we use a trick based on the work [38] to avoid

he single order solution. We set αr
k

← αk with r > 1 and obtain

he Lagrange of Eq. (23) as below,

 (α, η) =

K ∑

k =0

αr
k ‖ P k − BZ k ‖

2
F − η

(

K ∑

k =0

αk − 1

)

. (23)

By setting the derivative of L (α, η) with respect to αk and η to

ero, we obtain

∂L (α,η)
∂αk

= γαr−1
k

(P k − BC i) − η = 0 ,
∂L (α,η)

∂λ
=

∑ K
k =0 αk − 1 = 0 .

(24)

Then, αk can be solved as follows,

k =

(1 / ‖ P k − BZ k ‖

2
F)

1 / (r−1) (∑ K
k =0 1 / ‖ P k − BZ k ‖

2
F

)1 / (r−1)
. (25)

Because ‖ P k − BZ k ‖ 2 F ≥ 0 , we have αk ≥ 0 naturally.

The details of the algorithm are given in Algorithm 2 . Empirical

tudies show that the algorithm takes a few iterations to converge.

or example, in our experiments B is iteratively computed and con-

erges around 2 − 10 iterations.

. Performance analysis

In this section, we answer the question why the Weisfeiler-

ehman proximity matrix P in Definition 1 can effectively capture

ata dependence between node links and attributes. The proxim-

ty matrix P is built on the Weisfeiler-Lehman graph kernels [17] ,

hich essentially is an information aggregation process that ag-

regates neighboring nodes’ information to a target node. The pa-

ameter k in matrix P controls the number of layers of neighbor-

ng nodes, and the parameter γ controls the degree of Laplac-

ng smoothing. Next, we discuss the connections of matrix P with

eisfeiler-Lehman graph kernels, Laplacian smoothing and GCNs.
6
.1. Connection with Weisfeiler-Lehman graph kernels

The idea of aggregating information from neighboring nodes to

 target node originated from the Weisfeiler-Lehman graph ker-

els [17] , where the parameter k controls the layers of neighbor-

ng nodes joining the information aggregation. The original idea of

he Weisfeiler-Lehman algorithm is to augment the node labels by

he sorted set of node labels of their neighboring nodes, and then

ompress these augmented labels into new, short labels.

heorem 1. Let k = 1 , γ = 1 , and P = (I − γ ˜ D

−1 ˜ L) k X, then P is a

ne-layer Weisfeiler-Lehman graph kernel.

roof. When γ = 1 , k = 1 , then P =

˜ D

−1 ˜ A X = P (1) . Let h (k)
i

be the

nformation of node v i in the k th iteration, and N i be the neigh-

ors of v i . Define a linear aggregation function, integrating neigh-

oring nodes’ information and the target node’s information under

he Weisfeiler-Lehman algorithm, we can obtain the following in-

ormation propagation rule,

(k)
i

= h

(k −1)
i

+

∑

j∈ N i
h

(k −1)
j

. (26)

uch an information propagation rule can be further rewritten into

 compact matrix form as follows,

(k) =

˜ A H

(k −1) , (27)

here ˜ A = A + I, which adds a self-loop to each node in the net-

ork. ˜ D = diag (̃ d 1 , . . . , ˜ d n) is the degree matrix of ˜ A . Normalizing

he matrix ˜ A by its degree matrix ˜ D , we obtain

(k) =

˜ D

−1 ˜ A H

(k −1) . (28)

At the beginning of the aggregation, i.e., k = 1 , H

(0) = X , then

(1) = P (1) . Thus P (1) is a one layer Weisfeiler-Lehman graph

ernel. �

Apparently, Weisfeiler-Lehman graph kernel is essentially the

rocess of aggregating neighboring nodes’ information towards the

arget node.

.2. Connection with laplacian smoothing

We analyze the relationship between matrix P and the Lapla-

ian smoothing [20] . Given the representation h i of node v i , the

aplacian smoothing can be considered as a new representation of

 target node by using a weighted information aggregation of the

arget node itself and its neighbors, i.e.,

 = (1 − γ) h i + γ
∑

j∈ N i

˜ a i j

˜ d i
h j , γ ∈ [0 , 1] , (29)

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

w

w

T

(

P

c

f

h

T

H

w

H

H

H

P

t

d

t

5

g

T

c

P

D

t

D

H

a

g

l

t

G

p

b

i

n

6

L

s

e

f

Table 1

Dataset Description.

Datasets # Nodes # Edges x | E| # Attributes # Labels

Cora 2708 5429 1433 7

Citeseer 3327 4732 3703 6

Wiki 2405 17,981 4973 19

BlogCatalog 5196 171,743 8189 6

6

t

t

a

f

a

S

d

b

p

i

s

f

here ˜ a i j denotes an element of matrix ˜ A (the adjacency matrix

ith self-loop), and

˜ d i is the degree of node v i .

heorem 2. The Weisfeiler-Lehman proximity matrix P =

I − γ ˜ D

−1 ˜ L) k ∗ X is a k -layer network Laplacian smoothing.

roof. Given an input matrix H

(k −1) , the new representation H

(k)

an be learned by a function with a parameter matrix W

(k −1) . By

ollowing Eq. (29) on each dimension of H

(k −1) , we have

(k)
i

= [(1 − γ) h

(k −1)
i

+ γ
∑

j∈ N i

˜ a i j

˜ d i
h

(k −1)
j

] w

(k −1)
i

. (30)

hen, the compact matrix form can be written as follows,

(k) = [(1 − γ) H

(k −1) + γ ˜ D

−1 ˜ A H

(k −1)] W

(k −1) (31)

= [H

(k −1) − γ ˜ D

−1 (̃ D − ˜ A) H

(k −1)] W

(k −1)

= (I − γ ˜ D

−1 ˜ L) H

(k −1) W

(k −1) .

After repeated Laplacian smoothing calculations on attributes X ,

e obtain the update rule,

(1) = (I − γ ˜ D

−1 ˜ L) X W

(0) (32)

(2) = (I − γ ˜ D

−1 ˜ L) H

(1) W

(1)

= (I − γ ˜ D

−1 ˜ L) 2 X W

(0) W

(1)

· · · · · · · · · ,

(k) = (I − γ ˜ D

−1 ˜ L) k X W

(0) W

(1) . . . W

(k −1) .

Let W = W

(0) W

(1) . . . W

(k −1) , then H

(k) = (I − γ ˜ D

−1 ˜ L) k X · W =
 · W . This result shows that our Weisfeiler-Lehman proximity ma-

rix P is a k -layer Laplacian smoothing. �

The k -layer Laplacian smoothing enables a node to incorporate

eep information from neighbors. Our experiments also validate

he method.

.3. Connection with graph convolutional networks

The Weisfeiler-Lehman proximity matrix P defines a variant of

raph convolutional networks.

heorem 3. Let γ = 1 , W ∈ R m ×d , then Z = P · W is a k -layer graph

onvolutional network.

roof. Let γ = 1 , then the update rule is H

(k) = (I −
˜

−1 ˜ L) H

(k −1) W

k −1 . By replacing the normalized Laplacian ma-

rix ˜ D

−1 ˜ L with a symmetrically normalized Laplacian matrix

˜

− 1
2 ̃ L D

− 1
2 H

(k −1) , the update rule becomes,

(k) =

˜ D

− 1
2 ˜ A D

− 1
2 H

(k −1) W

(k −1) . (33)

This is exactly a one-layer graph convolutional network with

 linear activation function. The update rule is an alternative of

raph convolutional networks. Similarly, the k -layer graph convo-

utional network becomes H

(k) = P · W. �

Theorem 3 indicates that the Weisfeiler-Lehman proximity ma-

rix resembles the layer-wise information aggregation matrix in

CNs. While GCNs use a nonlinear activation function as the out-

ut, our algorithm employs a binary mapping (hashing) for em-

edding. Furthermore, we restrict γ ∈ [0 , 1] and gain more flexibil-

ty in incorporating a target node’s information and its neighboring

odes’ information.

. Experiments

In this section, we evaluate the performance of BANE and

QANR on node classification and link prediction tasks. Node clas-

ification is popularly used to estimate the performance of network

mbedding methods. The link prediction task is a popular testbed

or evaluating model efficiency.
7
.1. Experimental setup

Datasets. Four real-world attributed networks are used as

estbed. They are popularly used in previous work [11,13] . Statis-

ics of the datasets are summarized in Table 1 .

• Cora contains 2708 machine learning papers from seven classes

and 5429 links. The links are citation relationships between the

documents. Each document is described by a binary vector of

1433 dimensions indicating the presence of the corresponding

word.

• Citeseer contains 3312 publications from six classes and 4732

links. Similar to Cora, the links are citation relationships be-

tween the documents and each paper is described by a binary

vector of 3703 dimensions.

• Wiki contains 2405 documents from 19 classes and 17,981

links. It is a co-occurrence network of words appearing in the

first million bytes of Wikipedia dump.

• BlogCatalog is a blogger community, where users interact with

each other and form a network. Users are allowed to generate

keywords as a short description of their blogs. These keywords

are severed as node attributes. Users also register their blogs

under predefined categories, where are set as labels.

Baseline Methods. We compare our method with state-of-the-

rt methods. DeepWalk and node2vec use plain network structure

or embedding. TADW, HSCA and LANE use both network structure

nd attributes.

• DeepWalk [6] involves language modeling techniques to ana-

lyze the truncated random walks on a graph. It embeds the

walking tracks as sentences, and each vertex corresponds to a

unique word.

• Node2vec [7] uses a biased random walk algorithm that can

efficiently explore neighborhood architecture.

• TADW [11] incorporates textual features of nodes into network

representation learning under the framework of matrix factor-

ization. It factorizes network structure matrix into the product

of three matrices by applying the inductive matrix completion.

Then, it builds a unified matrix for network representations by

concatenating the two decomposed matrix.

• HSCA [39] proposes to explicitly enforce the homophily prop-

erty of connected nodes in the learned representation space

so as to learn an effective network representation. By simul-

taneously augmenting homophily, structural context, and node

attributes, the representations can better capture the interplay

between node content information and network structure.

• LANE [13] models the structural proximities in the attributed

network and labels based on pairwise similarities. Then, it

jointly maps them into an identical embedding space via three

relevant correlation projections.

ettings and Metrics. For fair comparisons, we set the embedding

imension d = 100 for all baselines. All the parameters are set to

e the default values. For node classification, we randomly sam-

le a portion of labeled nodes for training and the rest for test-

ng. The training ratios range from 10% to 90% with an increasing

tep of 20%. We use 10-fold cross validation and repeat the testing

or 10 times. The performance of all the methods are evaluated in

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

Table 2

Node Classification Results (d= 100).

Micro-F1 (%) Macro-F1(%)

Datasets Ratios 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Cora DeepWalk 63.71 73.50 78.83 80.29 81.20 61.02 71.65 77.63 79.08 79.83

Node2vec 67.10 77.30 81.22 82.68 83.52 66.56 76.50 80.14 81.61 82.28

TADW 81.50 84.97 85.78 86.23 86.93 79.71 83.35 84.26 84.44 85.35

HSCA 75.21 81.25 85.10 85.97 86.38 73.42 80.10 84.01 84.41 84.82

LANE 67.21 70.15 73.38 76.91 80.81 66.39 68.49 72.67 75.32 79.95

BANE 81.88 85.32 86.35 87.06 88.30 80.23 84.26 85.19 85.76 87.11

Citeseer DeepWalk 43.24 49.06 54.41 56.16 56.31 40.57 45.65 49.33 50.32 49.17

Node2vec 48.56 55.77 62.55 63.66 63.69 46.78 53.92 58.09 59.42 60.47

TADW 69.38 71.48 72.18 72.75 72.84 61.80 64.62 65.83 66.54 67.03

HSCA 69.47 71.54 72.61 73.66 73.96 61.62 64.80 65.98 66.70 67.21

LANE 53.81 60.72 61.65 63.58 67.77 50.33 57.05 58.14 60.63 63.60

BANE 70.24 72.55 73.78 74.55 75.08 62.37 65.73 67.63 68.44 69.35

Wiki DeepWalk 56.95 61.44 63.71 65.33 66.55 45.36 48.37 50.63 52.28 52.81

Node2vec 57.83 62.25 63.70 65.31 66.36 45.88 49.90 50.78 52.22 52.04

TADW 67.04 71.25 72.36 73.19 74.33 46.76 51.45 52.76 53.07 53.22

HSCA 68.75 71.87 73.35 74.71 77.05 46.30 52.03 53.57 54.57 54.90

LANE 62.95 69.04 70.45 72.01 73.24 46.38 50.73 52.34 54.62 55.12

BANE 71.41 77.07 78.91 79.76 80.49 46.81 54.83 56.95 58.43 58.04

BlogCatalog DeepWalk 69.58 78.24 79.37 80.78 81.12 68.65 76.85 78.46 80.01 80.54

Node2vec 72.43 79.05 82.36 83.40 84.95 71.54 77.27 80.81 80.95 82.03

TADW 82.50 86.56 87.82 89.20 89.78 82.29 86.35 87.60 89.04 89.53

HSCA 82.10 85.89 87.64 89.01 89.47 81.56 85.36 87.02 88.43 89.11

LANE 85.23 88.56 89.64 89.89 90.08 85.05 88.27 89.35 89.59 89.95

BANE 86.21 89.04 89.55 89.85 89.88 85.71 88.74 89.30 89.55 89.59

t

s

t

a

w

s

o

6

t

d

n

t

a

n

a

T

s

f

C

u

i

d

C

T

h

t

b

f

s

i

i

0

d

r

Table 3

Link Prediction Results on the Four Datasets.

Cora Wiki BlogCatalog Citeseer

DeepWalk 83.10 80.46 63.29 80.56

Node2vec 81.59 78.91 60.31 80.24

TADW 89.77 89.86 60.40 93.80

HSCA 87.01 87.45 60.35 93.50

LANE 86.07 77.21 58.97 77.18

BANE 93.50 90.90 61.44 95.59

I

i

c

6

d

t

A

c

s

i

l

c

e

r

w

b

6

o

6

f
erms of Micro-F1 and Macro-F1. For link prediction, we randomly

ample 90% neighbors of each node for training and the rest for

esting. We also repeat the recommendation procedure 10 times

nd evaluate the performance of all the methods in terms of AUC,

hich represents the probability that a randomly selected unob-

erved link is more similar than a randomly selected non-existent

ne.

.2. Node classification results

For all the datasets, we reduce the dimension of node attributes

o 200 by using SVD decomposition on X . The preprocessing re-

uces the number of parameters in factorization. We use SVM for

ode classification. The embedding dimension d is set to 100 and

he regularization parameter α is set to 0.001.

Table 2 lists the results of node classification. We summarize

s follows. First , BANE significantly outperforms DeepWalk and

ode2vec on all the four datasets with respect to both Micro-F1

nd Macro-F1 under five different training ratios from 10% to 90%.

he results indicate that combining node links and attributes can

ubstantially improve embedding accuracy. Second , BANE outper-

orms all the structure and attributes embedding algorithms on

ora, Citeseer and Wiki in terms of both Micro-F1 and Macro-F1

nder different training ratios. The classification results are signif-

cantly higher than the other baseline methods by 3% on the Wiki

ataset. The accuracy is marginally lower than LANE on the Blog-

atalog dataset when training ratio increasing from 50% to 90%.

he results indicate the effectiveness and robustness of BANE to

andle both structure and attribute information. Third , BANE is

he only binarized representation method. The results show that

inary representation does not necessarily lead to accuracy loss. In

act, it may avoid the trap of over-fitting. Fourth , BANE performs

tably better than all the other benchmarks when the training ratio

s low. For example, the Micro-F1 result on Wiki with 10% train-

ng reaches 0.714, which is much higher than the second highest

.687 from HSCA. The accuracy results of most baseline methods

rop rapidly when the training ratio decreases, because their node

epresentations are noisy and inconsistent from training to testing.
8
nstead, BANE learns jointly from node links and attributes by us-

ng high layer Weisfeiler-Lehman matrix. Thus, the results of BANE

ontain less noise and are more robust.

.3. Link prediction results

Table 3 shows the results of link predictions on the four

atasets. We randomly sample 90% neighbors of each node for

raining and the rest for testing. We measure the performance by

UC. The observations are as follows. First , our method signifi-

antly outperforms baselines on Cora, Wiki and Citeseer. The AUC

cores reach 93.5% on Cora and 95.6% on Citeseer. Second , convert-

ng real-valued numbers into binary representation improves the

ink prediction accuracy. This is because the binary representation

an alleviate the over-fitting problem and it is more intuitional to

xpress the Yes/No option for recommendation. Moreover, binary

epresentation can replace the dot-product similarity computation

ith bit-wise Hamming distance. Thus, the speed of training can

e significantly improved.

.4. Parameter study

We test the three parameters, tradeoff parameter γ , the layer

f aggregation k , and the embedding dimension d.

.4.1. Tradeoff parameter γ and the layer parameter k

We test parameter k by varying its value from 1 to 6, and γ
rom 0 to 1 with a stepsize of 0.1. The training ration is set to

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

Fig. 2. Node classification results in terms of Micro-F1 with respect to parameters γ and k . (a) Cora, (b) Citeseer, (c) Wiki, and (d) BlogCatalog.

0

F

a

c

r

γ
a

e

s

i

I

a

w

a

l

q

6

s

s

e

b

d

s

r

c

t

r

6

v

s

t

s

r

1

r

t

t

i

v

C

6

a

F

e

v

r

a

s

.9. The Micro-F1 results on the four datasets are shown in Fig. 2 .

rom the figure, we have the following observations. First , the Cora

nd Citeseer datasets reflect similar patterns. The classification ac-

uracy increases with γ and achieves the highest value when γ
eaches 0.6 to 0.8. After that, the accuracy gradually drops. When

= 0 , we only use the node attributes, so the classification results

re the lowest. For example, 0.7 on Cora and 0.67 on Citeseer. Gen-

rally, when k falls into the range of 4 to 6, we obtain the best re-

ults, which shows that the number of layers of node neighbors is

mportant. Second , on Wiki the best result is observed when k = 1 .

ncrease k results in lower accuracy results. When γ between 0

nd 0.3, we obtain the best performance. Then, the accuracy drops

ith increasing γ . Third , on BlogCatalog when γ is less than 0.4,

 larger k obtains a better accuracy result. However, when γ is

arge, a small k shows better accuracy and the overall result drops

uickly.

.4.2. Node embedding dimension d

We test the embedding dimension d from 20 to 300 with a

tepsize of 20. The node classification results on the datasets are

hown in Fig. 3 a. We can observe that the performance of network

mbedding improves with d increasing to 160. Then, the results

ecome stable when code length continuously increases to 300.

The link prediction results with varying embedding dimension

are shown in Fig. 3 b. With the increasing of embedding dimen-

ion, the AUC scores increase rapidly to top when the dimension

anges from 60 to 100. Then, the results remain stable when in-

reasing d, until the dimension reaches 260. The results show that
9
he binary representation can deliver competitive link prediction

esults even though the embedding dimension is low.

.5. Binarized vs real-valued Weisfeiler-Lehman matrix factorization

We also compare the original binary BANE model with its real-

alued variant (BANE-r for short) by removing the binary con-

traint in Eq. (1) .

The overall procedure is the same as BANE. We can easily get

he closed form solution for both B and Z at each update. Table 4

hows the classification accuracy on the four datasets with training

atios range from 10% to 90% and the embedding dimension d =

00 .

When comparing BANE-r with BANE, we can observe that the

eal-valued embedding receives slightly higher accuracy results

han binary embedding on Cora, Citeseer and Blogcatalog when the

raining ratios increase from 30% to 90%. Nevertheless, if the train-

ng ratio is as low as 10%, the binary embedding beats the real-

alued embedding. For example, the classification Micro-F1 on the

iteseer dataset with 10% training ratio is 70.24 of BANE versus

7.91 of BANE-r. On the Wiki dataset, the Micro-F1 scores of BANE

re higher than that of BANE-r at all training ratios, but the Macro-

1 scores are lower.

From the comparison results, we can conclude that the binary

mbedding BANE obtains competitive embedding results as real-

alued embedding, especially when the training ratio is low. The

easons may be as follows: First , binary constraints can be viewed

s adding non-linear features to the linear matrix factorization,

o linear classification on binary codes is equivalent to learning a

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

Fig. 3. Comparisons with respect to dimensions (bits) d. (a) Classification Results; (b) Link Prediction Results.

Table 4

Node classification results between real-valued embedding and binarized embedding.

Micro-F1 Macro-F1

Datasets Models 10% 30% 50% 70% 90% 10% 30% 50% 70% 90%

Cora BANE-r 80.94 86.70 87.56 87.87 89.00 79.75 85.64 86.46 86.61 87.92

BANE 81.88 85.32 86.35 87.06 88.30 80.23 84.26 85.19 85.76 87.11

Citeseer BANE-r 67.91 74.15 75.17 75.82 76.01 61.77 69.11 70.47 71.18 71.78

BANE 70.24 72.55 73.78 74.55 75.08 62.37 65.73 67.63 68.44 69.35

Wiki BANE-r 63.82 71.04 74.76 75.65 77.44 48.71 60.55 65.53 67.20 72.21

BANE 71.41 77.07 78.91 79.76 80.49 46.81 54.83 56.95 58.43 58.04

Blogcatalog BANE-r 82.75 89.07 90.39 91.15 92.02 82.47 88.90 90.23 91.01 91.83

BANE 86.21 89.04 89.55 89.95 89.88 85.71 88.74 89.30 89.75 89.59

Fig. 4. Comparison BANE with VGAE for Link Prediction.

n

v

l

i

6

t

G

e

o

t

t

p

W

m

e

t

m

w

Fig. 5. Speedup of link prediction by LQANR.

6

6

p

t

s

d

s

6

d

P

e

b

c

b

c

onlinear classifier on the original data. Second , the limited two

alues of binary codes can alleviate the possible over-fitting prob-

em and obtain encouraging results, even when the training ratio

s very small.

.6. Comparison with GCNs

We also compare our algorithm with a variant of GCNs, i.e.,

he Variational Graph Auto-Encoders (VGAE) [40] , which learns a

CN as an autoencoder for link prediction. VGAE uses 85%, 5%, 10%

dges for training, validation, and testing. To simulate the settings

f VGAE as close as possible, we randomly select 85% edges for

raining and 10% for testing for BANE. We repeat the process 10

imes and calculate their average. The results are shown in Fig. 4 .

The results show that BANE beats VGAE for the given link

rediction task. This is because the tradeoff parameter γ in the

eisfeiler-Lehman proximity matrix provides extra flexibility to

odel data dependence between node links and attributes. How-

ver, finding the best parameter γ to fully unleash the power of

he BANE model is not a trivial work, we will consider to use auto-

ated machine learning to search the best parameter in the future

ork.
10
.7. Low-bit quantization representation (LQANR)

.7.1. Speedup of LQANR

As shown in Fig. 5 , low-bit representation also accelerates link

rediction speed by replacing the dot-product similarity compu-

ation with bit-wise Hamming distance. The figure shows the

peedup of 100 and 200 dimension nearest search via hamming

istance compared to dot-product. The results show that large-

ized networks gain significant speedup.

.7.2. Parameter study

We test four parameters, bit-width decided by N, embedding

imension d, proximity matrix maximum order K and weights of

 k impacted by r.

First, we study different kinds of bit-width for discrete node

mbedding. We test binary quantization, ternary quantization, one-

it shift quantization and two-bits shift quantization. The node

lassification result on the Cora dataset with respect to different

it-width values is shown in Table 5 . We can observe that the

lassification accuracy increases with bit-width. For example, the

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

Fig. 6. Parameter studies w.r.t. embedding d and αk .

Table 5

Node classification (Micro-F1) w.r.t. bit-width.

Bit-width 10% 30% 50% 70% 90%

(1,-1) 80.16 84.13 84.9 85.38 86.33

(-1,0,1) 83.00 85.91 86.74 87.27 87.70

(-2,-1,0,1,2) 83.40 86.46 87.22 87.68 88.33

(-4, ..., 4) 83.51 86.53 87.34 87.70 88.85

Table 6

Node classification (Micro-F1) w.r.t. K on Cora.

Order K 10% 30% 50% 70% 90%

K = 2 82.29 85.46 85.97 86.12 86.37

K = 3 82.69 85.58 86.44 86.90 87.56

K = 4 82.67 85.62 86.62 87.36 87.44

K = 5 83.00 85.91 86.74 87.27 87.70

K = 6 82.63 85.70 86.43 87.03 88.11

M

1

w

F

d

s

a

b

t

o

s

r

f

a

f

α
b

a

b

c

w

6

a

i

t

o

fl

7

a

i

a

l

t

n

i

c

g

w

s

f

m

B

t

a

f

D

c

i

0%

7.06

7.27
icro-F1 score increases from 80.16 when B is represented by {-

,1} to 83.51 when B is represented by {-4,-2,...,2,4}.

Second, we test the embedding dimension d from 20 to 200

ith a stepsize of 20. The link prediction results are shown in

ig. 6 a. We can observe that the performance of network embed-

ing improves with d increasing from 20 to 100, and then remains

table when code length continuously increases. On the BlogCat-

log dataset, the link prediction results are the lowest. This is

ecause BlogCatolog contains more complicated structure and at-

ribute information than the other datasets.

Third, we test node classification with different K. The results

n Cora with K arranging from 2 to 6 are shown in Table 6 . It

hows that K = 5 is the best choice for Cora in many cases. The

eason is that when K is too large, it can cause over-smoothing

or node attributes. However, small K cannot fully propagate node

ttribute information in networks (Table 7).

Last, we test weights of P k . Different k -hop matrices capture dif-

erent steps of neighboring node attributes. The layer-wise weights

k are impacted by r. We test on different datasets and find the

est node classification results with the best parameter r . r is usu-

lly between 1 and 10 for the tested datasets. We plot the distri-

Table 7

Node Classification Results (d= 100).

Micro-F1 (%)

Datasets Models 10% 30% 50% 7

Cora BANE 81.88 85.32 86.35 8

LQANR 83.00 85.91 86.74 8
Citeseer BANE 70.24 72.55 73.78 74.55

LQANR 70.41 72.73 73.80 74.67

BlogCatalog BANE 86.21 89.04 89.55 89.85

LQANR 86.24 89.29 89.95 90.44

11
ution of αk on Citeseer with K = 5 and r = 1 . 6 . From Fig. 6 b, we

an observe that the higher order P k contributes heavier weights,

hich means combining more layers leads to better results.

.7.3. Comparison

We compare LQANR with BANE on Cora, Citeseer, and BlogCat-

log with respect to Micro-F1 and Macro-F1 under different train-

ng ratios. The results validate that LQANR performs slightly better

han BANE, which is also very effectiveness and robustness. More-

ver, LQANR can obtain any low-bit embedding, which is more

exible and accurate to capture attributed network information.

. Conclusions

In this paper we study a new problem of discrete embedding for

ttributed networks , where we define a new Weisfier-Lehman prox-

mity matrix to jointly encode data dependence between node links

nd attributes. Based on the new proximity matrix, we formu-

ate a new binarized Weisfier-Lehman matrix factorization model

o obtain binary node representation. Moreover, we extend the bi-

ary representation learning to even low-bit quantization learn-

ng for attributed networks. Theoretical studies show the close

onnections of the new proximity matrix with Weisfier-Lehman

raph kernels, network smoothing, and graph convolutional net-

orks (GCNs). Empirical results also validate the promising re-

ults compared with popular network embedding models. In the

uture, we will consider to use the automated machine learning

ethods (AutoML) to search the best parameters for the proposed

ANE model. We expect that the Weisfier-Lehman proximity ma-

rix can precisely capture data dependence between node links and

ttributes for any given large networks with minimal human ef-

orts.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

Macro-F1(%)

90% 10% 30% 50% 70% 90%

88.30 80.23 84.26 85.19 85.76 87.11

88.21 81.79 84.79 85.57 85.95 86.95
75.08 62.37 65.73 67.63 68.44 69.35

75.20 62.94 66.11 67.80 68.72 69.62

89.88 85.71 88.74 89.30 89.55 89.59

90.75 85.91 89.10 89.79 90.31 90.55

H. Yang, L. Chen, S. Pan et al. Pattern Recognition 123 (2022) 108368

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

B

eferences

[1] X. Pan , H.-B. Shen , Scoring disease-microrna associations by integrating dis-

ease hierarchy into graph convolutional networks, Pattern Recognit. 105 (2020)

107385 .
[2] W. Zan , C. Zhou , H. Yang , Y. Hu , L. Guo , iWalk: interest-aware random walk for

network embedding, in: 2018 International Joint Conference on Neural Net-
works (IJCNN), IEEE, 2018, pp. 1–8 .

[3] H. Yang , L. Chen , M. Lei , L. Niu , C. Zhou , P. Zhang , Discrete embedding for latent
networks, in: C. Bessiere (Ed.), Proceedings of the Twenty-Ninth International

Joint Conference on Artificial Intelligence, IJCAI-20, International Joint Confer-

ences on Artificial Intelligence Organization, 2020, pp. 1223–1229 . Main track
[4] F. Xiong , X. Wang , S. Pan , H. Yang , H. Wang , C. Zhang , Social recommendation

with evolutionary opinion dynamics, IEEE Trans. Syst. Man Cybern. (2018) .
[5] P. Wang , P. Zhang , C. Zhou , Z. Li , H. Yang , Hierarchical evolving Dirichlet pro-

cesses for modeling nonlinear evolutionary traces in temporal data, Data Min.
Knowl. Discov. 31 (1) (2017) 32–64 .

[6] B. Perozzi , R. Al-Rfou , S. Skiena , DeepWalk: online learning of social represen-
tations, in: Proceedings of the 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, ACM, 2014, pp. 701–710 .

[7] A. Grover , J. Leskovec , node2vec: scalable feature learning for networks, in:
KDD, ACM, 2016, pp. 855–864 .

[8] J. Tang , M. Qu , M. Wang , M. Zhang , J. Yan , Q. Mei , Line: large-scale information
network embedding, in: WWW, 2015, pp. 1067–1077 .

[9] P. Veli ̌ckovi ́c , G. Cucurull , A. Casanova , A. Romero , P. Liò, Y. Bengio , Graph at-
tention networks, in: International Conference on Learning Representations,

2018 .

[10] D. Wang , P. Cui , W. Zhu , Structural deep network embedding, in: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, 2016, pp. 1225–1234 .
[11] C. Yang , Z. Liu , D. Zhao , M. Sun , E.Y. Chang , Network representation learning

with rich text information, in: IJCAI, 2015, pp. 2111–2117 .
12] X. Huang , J. Li , X. Hu , Accelerated attributed network embedding, in: SDM,

SIAM, 2017, pp. 633–641 .

[13] X. Huang , J. Li , X. Hu , Label informed attributed network embedding, in:
WSDM, ACM, 2017, pp. 731–739 .

[14] J. Wang , T. Zhang , N. Sebe , H.T. Shen , et al. , A survey on learning to hash,
TPAMI (2017) .

[15] W. Wu , B. Li , L. Chen , X. Zhu , C. Zhang , k -ary tree hashing for fast graph clas-
sification, TKDE (2017) .

[16] Y. Shi , M. Lei , H. Yang , L. Niu , Diffusion network embedding, Pattern Recognit.

88 (2019) 518–531 .
[17] N. Shervashidze , P. Schweitzer , E.J.v. Leeuwen , K. Mehlhorn , K.M. Borgwardt ,

Weisfeiler-Lehman graph kernels, JMLR 12 (Sep) (2011) 2539–2561 .
[18] F. Shen , C. Shen , W. Liu , H. Tao Shen , Supervised discrete hashing, in: CVPR,

2015, pp. 37–45 .
[19] S.V.N. Vishwanathan , N.N. Schraudolph , R. Kondor , K.M. Borgwardt , Graph ker-

nels, JMLR 11 (Apr) (2010) 1201–1242 .

20] G. Taubin , A signal processing approach to fair surface design, in: Proceedings
of the 22nd Annual Conference on Computer Graphics and Interactive Tech-

niques, ACM, 1995, pp. 351–358 .
21] J. Gu , Z. Wang , J. Kuen , L. Ma , A. Shahroudy , B. Shuai , T. Liu , X. Wang , G. Wang ,

J. Cai , et al. , Recent advances in convolutional neural networks, Pattern Recog-
nit. 77 (2018) 354–377 .

22] H. Yang , S. Pan , P. Zhang , L. Chen , D. Lian , C. Zhang , Binarized attributed

network embedding, in: 2018 IEEE International Conference on Data Mining
(ICDM), IEEE, 2018, pp. 1476–1481 .

23] S. Yan , D. Xu , B. Zhang , H.-J. Zhang , Q. Yang , S. Lin , Graph embedding and
extensions: a general framework for dimensionality reduction, TPAMI 29 (1)

(2007) 40–51 .
24] S. Chang , W. Han , J. Tang , G.-J. Qi , C.C. Aggarwal , T.S. Huang , Heterogeneous

network embedding via deep architectures, in: KDD, ACM, 2015, pp. 119–128 .
25] C. Li , S. Wang , D. Yang , Z. Li , Y. Yang , X. Zhang , J. Zhou , PPNE: property pre-

serving network embedding, in: International Conference on Database Systems

for Advanced Applications, Springer, 2017, pp. 163–179 .
26] J. Li , H. Dani , X. Hu , J. Tang , Y. Chang , H. Liu , Attributed network embedding

for learning in a dynamic environment, in: CIKM, ACM, 2017, pp. 387–396 .
27] Z. Wu , S. Pan , F. Chen , G. Long , C. Zhang , S.Y. Philip , A comprehensive survey

on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. (2020) .
28] W.L. Hamilton , Z. Ying , J. Leskovec , Inductive representation learning on large

graphs, NIPS, 2017 .

29] K. Xu , W. Hu , J. Leskovec , S. Jegelka , How powerful are graph neural networks?
in: International Conference on Learning Representations, 2018 .

30] Y. Gao , H. Yang , P. Zhang , C. Zhou , Y. Hu , Graph neural architecture search,
in: C. Bessiere (Ed.), Proceedings of the Twenty-Ninth International Joint Con-

ference on Artificial Intelligence, IJCAI-20, International Joint Conferences on
Artificial Intelligence Organization, 2020, pp. 1403–1409 . Main track

31] W. Liu , C. Mu , S. Kumar , S.-F. Chang , Discrete graph hashing, in: NIPS, 2014,

pp. 3419–3427 .
32] F. Shen , Y. Xu , L. Liu , Y. Yang , Z. Huang , H.T. Shen , Unsupervised deep hashing

with similarity-adaptive and discrete optimization, TPAMI (2018) .
33] I. Hubara , M. Courbariaux , D. Soudry , R. El-Yaniv , Y. Bengio , Binarized neural

networks, in: Proceedings of the 30th International Conference on Neural In-
formation Processing Systems, 2016, pp. 4114–4122 .
12
34] X. Shen , S. Pan , W. Liu , Y. Ong , Q. Sun , Discrete network embedding, in: IJCAI,
2018, pp. 3549–3555 .

35] W. Wu , B. Li , L. Chen , C. Zhang , Efficient attributed network embedding via
recursive randomized hashing, in: IJCAI-18, 2018, pp. 2861–2867 .

36] M. Denil , B. Shakibi , L. Dinh , M.A. Ranzato , N. de Freitas , Predicting parameters
in deep learning, Advances in Neural Information Processing Systems, vol. 26,

2013 .
37] C. Leng , H. Li , S. Zhu , R. Jin , Extremely low bit neural network: Squeeze the

last bit out with ADMM, AAAI, 2017 .

38] T. Xia , D. Tao , T. Mei , Y. Zhang , Multiview spectral embedding, TSMC-B 40 (6)
(2010) 1438–1446 .

39] D. Zhang , J. Yin , X. Zhu , C. Zhang , Homophily, structure, and content aug-
mented network representation learning, in: ICDM, IEEE, 2016, pp. 609–618 .

40] T.N. Kipf , M. Welling , Variational graph auto-encoders, NIPS Workshop on
Bayesian Deep Learning, 2016 .

Hong Yang is a Senior Postdoctoral Scientist with Faculty

of Medicine and Health, the University of Sydney, Aus-
tralia. She received PhD from the Australian Artificial In-

telligence Institute (AAII), University of Technology Syd-
ney, Australia. She obtained her Master degree from Uni-

versity of Chinese Academy of Sciences, and her Bachelor

degree from Xidian University. Her research interests in-
clude graph data analytics and medical image processing.

She has published 16 research papers in major data min-
ing journals and conferences.

Ling Chen is an Associate Professor with the Australian

Artificial Intelligence Institute (AAII), University of Tech-
nology Sydney, Australia. She received PhD from Nanyang

Technological University, Singapore. Her research interests

include data mining and machine learning, especially on
structured data such as graph data and spatio-temporal

data. She also works on social network and social me-
dia analysis and applications. Her papers appear in ma-

jor conferences and journals including KDD, IJCAI, IEEE
TNNLS and IEEE TKDE.

Shirui Pan received PhD in computer science from the

University of Technology Sydney, Australia. He is currently
a lecturer with the Faculty of Information Technology,

Monash University, Australia. Prior to this, he was a Lec-
turer with the School of Software, University of Technol-

ogy Sydney. His research interests include data mining
and machine learning. To date, Dr Pan has published over

60 research papers in top-tier journals and conferences,

including the IEEE Transactions on Neural Networks and
Learning Systems (TNNLS), IEEE Transactions on Knowl-

edge and Data Engineering (TKDE), IEEE Transactions on
Cybernetics (TCYB), KDD, AAAI, and CVPR.

Haishuai Wang is a Visiting Assistant Professor of
Biomedical Informatics at Harvard University, and a

tenure-track Assistant Professor of Computer Science at
Fairfield University. Prior to that, he was a Research Fel-

low at Harvard University and Postdoc Fellow at Wash-
ington University in St. Louis. He completed PhD in Com-

puter Science from the University of Technology Sydney

and Washington University in St. Louis. His research ar-
eas include data mining, machine learning and health in-

formatics. His research focuses on developing machine
learning algorithms to analyze complex data, ranging

from clinical data, time series data, biological data, to
large-scale networks.

Peng Zhang is a Professor with Guangzhou University,
China. He received PhD from University of the Chinese

Academy of Sciences. He was a lecturer with University
of Technology Sydney, an associate professor with Chinese

Academy of Sciences, and a senior staff engineer with the
Alibaba Group. He has been researching into data mining,

data streams, and social network analysis, with over 150

publications in TPAMI, TKDE, TNNLS, KDD, WWW, ICDM,
AAAI, IJCAI, etc. He has served on many program com-

mittees of international conferences, including PC mem-
ber for KDD, ICLR, ICML, NeurIPS, IJCAI, and AAAI confer-

ences. He also served as the founding editorial board of
Springer Annals of Data Science, and Springer Journal of

ig Data.

http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0001
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0012
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0016
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0017
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0018
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0020
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0023
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00548-3/sbref0040

	Discrete embedding for attributed graphs
	1 Introduction
	2 Related work
	3 Preliminaries
	4 The proposed methods
	4.1 Binarized attributed network embedding (BANE)
	4.2 Low-bit quantization for attributed network representation learning (LQANR)

	5 Performance analysis
	5.1 Connection with Weisfeiler-Lehman graph kernels
	5.2 Connection with laplacian smoothing
	5.3 Connection with graph convolutional networks

	6 Experiments
	6.1 Experimental setup
	6.2 Node classification results
	6.3 Link prediction results
	6.4 Parameter study
	6.4.1 Tradeoff parameter and the layer parameter
	6.4.2 Node embedding dimension

	6.5 Binarized vs real-valued Weisfeiler-Lehman matrix factorization
	6.6 Comparison with GCNs
	6.7 Low-bit quantization representation (LQANR)
	6.7.1 Speedup of LQANR
	6.7.2 Parameter study
	6.7.3 Comparison

	7 Conclusions
	Declaration of Competing Interest
	References

