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a b s t r a c t 

Attributed graphs refer to graphs where both node links and node attributes are observable for analysis. 

Attributed graph embedding enables joint representation learning of node links and node attributes. Dif- 

ferent from classical graph embedding methods such as Deepwalk and node2vec that first project node 

links into low-dimensional vectors which are then linearly concatenated with node attribute vectors as 

node representation, attributed graph embedding fully explores data dependence between node links 

and attributes by either using node attributes as class labels to supervise structure learning from node 

links, or reversely using node links to supervise the learning from node attributes. However, existing at- 

tributed graph embedding models are designed in continuous Euclidean spaces which often introduce 

data redundancy and impose challenges to storage and computation costs. In this paper, we study a new 

problem of discrete embedding for attributed graphs that can learn succinct node representations. Specif- 

ically, we present a Binarized Attributed Network Embedding model ( BANE for short) to learn binary node 

representation by factorizing a Weisfeiler-Lehman proximity matrix under the constraint of binary node 

representation. Furthermore, based on BANE, we propose a new Low-bit Quantization for Attributed Net- 

work Representation learning model (LQANR for short) to learn even more compact node representation 

of bit-width values. Theoretical analysis and empirical studies on real-world datasets show that the new 

discrete embedding models outperform benchmark methods. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Attributed graphs are popularly used to describe a large body 

f networks where both node links and node attributes are ob- 

ervable for analysis. Typical examples of attributed graphs include 

ocial network data, academic citation data, and protein-protein 

nteraction data [1] . To obtain knowledge from attributed graphs, 

raph embedding models are proposed to project node links into 

ow-dimensional vectors. Then, the projected vectors are linearly 

oncatenated with node attribute vectors to represent the nodes 

or downstream learning tasks such as link prediction [2] , node 

lassification [3] , and social network recommendations [4,5] . 

The key idea of graph embedding is to design a mapping func- 

ion which converts graph nodes into low-dimensional vectors. 

n general, a mapping function should fulfill three principles: 1) 
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calability. Real-world graphs are naturally large-scale. Thus, graph 

mbedding models should be able to handle large-scale graphs 

fficiently. 2) Sparsity. Generally there are only a few number 

f nodes labeled for training in a graph. Thus, graph embedding 

odels are expected to learn low-dimensional vectors to reduce 

he number of weight parameters of downstream learning models. 

) Adaptability. Graphs are often evolving with time. Embedding 

apping functions should be able to adapt with time and avoid 

requently repetitive training. 

Considering the above principles, a class of graph embedding 

odels has been proposed. DeepWalk [6] represents the seed work 

hich borrows the idea of word embedding, treats nodes as words 

nd generates short random walks as sentences. Then, linguistic 

odels such as Skip-gram are applied to the random walks and 

btain node representations. Based on DeepWalk, node2vec [7] in- 

roduces the biased random walk that enables breadth first search 

BFS) and depth first search (DFS) neighborhood exploration. Based 

n DeepWalk and node2vec, a number of sophisticated graph em- 

edding models are proposed for handling large-scale networks. 

or example, LINE [8] uses a breadth-first search strategy to gener- 

https://doi.org/10.1016/j.patcog.2021.108368
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1 MATLAB codes: https://github.com/ICDM2018-BANE/BANE . 
2 Python codes: https://github.com/benedekrozemberczki/BANE . 
te context nodes on large-scale networks. GraphAttention [9] uses 

n attention model that can learn multi-scale representations for 

ink prediction. SDNE [10] learns node representations where the 

roximity between two-hop neighbors is maintained by using a 

epth auto-encoder. 

The above graph embedding models fall into a two-stage learn- 

ng category, where node links are vectorized independently with- 

ut using any auxiliary information from node attributes. As a 

esult, they are incapable of capturing data dependence between 

ode links and attributes, which is often referred to as plain graph 

mbedding . To enable exploitation of the dependence information 

etween node links and node attributes, attributed graph embed- 

ing models are proposed to jointly learn from node links and at- 

ributes. The principle is to use node attributes as class labels to 

upervise structure learning from node links, or vice versa. For 

xample, the work [11] uses textual attributes to supervise ran- 

om walks on networks and derives the Text-associated Deep- 

alk (TADW) model. On the contrary, the work [12] reversely uses 

ode links to supervise the factorization of attributed matrices. 

he work [13] mutually uses node links and attributes as labels 

o supervise the learning from each other. Generally, attributed 

raph embedding outperforms plain graph embedding by consid- 

ring data dependence between node attributes and node links. 

However, existing attributed network embedding models are 

eveloped in continuous Euclidean spaces. By embedding the de- 

endence information of node attributes and links, the learned 

ectors may contain redundant information that degenerates com- 

utation efficiency and increases storage cost, especially when net- 

orks are very large. Imagining the task of k-nearest neighbor 

earch to recommend the top-k most similar friends in a large net- 

ork of size n , assuming the representation vector is of length d, 

he similarity search will take time O (n 2 d) . Thus, compact node 

epresentation is preferred to speedup computation and reduce 

torage cost. For example, if we use binary embedding and encode 

ach node with 128 bits, we can store a data set of 1 million nodes

ith only 16M memory. Moreover, the speed of low-bit computa- 

ion is faster than floating numbers, because the expensive oating- 

oint multiplication operation can be replaced by a sequence of 

heaper and faster bit shift operations of fixed-point numbers. 

Recently, discrete representation learning has attracted increas- 

ng attention and a number of hash algorithms and binary code 

earning have been proposed to learn discrete representations in 

amming spaces. The idea of hashing algorithms and binary cod- 

ng [14] is to encode high-dimensional feature vectors of docu- 

ents, images and videos to compact binary codes, while preserv- 

ng the similarity structure in the original space. In particular, bi- 

ary code learning can generate succinct representations by encod- 

ng high-dimensional data into a set of short binary codes with 

imilarity preservation. Binary coding is also referred to as hash- 

ng which maps data to discrete Hamming spaces [15] . The binary 

odes can facilitate representation and search of massive data be- 

ause it only needs a relatively small size of binary bits to rep- 

esent a data item, and binary computation in Hamming space is 

fficient by using the bit operations. 

In this paper, we study the problem of discrete attributed graph 

mbedding. The key challenge is to aggregate information of both 

ode links and attributes for discrete node representation . Consider- 

ng matrix factorization as the discrete graph embedding frame- 

ork [13,16] , the challenges of discrete embedding for attributed 

etworks can be summarized as follows: 

• Challenge 1 : How to design a proximity matrix to capture 

data dependence between node links and node attributes in 

attributed graphs. To our best knowledge, none of existing 

network proximity matrices encodes both node links and at- 

tributes. 
2 
• Challenge 2 : How to design a fast algorithm to solve the dis- 

crete representation learning problem. Existing models for em- 

bedding attributed networks are formulated in the Euclidean 

space. However, factorizing a network proximity matrix under 

binary constraints falls into the integer programming category 

which requires new efficient algorithms. 

• Challenge 3 : How to theoretically and empirically prove the ef- 

fectiveness and efficiency of the learning model. 

To solve the above challenges, we present a new Binarized At- 

ributed Network Embedding model ( BANE for short). Inspired by the 

eisfeiler-Lehman graph kernels [17] , we define a new Weisfeiler- 

ehman proximity matrix to capture data dependence between 

ode links and attributes. Then, based on the new proximity ma- 

rix, we formulate a Weisfeiler-Lehman matrix factorization learn- 

ng function under the binary representation constraint. The learn- 

ng problem falls into the category of mixed integer optimization 

nd we use an efficient cyclic coordinate descent (CCD) algorithm 

18] as the solution. We theoretically prove the advantages of the 

eisfeiler-Lehman proximity matrix by analyzing its connections 

ith Weisfeiler-Lehman graph kernels [19] , Laplacian smoothing 

20] , and Graph Convolutional Networks (GCNs) [21] . Furthermore, 

ased on BANE, we present a low-bit quantization model that can 

earn even more compact node representation of bit-width val- 

es. Experimental results on real-world datasets validate the per- 

ormance of the proposed methods. The framework of the learning 

odels is illustrated in Fig. 1 . 

The contributions of the paper are summarized as follows: 

• We first study the problem of discrete embedding learning for 

attributed graphs, and present a new Binarized Attributed Net- 

work Embedding model (BANE for short) as the solution. 

• We define a new Weisfeiler-Lehman proximity matrix to en- 

code data dependence between node links and node attributes, 

based on which a new Weisfeiler-Lehman matrix factorization is 

presented to learn binary representation. Moreover, we theoret- 

ically prove the connections between the proposed Weisfeiler- 

Lehman matrix and Weisfeiler-Lehman graph kernels, Laplacian 

smoothing, and Graph Convolutional Networks (GCNs). 

• Based on BANE, we further propose a Low-Bit Quantization for 

Attributed Network Representation learning model (LQANR for 

short). LQANR can learn more compact node representation of 

bit-width values with stably high accuracy. Also, we introduce 

a new mixed-integer based alternating direction method of multi- 

pliers (ADMM) algorithm to solve LQANR. 

• We conduct experiments to validate the performance of the 

proposed models. The Matlab codes 1 and Pyhthon codes 2 are 

available online. 

The paper is an extension of its former conference ver- 

ion [22] , where more theoretical and empirical studies are added 

n Sections 5 and 6. In addition, a low-bit quantization model 

QANR is also added for comparisons. The rest of the paper is or- 

anized as follows. Section 2 surveys related work. Section 3 intro- 

uces the preliminaries. Section 4 introduces the learning models 

f BANE and LQANR. Section 5 discusses the advantages of the pro- 

osed methods. Section 6 conducts experiments, and we conclude 

he work in the last section. 

. Related work 

Graph Embedding . Graph embedding is also called as net- 

ork embedding or graph representation learning. Current graph 

https://github.com/ICDM2018-BANE/BANE
https://github.com/benedekrozemberczki/BANE
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Fig. 1. The conceptual framework of the Binarized Attributed Network Embedding (BANE) . Given an attributed network G = { V, E, X} , derive a Weisfeiler-Lehman proximity 

matrix P = (I − γ ˜ D −1 ˜ L ) k X by aggregating structure matrix A and attribute matrix X . Factorizing matrix P into a binary node representation matrix B and an auxiliary matrix 

Z. In the figure, the colored cells and arrows explain the formulation of matrix P from the perspective of feature propagation. Given a target node i , the blue cells in the 

structure matrix A highlight non-zero entries corresponding to the neighbouring nodes of i . The red arrows denotes that the feature vectors of these non-zero entries will 

be propagated to the target node i . The blue arrows pointing to the target node i denote that a new feature vector of node i is formulated by aggregating feature vectors of 

itself and its neighboring nodes. Such an feature propagation will be repeated for k times and generate the final matrix P. 
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V  

a  
mbedding methods can be categorized into plain graph embed- 

ing [23] and attributed graph embedding [24] . Different from plain 

raph embedding that independently vectorizes node links with- 

ut using auxiliary information from node attributes, attributed 

raph embedding jointly models their dependence, by using node 

ttributes as class labels to supervise the learning of node links, 

r vice versa. A typical attributed graph embedding model is the 

ADW model [11] that uses textual attributes to supervise random 

alks on networks. LANE [13] learns node representations for at- 

ributed networks by embedding the network structure proximity, 

ttribute affinity and label proximity into a unified latent repre- 

entation. AANE [12] learns node embedding by using symmet- 

ic matrix factorization on attribute affinity matrix, and simultane- 

usly minimizing the representation difference between connected 

odes. PPNE [25] learns node representations for attributed net- 

orks through jointly optimizing two objectives, i.e., the structure- 

riven objective and the attribute-driven objective. Similar works 

nclude Dynamic Attributed Network Embedding (DANE) [26] and 

iffusion Network Embedding (DNE) [16] . 

A number of graph neural networks [27] are also developed to 

earn node embeddings from attributed networks. The early and 

ost important work is Graph Convolutional Network (GCNs) [21] . 

CNs take node attributes as input and construct node represen- 

ations through the convolution of neighboring node representa- 

ions at each hidden layer. The last layer is used to predict node 

abels by minimizing a cross-entropy loss. GraphSAGE [28] takes 

ode content features as node representations, and then itera- 

ively updates node representations by aggregating representations 

f neighboring nodes. Graph Attention Network (GAT) [9] then im- 

orts the self-attention mechanism into GCN to make the graph 

onvolution performed in a more intelligent way. Graph Isomor- 

hism Network (GIN) [29] creates injective multiset functions for 

he neighbor aggregation and generalizes the Weisfeiler-Lehman 

est. GraphNAS [30] can automatically design the best graph neural 

rchitecture using reinforcement learning. 

Weisfeiler-Lehman Graph Kernels . Graph kernels [19] can be 

ntuitively understood as functions measuring the similarity of 

airs of graphs. The most common graph kernels are random walk 

ernels, shortest-path kernels, graphlet kernels, and Weisfeiler- 

ehman graph kernels [17] . A random-Walk kernel measures the 

imilarity of labeled graphs by comparing the random walks on 

raphs. Shortest-path kernels are similar to random-walk graph 

ernels but the walk paths are formed from the shortest paths. 

he graphlet kernels count the number of substructures, graphlets, 

t

3 
n the graphs. Weisfeiler-Lehman Graph Kernels enumerate the 

hared subtrees in graphs. Learning to Hash . Hashing or binary 

oding [14] encodes high-dimensional feature vectors of docu- 

ents, images and videos to compact binary codes, while preserv- 

ng similarity structure in the original space. The binary codes can 

acilitate to represent and search of massive data because it only 

eeds about one hundred binary bits to represent one data item, 

nd binary computation in Hamming space is efficient by using 

he bit operations. Many learning-based hashing algorithms have 

een developed according to different scenarios. For example, the 

nsupervised methods [31] , supervised methods [18] , deep learn- 

ng based hashing methods [32] . To the best of our knowledge, 

o prior studies have been focused on seeking binary representa- 

ion for attributed network to preserve both network structure and 

ode attributes. 

Low-bit Quantization for Compression. Quantization methods 

ncluding hashing are used to encode real-valued data to low-bit 

iscrete data while preserving similarity structure in the origi- 

al space [14] . The low-bit codes can facilitate representation and 

earch of massive data because it only needs a relatively small size 

f bits to represent one data item, and computation in Hamming 

pace is efficient by using the bit operations. Most Hashing meth- 

ds use one single bit −1 / +1 to quantize each projected dimen- 

ion [33] , such as the spectral hashing [31] , supervised discrete 

ashing [18] and deep learning based hashing methods [32] . There 

re also works quantizing real-valued data to multiple-bit codes 

sing Hashing method [33] , such as double bit quantization, q-bit 

anhattan quantization, and Variable Bit Quantization. Recently 

iscrete network embedding approach is proposed to learn binary 

odes for plain network [34] , and randomized hashing method 

35] and binarized network embedding [22] are proposed for com- 

ressing embedding for attributed networks. 

In this paper, we aim to learn discrete node representations for 

ttributed networks by leveraging the strength of the state-of-the- 

rt graph embedding, Weisfeiler-Lehman graph kernels, learning to 

ash, and low-bit quantization for compression methods. 

. Preliminaries 

An attributed graph can be represented as G = { V, E, X} , where

 = { v i } n i =1 
denotes nodes, E = { e i j } n i, j=1 

denotes undirected edges,

nd X = { x i } n i =1 
∈ R n × f denotes attribute vectors of the nodes with

f being the dimension of attribute vectors. In addition, the struc- 

ure of network G can be derived from edges in E, denoted as an 
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djacency matrix A , where A i j = 1 if e i j ∈ E, otherwise, A i j = 0 . By

dding a self-loop to each node in the network, we have ˜ A = A + I,

here I is an identity matrix. ˜ D = diag ( ̃  d 1 , . . . , ˜ d n ) is a degree ma-

rix of ˜ A , with 

˜ d i = 

∑ 

j ˜ a i j being the degree of node v i . 
Given the attributed network G , we wish to embed each node 

 i ∈ V into a d-dimensional vector b i ∈ {−1 , +1 } d in a Hamming 

pace, where b i is the i th row of matrix B ∈ R n ×d . Ideally, matrix

 can preserve the structure information A and the attribute infor- 

ation X in the original network G . 

The key question is to design a proximity matrix which can 

ointly describe structure A and attribute X . For example, TADW 

11] derives the proximity matrix by using the textual attributes 

to supervise the random walk of structure A . The process can 

e taken as using the random walk kernel (supervised by node at- 

ributes) on graphs for node representation. 

Instead of using random walk graph kernels, we use the 

eisfeiler-Lehman graph kernels [17] to generate a new proxim- 

ty matrix P that encodes both node attributes in X and edges in 

 . Specifically, we define the Weisfeiler-Lehman proximity matrix as 

ollows, 

efinition 1. ( Weisfeiler-Lehman Proximity Matrix ). Given a net- 

ork G with adjacency matrix A and attribute matrix X , let ˜ D be a 

egree matrix of ˜ A and 

˜ L = 

˜ D − ˜ A , the Weisfeiler-Lehman proxim- 

ty matrix P is defined as P = (I − γ ˜ D 

−1 ˜ L ) k X , where γ ∈ [0 , 1] is a

radeoff parameter, and k is the number of aggregation layers. 

Because the above Weisfeiler-Lehman proximity matrix is based 

n the Weisfeiler-Lehman graph kernels, the matrix naturally cap- 

ures data dependence between node links and attributes. In par- 

icular, the proximity matrix has the following properties : 

Property 1. The Weisfeiler-Lehman proximity matrix enables 

aggregation of node attributes and links from neighboring 

nodes to a target node. Parameter k controls the number of 

layers of neighboring nodes joining the aggregation. If k = 1 

and γ = 1 , matrix P equals a one-layer Weisfeiler-Lehman 

graph kernel (see Section 5.1 for details). 

Property 2. The Weisfeiler-Lehman proximity matrix enables 

the tradeoff of node aggregation between neighboring nodes 

and a target node, where γ is the smoothing parameter. 

That is, matrix P is actually a k -layer Laplacian smoothing 

[20] of the network (see Section 5.2 for details). 

Property 3. When γ = 1 , matrix P defines a variant of k -layer 

graph convolutional networks (see Section 5.3 for details). 

In Section 5 , we analyze the above properties by discussing the 

onnections between the new proximity matrix and the Weisfeiler- 

ehman graph kernels, Laplacian smoothing, and graph convolu- 

ional networks (GCNs). 

. The proposed methods 

In this section, we first derive the learning function of the Bina- 

ized Attributed Network Embedding model (BANE) and a Cyclic Co- 

rdinate Descent (CCD) [18] algorithm in Section 4.1 . Then, we for- 

ulate the learning function of Low-Bit Quantization for Attributed 

etwork Representation learning model (LQANR) and an efficient 

ixed-integer based alternating direction method of multipliers algo- 

ithm in Section 4.2 . 

.1. Binarized attributed network embedding (BANE) 

Based on Definition 1 , we factorize the Weisfeiler-Lehman prox- 

mity matrix P = (I − γ ˜ D 

−1 ˜ L ) k X which jointly encodes node at- 

ributes and links into a binary node representation matrix B and 
4 
n auxiliary matrix Z. Formally, the learning function of the bina- 

ized Weisfeiler-Lehman matrix factorization can be defined as fol- 

ows, 

min 

B,Z 

1 

2 

‖ (I − γ ˜ D 

−1 ˜ L ) k X − BZ ‖ 

2 
F + 

α

2 

‖ Z ‖ 

2 
F , (1) 

.t. : B ∈ {−1 , +1 } n ×d , Z ∈ R 

d× f , 

here α is a regularization parameter with respect to the auxiliary 

atrix Z. Due to the binary constraint with respect to matrix B , 

q. (1) is NP-hard. Next, we introduce an efficient algorithm as the 

olution. 

We present an alternating algorithm to solve Eq. (1) . It updates 

ne parameter at a time and converges fast. 

Z -Step . Given B , solve the sub-problem with respect to Z in 

q. (1) . The loss function can be written as follows, 

in 

Z 

1 

2 

‖ (I − γ ˜ D 

−1 ˜ L ) k X − BZ ‖ 

2 
F + 

α

2 

‖ Z ‖ 

2 
F , (2) 

= −t r(P T BZ) + 

1 

2 

t r(Z T B 

T BZ) + 

α

2 

t r(Z T Z) . 

ote P = (I − γ ˜ D 

−1 ˜ L ) k X , and tr(. ) is the trace norm. By calculat-

ng the derivative of Eq. (2) , we derive a closed form solution as 

ollows, 

 = (B 

T B + αI) −1 B 

T P . (3) 

 -Step . It is difficult to solve B due to the discrete constraint. 

iven Z fixed, rewrite the objective function in Eq. (1) with respect 

o B as follows, 

min 

B 

1 

2 

‖ (I − γ ˜ D 

−1 ˜ L ) k X − BZ‖ 

2 
F (4) 

= 

1 

2 

tr(Z T B 

T BZ) − tr(B 

T P Z T ) , 

.t. : B ∈ {−1 , +1 } n ×d . 

Under the observation that a closed-form solution for one column 

f B can be achieved by fixing all the other columns , the algorithm 

teratively learns one bit of B at a time. 

Let b l be the lth column of B , and B ′ the matrix of B excluding

 

l . Then, b l is the lth bit for all the n samples. Similarly, let q l be

he lth column of Q = P Z T , Q 

′ the matrix of Q excluding q l , z l the

th row of Z and Z ′ the matrix of Z excluding z l . Then we obtain 

r(Z T B 

T BZ) = z l Z 
′ T B 

′ T b l + const. (5) 

Following the same logic, we obtain 

r(B 

T Q ) = (q l ) T b l + const. (6) 

Plugging Eqs. (5) and (6) back into Eq. (4) , we obtain the opti-

ization problem with respect to b l as follows, 

min 

b l 
z l Z 

′ T B 

′ T b l − (q l ) T b l (7) 

= (z l Z 
′ T B 

′ T − (q l ) T ) b l 

.t. : b l ∈ {−1 , +1 } n ×1 

Eq.(7) has a closed form solution as follows, 

 

l = sign (q l − B 

′ Z ′ (z l ) T ) . (8) 

By using this method, each bit b can be computed based on the 

re-learned d − 1 bits of B ′ . The convergence of the alternating op- 

imization is guaranteed theoretically, because every iteration de- 

reases the objective function value and the objective function has 

 lower bound. 

The details of the algorithm are given in Algorithm 1 . Empiri- 

al results demonstrate that the algorithm takes a few iterations 

o converge. For example, in our experiments B is iteratively com- 

uted and the algorithm converges fast in about 3 − 10 iterations. 
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Algorithm 1 Binarized Attributed Network Embedding (BANE). 

Input: Graph structure A , node attribute X , dimension d, # of it- 

erations t 1 and t 2 , parameters k , γ , α
Output: Binary node representation matrix B 

1: Initialize Z, B randomly 

2: Repeat until converge or reach t 1 
3: Z-Step : Calculate Z using Eq. (3) 

4: B-Step : Repeat until converge or reach t 2 
5: for l = 1 , · · · , d do 

6: update b l using Eq. (3) 

7: end for 

8: return matrix B 
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.2. Low-bit quantization for attributed network representation 

earning (LQANR) 

In this part, we discuss the challenging problem of designing 

 more compact discrete learning model than BANE. Specifically, 

onsidering the binary constraint of B in Eq. (1) , how to learn 

 much sparser and smaller representation matrix B with low- 

it values? The question is equivalent to embedding each node 

 i ∈ V into a d-dimensional low-bit vector b i ∈ {−2 N , . . . , −2 1 , −1 , 

 , 1 , . . . , 2 N } d , where N is an integer which determines the bit-

idth. 

In fact, there has been a series of methods [14] proposed to re- 

uce the size of network parameters. From the perspective of low- 

it quantization for convolutional neural networks, low-bit com- 

ression of deep neural networks has been popularly studied re- 

ently, such as training binary neural networks with weights con- 

trained to +1 and -1, ternary networks, and extremely low-bit 

eural networks. Compared to full-precision models, these com- 

ressed models are sparse and much smaller, which can potentially 

e accelerated with customized circuits and deployed to mobile 

evices. In particular, the early work [36] pointed out that net- 

ork weights have a significant redundancy, and proposed to re- 

uce the number of parameters by exploiting the linear structure 

f network, which motivated a line of low-rank matrix and tensor 

actorization based compression algorithms. The achievement in 

ow-rank matrix and tensor factorization based compression moti- 

ates to learn low-bit quantization for attributed network embed- 

ing based on matrix factorization. 

Consider an attributed network G , we need to embed each node 

 i ∈ V into a d-dimensional low-bit vector b i ∈ {−2 N , . . . , −2 1 , −1 ,

 , 1 , . . . , 2 N } d , where N is an integer which determines the bit-

idth. b i is the i th row of matrix B ∈ R n ×d . Matrix B should pre-

erve the structure information A and the attribute information X

n G . The representation learning function can be formulated by 

imultaneously learning the low-bit node representation and the 

ayer-wise aggregation weights. Assume that αk is the importance 

eight of matrix P k = ( ̃  D 

−1 ˜ A ) k X , matrix B ∈ R n ×d is the low-bit

ode representation, matrix Z k ∈ R d× f is an auxiliary matrix with 

espect to layer k . Then, the learning problem can be formulated 

s follows, 

min 

,Z 0 , ... ,Z K ,α

K ∑ 

k =0 

αk ‖ P k − BZ k ‖ 

2 
F + β

K ∑ 

k =0 

‖ Z k ‖ 

2 
F , (9) 

s.t. : B ∈ {−2 

N , . . . , −2 

1 , −2 

0 , 0 , 2 

0 , 2 

1 , . . . , 2 

N } n ×d , 

K ∑ 

i =1 

αk = 1 , αk ≥ 0 , Z k ∈ R 

d× f , 

here β is a regularization parameter with respect to auxiliary 

atrices Z k , K is the total number of layers we consider in the 

odel. A large layer number K may cause over-smoothing, while 

 small K cannot fully take advantage of network information. Due 
5 
o the integer constraint over the representation matrix B , Eq. (9) is 

ard to solve and requires an efficient algorithm. 

We present an efficient algorithm to iteratively optimize vari- 

bles Z k , B and α. The algorithm updates one parameter at a time 

nd converges very fast. 

Z -Step . Given B and α fixed, solve the sub-problem with re- 

pect to Z k in Eq. (9) . The loss function becomes, 

min 

Z k 

K ∑ 

k =0 

αk ‖ P k − BZ k ‖ 

2 
F + β

K ∑ 

k =0 

‖ Z k ‖ 

2 
F (10) 

= 

K ∑ 

k =0 

αk tr(Z T k B 

T BZ k )−
K ∑ 

k =0 

αk tr(P T k BZ k ) + β
K ∑ 

k =0 

tr(Z T k Z k ) 

here tr(. ) is a trace norm. By calculating the derivative of 

q. (10) , we derive a closed form solution as follows, 

 k = (αk B 

T B + αI) −1 αk B 

T P k . (11) 

 -Step . It is difficult to solve B due to the discrete constraint. 

iven Z k and α fixed, rewrite the objective function in Eq. (9) with 

espect to B as follows, 

min 

B 

K ∑ 

k =0 

αk ‖ P k − BZ k ‖ 

2 
F , (12) 

.t. : B ∈ {−2 

N , . . . , −2 

1 , −2 

0 , 0 , 2 

0 , 2 

1 , . . . , 2 

N } n ×d . 

ue to the discrete constraint, the optimization problem above is 

P-hard. 

Here, we introduce an auxiliary variable Q to decouple the pa- 

ameters in the objective and the discrete constraint. The idea is 

argely motivated by the successful application of ADMM in mixed 

nteger programs [37] . Then, the objective function in Eq. (12) can 

e written as, 

min 

B,Q 

K ∑ 

k =0 

αk ‖ P k − BZ k ‖ 

2 
F + Ic(Q ) , (13) 

.t. : B = Q, Q ∈ {−2 

N , . . . , −2 

1 , −2 

0 , 0 , 2 

0 , 2 

1 , . . . , 2 

N } n ×d , 

here I c is defined as an indicator function. I C (Q ) = 0 if Q ∈
−2 N , . . . , −2 0 , 0 , 2 0 , . . . , 2 N } ; otherwise, I C (Q ) = + ∞ . The aug-

ented Lagrange of Eq. (13) , for parameter ρ > 0 , can be formu- 

ated as, 

 ρ (B, Q, λ) = 

K ∑ 

k =0 

αk ‖ P k − BZ k ‖ 

2 
F + Ic(Q ) (14) 

+ 

ρ

2 

‖ B − Q + λ‖ 

2 
F −

ρ

2 

‖ λ‖ 

2 
F . 

quation (14) can be solved by repeating the following iterations, 

 

t+1 := arg min B L ρ (B, Q 

t , λt ) , (15) 

 

t+1 := arg min Q L ρ (B 

t+1 , Q, λt ) , (16) 

t+1 := λt + B 

t+1 − Q 

t+1 . (17) 

enefit from the decoupling of ADMM, Eq. (15) is an unconstrained 

bjective function. We can easily calculate the gradient with re- 

pect to matrix B , 

∂L ρ (B, Q 

t , λt ) 

∂B 

= 

K ∑ 

k =0 

2 αk BZ k Z 
T 
k −

K ∑ 

k =0 

2 αk P k Z 
T 
k (18) 

+ ρ(B − Q 

t + λt ) . 
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Algorithm 2 Low-Bit Quantization for Attributed Network Repre- 

sentation Learning. 

Input: Graph structure A , node attribute X , dimension d, # of it- 

erations t 1 and t 2 , parameters K, β , ρ , r, N 

Output: Low-bit representation matrix B 

1: Initialize Z k , B , λ randomly, Let auxiliary matrix Q = B 

2: Repeat until converge or reach t 1 
3: Z k -Step : Calculate Z k by Z k = (αk B 

T B + αI) −1 αk B 
T P k 

4: B -Step : Repeat until converge or reach t 2 
5: Update B using B t+1 = ( 

∑ K 
k =0 αk P k Z 

T 
k 

+ ρQ 

t −
ρλt ) −1 ( 

∑ K 
k =0 αk Z k Z 

T 
k 

+ ρI) 

6: Update Q using Q = 

∏ 

0 , ±1 , ±2 , ... , ±N (B t+1 + λt ) 

7: Update λ using λt+1 := λt + B t+1 − Q 

t+1 

8: α-Step : Calculate αk = 

(1 / ‖ P k −BZ k ‖ 2 F 
) 1 / (r−1) 

( 
∑ K 

k =0 
1 / ‖ P k −BZ k ‖ 2 F 

) 1 / (r−1) 
. 

9: return matrix B 
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he closed form solution is given in Eq. (18) , where I is an identity

atrix. 

 

t+1 = 

( 

K ∑ 

k =0 

αk P k Z 
T 
k + ρQ 

t − ρλt 

) −1 ( 

K ∑ 

k =0 

αk Z k Z 
T 
k + ρI 

) 

. (19) 

n order to solve Q , Eq. (16) can be rewritten as, 

min 

Q 
‖ Q − B 

t+1 − λt ‖ 

2 
F , (20) 

.t. : Q ∈ {−2 

N , . . . , −2 

1 , −2 

0 , 0 , 2 

0 , 2 

1 , . . . , 2 

N } n ×d . 

he optimal solution of Q is 

 = 

∏ 

0 , ±1 , ±2 , ... , ±N 

(B 

t+1 + λt ) , (21) 

here 
∏ 

0 , ±1 , ±2 , ... , ±N denotes the projection of (B t+1 + λt ) with re- 

pect to the discrete set. After either the predefined iterations or 

he convergence of ADMM, Q is assigned to B and the algorithm 

ontinues to update α and Z k . 

α -Step . Given Z k and B fixed, rewrite the objective function in 

q. (9) with respect to α as follows, 

min 

α

K ∑ 

k =0 

αk ‖ P k − BZ k ‖ 

2 
F , (22) 

.t. : 

K ∑ 

k =0 

αk = 1 , αk ≥ 0 . 

The optimal solution to α in Eq. (22) is αk = 1 corresponding 

o the minimum ‖ P k − BZ k ‖ 2 F 
and αk = 0 otherwise. This solution 

eans that only one order of P k is finally selected. However, the 

olution of a single order does not meet our objective on explor- 

ng the complementary property of multiple orders to get a better 

mbedding. 

Alternatively, we use a trick based on the work [38] to avoid 

he single order solution. We set αr 
k 

← αk with r > 1 and obtain 

he Lagrange of Eq. (23) as below, 

 (α, η) = 

K ∑ 

k =0 

αr 
k ‖ P k − BZ k ‖ 

2 
F − η

( 

K ∑ 

k =0 

αk − 1 

) 

. (23) 

By setting the derivative of L (α, η) with respect to αk and η to 

ero, we obtain 

∂L (α,η) 
∂αk 

= γαr−1 
k 

(P k − BC i ) − η = 0 , 
∂L (α,η) 

∂λ
= 

∑ K 
k =0 αk − 1 = 0 . 

(24) 

Then, αk can be solved as follows, 

k = 

(1 / ‖ P k − BZ k ‖ 

2 
F ) 

1 / (r−1) (∑ K 
k =0 1 / ‖ P k − BZ k ‖ 

2 
F 

)1 / (r−1) 
. (25) 

Because ‖ P k − BZ k ‖ 2 F ≥ 0 , we have αk ≥ 0 naturally. 

The details of the algorithm are given in Algorithm 2 . Empirical 

tudies show that the algorithm takes a few iterations to converge. 

or example, in our experiments B is iteratively computed and con- 

erges around 2 − 10 iterations. 

. Performance analysis 

In this section, we answer the question why the Weisfeiler- 

ehman proximity matrix P in Definition 1 can effectively capture 

ata dependence between node links and attributes. The proxim- 

ty matrix P is built on the Weisfeiler-Lehman graph kernels [17] , 

hich essentially is an information aggregation process that ag- 

regates neighboring nodes’ information to a target node. The pa- 

ameter k in matrix P controls the number of layers of neighbor- 

ng nodes, and the parameter γ controls the degree of Laplac- 

ng smoothing. Next, we discuss the connections of matrix P with 

eisfeiler-Lehman graph kernels, Laplacian smoothing and GCNs. 
6 
.1. Connection with Weisfeiler-Lehman graph kernels 

The idea of aggregating information from neighboring nodes to 

 target node originated from the Weisfeiler-Lehman graph ker- 

els [17] , where the parameter k controls the layers of neighbor- 

ng nodes joining the information aggregation. The original idea of 

he Weisfeiler-Lehman algorithm is to augment the node labels by 

he sorted set of node labels of their neighboring nodes, and then 

ompress these augmented labels into new, short labels. 

heorem 1. Let k = 1 , γ = 1 , and P = (I − γ ˜ D 

−1 ˜ L ) k X, then P is a

ne-layer Weisfeiler-Lehman graph kernel. 

roof. When γ = 1 , k = 1 , then P = 

˜ D 

−1 ˜ A X = P (1) . Let h (k ) 
i 

be the

nformation of node v i in the k th iteration, and N i be the neigh-

ors of v i . Define a linear aggregation function, integrating neigh- 

oring nodes’ information and the target node’s information under 

he Weisfeiler-Lehman algorithm, we can obtain the following in- 

ormation propagation rule, 

 

(k ) 
i 

= h 

(k −1) 
i 

+ 

∑ 

j∈ N i 
h 

(k −1) 
j 

. (26) 

uch an information propagation rule can be further rewritten into 

 compact matrix form as follows, 

 

(k ) = 

˜ A H 

(k −1) , (27) 

here ˜ A = A + I, which adds a self-loop to each node in the net-

ork. ˜ D = diag ( ̃  d 1 , . . . , ˜ d n ) is the degree matrix of ˜ A . Normalizing 

he matrix ˜ A by its degree matrix ˜ D , we obtain 

 

(k ) = 

˜ D 

−1 ˜ A H 

(k −1) . (28) 

At the beginning of the aggregation, i.e., k = 1 , H 

(0) = X , then

 

(1) = P (1) . Thus P (1) is a one layer Weisfeiler-Lehman graph 

ernel. �

Apparently, Weisfeiler-Lehman graph kernel is essentially the 

rocess of aggregating neighboring nodes’ information towards the 

arget node. 

.2. Connection with laplacian smoothing 

We analyze the relationship between matrix P and the Lapla- 

ian smoothing [20] . Given the representation h i of node v i , the 

aplacian smoothing can be considered as a new representation of 

 target node by using a weighted information aggregation of the 

arget node itself and its neighbors, i.e., 

 = (1 − γ ) h i + γ
∑ 

j∈ N i 

˜ a i j 

˜ d i 
h j , γ ∈ [ 0 , 1 ] , (29) 
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Table 1 

Dataset Description. 

Datasets # Nodes # Edges x | E| # Attributes # Labels 

Cora 2708 5429 1433 7 

Citeseer 3327 4732 3703 6 

Wiki 2405 17,981 4973 19 

BlogCatalog 5196 171,743 8189 6 
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here ˜ a i j denotes an element of matrix ˜ A (the adjacency matrix 

ith self-loop), and 

˜ d i is the degree of node v i . 

heorem 2. The Weisfeiler-Lehman proximity matrix P = 

I − γ ˜ D 

−1 ˜ L ) k ∗ X is a k -layer network Laplacian smoothing. 

roof. Given an input matrix H 

(k −1) , the new representation H 

(k ) 

an be learned by a function with a parameter matrix W 

(k −1) . By 

ollowing Eq. (29) on each dimension of H 

(k −1) , we have 

 

(k ) 
i 

= [(1 − γ ) h 

(k −1) 
i 

+ γ
∑ 

j∈ N i 

˜ a i j 

˜ d i 
h 

(k −1) 
j 

] w 

(k −1) 
i 

. (30) 

hen, the compact matrix form can be written as follows, 

 

(k ) = [(1 − γ ) H 

(k −1) + γ ˜ D 

−1 ˜ A H 

(k −1) ] W 

(k −1) (31) 

= [ H 

(k −1) − γ ˜ D 

−1 ( ̃  D − ˜ A ) H 

(k −1) ] W 

(k −1) 

= (I − γ ˜ D 

−1 ˜ L ) H 

(k −1) W 

(k −1) . 

After repeated Laplacian smoothing calculations on attributes X , 

e obtain the update rule, 

 

(1) = (I − γ ˜ D 

−1 ˜ L ) X W 

(0) (32) 

 

(2) = (I − γ ˜ D 

−1 ˜ L ) H 

(1) W 

(1) 

= (I − γ ˜ D 

−1 ˜ L ) 2 X W 

(0) W 

(1) 

· · · · · · · · · , 

 

(k ) = (I − γ ˜ D 

−1 ˜ L ) k X W 

(0) W 

(1) . . . W 

(k −1) . 

Let W = W 

(0) W 

(1) . . . W 

(k −1) , then H 

(k ) = (I − γ ˜ D 

−1 ˜ L ) k X · W =
 · W . This result shows that our Weisfeiler-Lehman proximity ma- 

rix P is a k -layer Laplacian smoothing. �

The k -layer Laplacian smoothing enables a node to incorporate 

eep information from neighbors. Our experiments also validate 

he method. 

.3. Connection with graph convolutional networks 

The Weisfeiler-Lehman proximity matrix P defines a variant of 

raph convolutional networks. 

heorem 3. Let γ = 1 , W ∈ R m ×d , then Z = P · W is a k -layer graph

onvolutional network. 

roof. Let γ = 1 , then the update rule is H 

(k ) = (I −
˜ 
 

−1 ˜ L ) H 

(k −1) W 

k −1 . By replacing the normalized Laplacian ma- 

rix ˜ D 

−1 ˜ L with a symmetrically normalized Laplacian matrix 

˜ 
 

− 1 
2 ̃  L D 

− 1 
2 H 

(k −1) , the update rule becomes, 

 

(k ) = 

˜ D 

− 1 
2 ˜ A D 

− 1 
2 H 

(k −1) W 

(k −1) . (33) 

This is exactly a one-layer graph convolutional network with 

 linear activation function. The update rule is an alternative of 

raph convolutional networks. Similarly, the k -layer graph convo- 

utional network becomes H 

(k ) = P · W. �

Theorem 3 indicates that the Weisfeiler-Lehman proximity ma- 

rix resembles the layer-wise information aggregation matrix in 

CNs. While GCNs use a nonlinear activation function as the out- 

ut, our algorithm employs a binary mapping (hashing) for em- 

edding. Furthermore, we restrict γ ∈ [ 0 , 1 ] and gain more flexibil- 

ty in incorporating a target node’s information and its neighboring 

odes’ information. 

. Experiments 

In this section, we evaluate the performance of BANE and 

QANR on node classification and link prediction tasks. Node clas- 

ification is popularly used to estimate the performance of network 

mbedding methods. The link prediction task is a popular testbed 

or evaluating model efficiency. 
7 
.1. Experimental setup 

Datasets. Four real-world attributed networks are used as 

estbed. They are popularly used in previous work [11,13] . Statis- 

ics of the datasets are summarized in Table 1 . 

• Cora contains 2708 machine learning papers from seven classes 

and 5429 links. The links are citation relationships between the 

documents. Each document is described by a binary vector of 

1433 dimensions indicating the presence of the corresponding 

word. 

• Citeseer contains 3312 publications from six classes and 4732 

links. Similar to Cora, the links are citation relationships be- 

tween the documents and each paper is described by a binary 

vector of 3703 dimensions. 

• Wiki contains 2405 documents from 19 classes and 17,981 

links. It is a co-occurrence network of words appearing in the 

first million bytes of Wikipedia dump. 

• BlogCatalog is a blogger community, where users interact with 

each other and form a network. Users are allowed to generate 

keywords as a short description of their blogs. These keywords 

are severed as node attributes. Users also register their blogs 

under predefined categories, where are set as labels. 

Baseline Methods. We compare our method with state-of-the- 

rt methods. DeepWalk and node2vec use plain network structure 

or embedding. TADW, HSCA and LANE use both network structure 

nd attributes. 

• DeepWalk [6] involves language modeling techniques to ana- 

lyze the truncated random walks on a graph. It embeds the 

walking tracks as sentences, and each vertex corresponds to a 

unique word. 

• Node2vec [7] uses a biased random walk algorithm that can 

efficiently explore neighborhood architecture. 

• TADW [11] incorporates textual features of nodes into network 

representation learning under the framework of matrix factor- 

ization. It factorizes network structure matrix into the product 

of three matrices by applying the inductive matrix completion. 

Then, it builds a unified matrix for network representations by 

concatenating the two decomposed matrix. 

• HSCA [39] proposes to explicitly enforce the homophily prop- 

erty of connected nodes in the learned representation space 

so as to learn an effective network representation. By simul- 

taneously augmenting homophily, structural context, and node 

attributes, the representations can better capture the interplay 

between node content information and network structure. 

• LANE [13] models the structural proximities in the attributed 

network and labels based on pairwise similarities. Then, it 

jointly maps them into an identical embedding space via three 

relevant correlation projections. 

ettings and Metrics. For fair comparisons, we set the embedding 

imension d = 100 for all baselines. All the parameters are set to 

e the default values. For node classification, we randomly sam- 

le a portion of labeled nodes for training and the rest for test- 

ng. The training ratios range from 10% to 90% with an increasing 

tep of 20%. We use 10-fold cross validation and repeat the testing 

or 10 times. The performance of all the methods are evaluated in 
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Table 2 

Node Classification Results ( d= 100). 

Micro-F1 (%) Macro-F1(%) 

Datasets Ratios 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 

Cora DeepWalk 63.71 73.50 78.83 80.29 81.20 61.02 71.65 77.63 79.08 79.83 

Node2vec 67.10 77.30 81.22 82.68 83.52 66.56 76.50 80.14 81.61 82.28 

TADW 81.50 84.97 85.78 86.23 86.93 79.71 83.35 84.26 84.44 85.35 

HSCA 75.21 81.25 85.10 85.97 86.38 73.42 80.10 84.01 84.41 84.82 

LANE 67.21 70.15 73.38 76.91 80.81 66.39 68.49 72.67 75.32 79.95 

BANE 81.88 85.32 86.35 87.06 88.30 80.23 84.26 85.19 85.76 87.11 

Citeseer DeepWalk 43.24 49.06 54.41 56.16 56.31 40.57 45.65 49.33 50.32 49.17 

Node2vec 48.56 55.77 62.55 63.66 63.69 46.78 53.92 58.09 59.42 60.47 

TADW 69.38 71.48 72.18 72.75 72.84 61.80 64.62 65.83 66.54 67.03 

HSCA 69.47 71.54 72.61 73.66 73.96 61.62 64.80 65.98 66.70 67.21 

LANE 53.81 60.72 61.65 63.58 67.77 50.33 57.05 58.14 60.63 63.60 

BANE 70.24 72.55 73.78 74.55 75.08 62.37 65.73 67.63 68.44 69.35 

Wiki DeepWalk 56.95 61.44 63.71 65.33 66.55 45.36 48.37 50.63 52.28 52.81 

Node2vec 57.83 62.25 63.70 65.31 66.36 45.88 49.90 50.78 52.22 52.04 

TADW 67.04 71.25 72.36 73.19 74.33 46.76 51.45 52.76 53.07 53.22 

HSCA 68.75 71.87 73.35 74.71 77.05 46.30 52.03 53.57 54.57 54.90 

LANE 62.95 69.04 70.45 72.01 73.24 46.38 50.73 52.34 54.62 55.12 

BANE 71.41 77.07 78.91 79.76 80.49 46.81 54.83 56.95 58.43 58.04 

BlogCatalog DeepWalk 69.58 78.24 79.37 80.78 81.12 68.65 76.85 78.46 80.01 80.54 

Node2vec 72.43 79.05 82.36 83.40 84.95 71.54 77.27 80.81 80.95 82.03 

TADW 82.50 86.56 87.82 89.20 89.78 82.29 86.35 87.60 89.04 89.53 

HSCA 82.10 85.89 87.64 89.01 89.47 81.56 85.36 87.02 88.43 89.11 

LANE 85.23 88.56 89.64 89.89 90.08 85.05 88.27 89.35 89.59 89.95 

BANE 86.21 89.04 89.55 89.85 89.88 85.71 88.74 89.30 89.55 89.59 
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Table 3 

Link Prediction Results on the Four Datasets. 

Cora Wiki BlogCatalog Citeseer 

DeepWalk 83.10 80.46 63.29 80.56 

Node2vec 81.59 78.91 60.31 80.24 

TADW 89.77 89.86 60.40 93.80 

HSCA 87.01 87.45 60.35 93.50 

LANE 86.07 77.21 58.97 77.18 

BANE 93.50 90.90 61.44 95.59 
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f  
erms of Micro-F1 and Macro-F1. For link prediction, we randomly 

ample 90% neighbors of each node for training and the rest for 

esting. We also repeat the recommendation procedure 10 times 

nd evaluate the performance of all the methods in terms of AUC, 

hich represents the probability that a randomly selected unob- 

erved link is more similar than a randomly selected non-existent 

ne. 

.2. Node classification results 

For all the datasets, we reduce the dimension of node attributes 

o 200 by using SVD decomposition on X . The preprocessing re- 

uces the number of parameters in factorization. We use SVM for 

ode classification. The embedding dimension d is set to 100 and 

he regularization parameter α is set to 0.001. 

Table 2 lists the results of node classification. We summarize 

s follows. First , BANE significantly outperforms DeepWalk and 

ode2vec on all the four datasets with respect to both Micro-F1 

nd Macro-F1 under five different training ratios from 10% to 90%. 

he results indicate that combining node links and attributes can 

ubstantially improve embedding accuracy. Second , BANE outper- 

orms all the structure and attributes embedding algorithms on 

ora, Citeseer and Wiki in terms of both Micro-F1 and Macro-F1 

nder different training ratios. The classification results are signif- 

cantly higher than the other baseline methods by 3% on the Wiki 

ataset. The accuracy is marginally lower than LANE on the Blog- 

atalog dataset when training ratio increasing from 50% to 90%. 

he results indicate the effectiveness and robustness of BANE to 

andle both structure and attribute information. Third , BANE is 

he only binarized representation method. The results show that 

inary representation does not necessarily lead to accuracy loss. In 

act, it may avoid the trap of over-fitting. Fourth , BANE performs 

tably better than all the other benchmarks when the training ratio 

s low. For example, the Micro-F1 result on Wiki with 10% train- 

ng reaches 0.714, which is much higher than the second highest 

.687 from HSCA. The accuracy results of most baseline methods 

rop rapidly when the training ratio decreases, because their node 

epresentations are noisy and inconsistent from training to testing. 
8 
nstead, BANE learns jointly from node links and attributes by us- 

ng high layer Weisfeiler-Lehman matrix. Thus, the results of BANE 

ontain less noise and are more robust. 

.3. Link prediction results 

Table 3 shows the results of link predictions on the four 

atasets. We randomly sample 90% neighbors of each node for 

raining and the rest for testing. We measure the performance by 

UC. The observations are as follows. First , our method signifi- 

antly outperforms baselines on Cora, Wiki and Citeseer. The AUC 

cores reach 93.5% on Cora and 95.6% on Citeseer. Second , convert- 

ng real-valued numbers into binary representation improves the 

ink prediction accuracy. This is because the binary representation 

an alleviate the over-fitting problem and it is more intuitional to 

xpress the Yes/No option for recommendation. Moreover, binary 

epresentation can replace the dot-product similarity computation 

ith bit-wise Hamming distance. Thus, the speed of training can 

e significantly improved. 

.4. Parameter study 

We test the three parameters, tradeoff parameter γ , the layer 

f aggregation k , and the embedding dimension d. 

.4.1. Tradeoff parameter γ and the layer parameter k 

We test parameter k by varying its value from 1 to 6, and γ
rom 0 to 1 with a stepsize of 0.1. The training ration is set to
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Fig. 2. Node classification results in terms of Micro-F1 with respect to parameters γ and k . (a) Cora, (b) Citeseer, (c) Wiki, and (d) BlogCatalog. 
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.9. The Micro-F1 results on the four datasets are shown in Fig. 2 .

rom the figure, we have the following observations. First , the Cora 

nd Citeseer datasets reflect similar patterns. The classification ac- 

uracy increases with γ and achieves the highest value when γ
eaches 0.6 to 0.8. After that, the accuracy gradually drops. When 

= 0 , we only use the node attributes, so the classification results 

re the lowest. For example, 0.7 on Cora and 0.67 on Citeseer. Gen- 

rally, when k falls into the range of 4 to 6, we obtain the best re-

ults, which shows that the number of layers of node neighbors is 

mportant. Second , on Wiki the best result is observed when k = 1 .

ncrease k results in lower accuracy results. When γ between 0 

nd 0.3, we obtain the best performance. Then, the accuracy drops 

ith increasing γ . Third , on BlogCatalog when γ is less than 0.4, 

 larger k obtains a better accuracy result. However, when γ is 

arge, a small k shows better accuracy and the overall result drops 

uickly. 

.4.2. Node embedding dimension d

We test the embedding dimension d from 20 to 300 with a 

tepsize of 20. The node classification results on the datasets are 

hown in Fig. 3 a. We can observe that the performance of network 

mbedding improves with d increasing to 160. Then, the results 

ecome stable when code length continuously increases to 300. 

The link prediction results with varying embedding dimension 

are shown in Fig. 3 b. With the increasing of embedding dimen- 

ion, the AUC scores increase rapidly to top when the dimension 

anges from 60 to 100. Then, the results remain stable when in- 

reasing d, until the dimension reaches 260. The results show that 
9 
he binary representation can deliver competitive link prediction 

esults even though the embedding dimension is low. 

.5. Binarized vs real-valued Weisfeiler-Lehman matrix factorization 

We also compare the original binary BANE model with its real- 

alued variant (BANE-r for short) by removing the binary con- 

traint in Eq. (1) . 

The overall procedure is the same as BANE. We can easily get 

he closed form solution for both B and Z at each update. Table 4 

hows the classification accuracy on the four datasets with training 

atios range from 10% to 90% and the embedding dimension d = 

00 . 

When comparing BANE-r with BANE, we can observe that the 

eal-valued embedding receives slightly higher accuracy results 

han binary embedding on Cora, Citeseer and Blogcatalog when the 

raining ratios increase from 30% to 90%. Nevertheless, if the train- 

ng ratio is as low as 10%, the binary embedding beats the real- 

alued embedding. For example, the classification Micro-F1 on the 

iteseer dataset with 10% training ratio is 70.24 of BANE versus 

7.91 of BANE-r. On the Wiki dataset, the Micro-F1 scores of BANE 

re higher than that of BANE-r at all training ratios, but the Macro- 

1 scores are lower. 

From the comparison results, we can conclude that the binary 

mbedding BANE obtains competitive embedding results as real- 

alued embedding, especially when the training ratio is low. The 

easons may be as follows: First , binary constraints can be viewed 

s adding non-linear features to the linear matrix factorization, 

o linear classification on binary codes is equivalent to learning a 
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Fig. 3. Comparisons with respect to dimensions (bits) d. (a) Classification Results; (b) Link Prediction Results. 

Table 4 

Node classification results between real-valued embedding and binarized embedding. 

Micro-F1 Macro-F1 

Datasets Models 10% 30% 50% 70% 90% 10% 30% 50% 70% 90% 

Cora BANE-r 80.94 86.70 87.56 87.87 89.00 79.75 85.64 86.46 86.61 87.92 

BANE 81.88 85.32 86.35 87.06 88.30 80.23 84.26 85.19 85.76 87.11 

Citeseer BANE-r 67.91 74.15 75.17 75.82 76.01 61.77 69.11 70.47 71.18 71.78 

BANE 70.24 72.55 73.78 74.55 75.08 62.37 65.73 67.63 68.44 69.35 

Wiki BANE-r 63.82 71.04 74.76 75.65 77.44 48.71 60.55 65.53 67.20 72.21 

BANE 71.41 77.07 78.91 79.76 80.49 46.81 54.83 56.95 58.43 58.04 

Blogcatalog BANE-r 82.75 89.07 90.39 91.15 92.02 82.47 88.90 90.23 91.01 91.83 

BANE 86.21 89.04 89.55 89.95 89.88 85.71 88.74 89.30 89.75 89.59 

Fig. 4. Comparison BANE with VGAE for Link Prediction. 
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Fig. 5. Speedup of link prediction by LQANR. 

6

6

p

t

s

d

s

6

d

P

e

b

c

b

c

onlinear classifier on the original data. Second , the limited two 

alues of binary codes can alleviate the possible over-fitting prob- 

em and obtain encouraging results, even when the training ratio 

s very small. 

.6. Comparison with GCNs 

We also compare our algorithm with a variant of GCNs, i.e., 

he Variational Graph Auto-Encoders (VGAE) [40] , which learns a 

CN as an autoencoder for link prediction. VGAE uses 85%, 5%, 10% 

dges for training, validation, and testing. To simulate the settings 

f VGAE as close as possible, we randomly select 85% edges for 

raining and 10% for testing for BANE. We repeat the process 10 

imes and calculate their average. The results are shown in Fig. 4 . 

The results show that BANE beats VGAE for the given link 

rediction task. This is because the tradeoff parameter γ in the 

eisfeiler-Lehman proximity matrix provides extra flexibility to 

odel data dependence between node links and attributes. How- 

ver, finding the best parameter γ to fully unleash the power of 

he BANE model is not a trivial work, we will consider to use auto- 

ated machine learning to search the best parameter in the future 

ork. 
10 
.7. Low-bit quantization representation (LQANR) 

.7.1. Speedup of LQANR 

As shown in Fig. 5 , low-bit representation also accelerates link 

rediction speed by replacing the dot-product similarity compu- 

ation with bit-wise Hamming distance. The figure shows the 

peedup of 100 and 200 dimension nearest search via hamming 

istance compared to dot-product. The results show that large- 

ized networks gain significant speedup. 

.7.2. Parameter study 

We test four parameters, bit-width decided by N, embedding 

imension d, proximity matrix maximum order K and weights of 

 k impacted by r. 

First, we study different kinds of bit-width for discrete node 

mbedding. We test binary quantization, ternary quantization, one- 

it shift quantization and two-bits shift quantization. The node 

lassification result on the Cora dataset with respect to different 

it-width values is shown in Table 5 . We can observe that the 

lassification accuracy increases with bit-width. For example, the 
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Fig. 6. Parameter studies w.r.t. embedding d and αk . 

Table 5 

Node classification (Micro-F1) w.r.t. bit-width. 

Bit-width 10% 30% 50% 70% 90% 

(1,-1) 80.16 84.13 84.9 85.38 86.33 

(-1,0,1) 83.00 85.91 86.74 87.27 87.70 

(-2,-1,0,1,2) 83.40 86.46 87.22 87.68 88.33 

(-4, ..., 4) 83.51 86.53 87.34 87.70 88.85 

Table 6 

Node classification (Micro-F1) w.r.t. K on Cora. 

Order K 10% 30% 50% 70% 90% 

K = 2 82.29 85.46 85.97 86.12 86.37 

K = 3 82.69 85.58 86.44 86.90 87.56 

K = 4 82.67 85.62 86.62 87.36 87.44 

K = 5 83.00 85.91 86.74 87.27 87.70 

K = 6 82.63 85.70 86.43 87.03 88.11 
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icro-F1 score increases from 80.16 when B is represented by {- 

,1} to 83.51 when B is represented by {-4,-2,...,2,4}. 

Second, we test the embedding dimension d from 20 to 200 

ith a stepsize of 20. The link prediction results are shown in 

ig. 6 a. We can observe that the performance of network embed- 

ing improves with d increasing from 20 to 100, and then remains 

table when code length continuously increases. On the BlogCat- 

log dataset, the link prediction results are the lowest. This is 

ecause BlogCatolog contains more complicated structure and at- 

ribute information than the other datasets. 

Third, we test node classification with different K. The results 

n Cora with K arranging from 2 to 6 are shown in Table 6 . It

hows that K = 5 is the best choice for Cora in many cases. The

eason is that when K is too large, it can cause over-smoothing 

or node attributes. However, small K cannot fully propagate node 

ttribute information in networks ( Table 7 ). 

Last, we test weights of P k . Different k -hop matrices capture dif- 

erent steps of neighboring node attributes. The layer-wise weights 

k are impacted by r. We test on different datasets and find the 

est node classification results with the best parameter r . r is usu- 

lly between 1 and 10 for the tested datasets. We plot the distri- 

Table 7 

Node Classification Results ( d= 100). 

Micro-F1 (%) 

Datasets Models 10% 30% 50% 7

Cora BANE 81.88 85.32 86.35 8

LQANR 83.00 85.91 86.74 8
Citeseer BANE 70.24 72.55 73.78 74.55 

LQANR 70.41 72.73 73.80 74.67 

BlogCatalog BANE 86.21 89.04 89.55 89.85 

LQANR 86.24 89.29 89.95 90.44 

11 
ution of αk on Citeseer with K = 5 and r = 1 . 6 . From Fig. 6 b, we

an observe that the higher order P k contributes heavier weights, 

hich means combining more layers leads to better results. 

.7.3. Comparison 

We compare LQANR with BANE on Cora, Citeseer, and BlogCat- 

log with respect to Micro-F1 and Macro-F1 under different train- 

ng ratios. The results validate that LQANR performs slightly better 

han BANE, which is also very effectiveness and robustness. More- 

ver, LQANR can obtain any low-bit embedding, which is more 

exible and accurate to capture attributed network information. 

. Conclusions 

In this paper we study a new problem of discrete embedding for 

ttributed networks , where we define a new Weisfier-Lehman prox- 

mity matrix to jointly encode data dependence between node links 

nd attributes. Based on the new proximity matrix, we formu- 

ate a new binarized Weisfier-Lehman matrix factorization model 

o obtain binary node representation. Moreover, we extend the bi- 

ary representation learning to even low-bit quantization learn- 

ng for attributed networks. Theoretical studies show the close 

onnections of the new proximity matrix with Weisfier-Lehman 

raph kernels, network smoothing, and graph convolutional net- 

orks (GCNs). Empirical results also validate the promising re- 

ults compared with popular network embedding models. In the 

uture, we will consider to use the automated machine learning 

ethods (AutoML) to search the best parameters for the proposed 

ANE model. We expect that the Weisfier-Lehman proximity ma- 

rix can precisely capture data dependence between node links and 

ttributes for any given large networks with minimal human ef- 

orts. 
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Macro-F1(%) 

90% 10% 30% 50% 70% 90% 

88.30 80.23 84.26 85.19 85.76 87.11 

88.21 81.79 84.79 85.57 85.95 86.95 
75.08 62.37 65.73 67.63 68.44 69.35 

75.20 62.94 66.11 67.80 68.72 69.62 

89.88 85.71 88.74 89.30 89.55 89.59 

90.75 85.91 89.10 89.79 90.31 90.55 
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