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Abstract—When users in online social networks make a
decision, they are often affected by their neighbors. Social rec-
ommendation models utilize social information to reveal the
impact of neighbors on user preferences, and this impact is often
described by the linear superposition of neighbor preferences or
by global trust propagation. Further exploration needs to be
undertaken to determine whether the influence pattern of other
users from online interaction behaviors is adequately described.
In this paper, we introduce evolutionary opinion dynamics from
the field of statistical physics into recommender systems, char-
acterizing the impact of other users. We propose an opinion
dynamic model by evolutionary game theory. To describe online
user interactions, we define the strategies during an interaction
between two users, and present the payoff for each strategy in
terms of errors of estimated ratings. Therefore, user behaviors
are associated with their preferences and ratings. In addition,
we measure user influence according to their topological roles in
the social network. We incorporate evolutionary opinion dynam-
ics and user influence into the recommendation framework for
the prediction of unknown ratings. Experiment results on two
real-world datasets demonstrate that our method outperforms
state-of the-art models in terms of accuracy, and it also performs
well for cold-start users. Our method reduces the divergence
of user preferences, in accordance with online opinion interac-
tions. Furthermore, our method has approximate computational
complexity with matrix factorization, and results in less compu-
tation than state-of-the-art models. Our method is quite general,
and indicates that studies in social physics, statistics, and other
research fields may be involved in recommendation to improve
the performance.
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I. INTRODUCTION

W ITH the advent of Web 2.0 technologies, there has been
an enormous growth in the amount of data which is

constantly being generated [1]. This presents a significant chal-
lenge in terms of finding useful information. In recent years,
recommender systems [2] have attracted a lot of attention as
a tool for information filtering and have been used in many
aspects of people’s life. The common algorithms for recom-
mender systems contain content-based recommendation and
collaborative filtering. For content-based recommendation [3],
a set of detailed user and item features needs to be collected;
however, in many situations, features are not easy to obtain,
and the authenticity and validity of the features often can-
not be guaranteed. On the contrary, collaborative filtering [4]
uses past review or rating data without the need for exogenous
information, and therefore, it has widely been applied in real
society.

Collaborative filtering can be divided into two categories,
i.e., memory-based and model-based filtering. Memory-based
approaches calculate similarities among users or items, and
find the neighborhood for each user or item in terms of
the similarities [5]. Then, missing ratings are predicted by
a weighted sum of ratings from similar users or items. In
contrast, model-based approaches use machine learning algo-
rithms to build a predictive model based on existing ratings,
such as matrix factorization (MF) [4]. These approaches map
the user-item rating matrix into two low-rank matrices. Users
and items are identified as the same dimensional vectors, and
elements in these vectors express the weights of users or items
on latent factors. Therefore, user factor vectors can be regarded
as the preferences and opinions of users. A user’s rating on
an item can be inferred by the product of the user vector
and item vector. Model-based approaches have been proved
to have higher accuracy and scalability. Exogenous content
features can also be introduced to MF. It has been proved
that these features improve the performance of recommender
systems [6].

Users in online social networks often interact with others.
They may observe the actions of other users, and comment on
these users. Therefore, they make connections with other users.
The connections contain both physical links and virtual trust
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relations [7]. Users’ social relations have been combined with
recommender systems [8]. Users who have connections with
each other are assumed to have similar tastes. Current stud-
ies consider that user ratings are not only determined by their
own opinions, but they are also influenced by the tastes of their
friends [9]. Therefore, opinions of neighbors are incorporated
into the product of latent vectors. In addition, social regu-
larization is used to minimize the difference between latent
vectors of each user and its neighbors [10]. The network of
user relations has also been mapped into latent factor spaces in
two ways, which can explicitly describe the feedback of how
users affect or follow the opinions of others. Recommender
systems often have a better performance than traditional rec-
ommendation algorithms due to their inclusion of social or
trust information [11].

Indeed, when users in social networks make a decision on
ratings or reviews, opinions and behaviors about items will
be directly or indirectly affected by others [12]–[14]. Current
studies often model the impact of friends by a linear com-
bination of others’ latent vectors [15]. The combination of
vectors may affect the ratings or social connections among
users, including both explicit and implicit influence. However,
it is still unclear whether the evolution of a user’s opinion fol-
lows the superposition of others when it interacts with friends.
The evolutionary pattern of opinions has been widely inves-
tigated in the research field of social physics and statistical
learning [16]–[18]. In the Deffuant–Weisbuch (DW) opinion
model [19], when two users discuss a topic, their opinions
change and become closer to each other. In the model with
continuous opinions and discrete actions [20], users change
their opinions under the Bayesian rule of how likely their
neighbors are to be correct, after they observe the external
actions (ratings or reviews) of their neighbors. This model
promotes the appearance of extreme opinions and forces opin-
ions to cluster together. In [21], users update their opinions
according to the birth–death and death–birth process during
interactions. These models often originate from real physical
phenomena, and have been verified in the interactions of real
society. Further exploration is needed to determine whether
these opinion models can be applied to characterize real opin-
ion interactions in online social networks. The impact pattern
of opinions which is integrated in the MF framework greatly
affects the recommendation performance. Current trust-based
models may not adequately capture the essential characteris-
tics of individual opinion evolution. The work in [22] reveals
that trust-based models may be inferior to the state-of-the-art
model which is merely based on user-item ratings. Therefore,
a simple combination of latent user vectors may not make full
and adequate use of ratings and trust information.

In this paper, we propose a recommendation model that
includes opinion interactions and user influence. Evolutionary
opinion dynamics are introduced to recommender systems.
We characterize the impact of neighbors on user opinions
by evolutionary game theory. We define the strategies dur-
ing an interaction of two users, i.e., changing or keeping
their opinions, and give the payoff for each strategy. Users
choose a better strategy to maximize their payoffs when they
discuss an item with another user. Opinion interactions are

conducted with the MF framework, and therefore, user rat-
ings are affected by the opinions of others. In addition, user
influence which measures the status of a node in the network,
is added to the recommendation model, so that the ratings of
each user are weighted. We conduct experiments on two real-
world datasets, and the results demonstrate that our method
works better than state-of-the-art recommendation models.
Furthermore, our method has much less computational com-
plexity than its counterparts. This paper reveals that studies
in other research fields, such as social physics and statistics,
can be incorporated in recommender systems, to improve the
recommendation performance. This paper makes the following
contributions.

1) We model online opinion dynamics using evolution-
ary game theory. The payoffs of strategies during an
interaction are associated with latent item factors and
observed ratings. Users update their opinions to reduce
rating errors and the distances between their opinions.
This model considers both the dynamic process in
real society and the rating prediction of recommender
systems.

2) We introduce opinion dynamics and user influence to
the MF framework, and improve the recommendation.
During the training of MF, users update their opinions
according to the payoff matrix of the game. When users
make decisions on items, they are affected by others,
so the opinions of others contribute to the ratings. In
addition, user influence that originates from the trust
network is added to the recommendation. The method
which combines MF and random dynamics is general.

3) We conduct extensive experiments to evaluate the effec-
tiveness of our method for all users and cold-start users.
We compare our method with several state-of-the-art
recommendation models, and analyze the computational
complexity of the proposed method. Results show that
our method outperforms its counterparts and encour-
ages users to reduce the divergence of their opinions,
in accordance with real dynamics.

The rest of this paper is structured as follows. Section II
overviews the related work on social recommendation.
Section III introduces the MF approach. Section IV proposes
a recommendation method with opinion interactions and user
influence. Section V presents the evaluation of the method for
two sets of real social data. We close this paper in Section VI
with concluding remarks.

II. RELATED WORK

Social-based recommendation models often integrate the
preferences of neighbors into the prediction of unknown
ratings, so that social information is utilized in the recom-
mendation framework [11]. Latent factors of neighbors may
affect the prediction of user ratings or relations. In [23],
user’s social trust was combined with probabilistic MF, and
the interests of users and their trusted friends were fused to
make a decision on uncollected ratings. Instead of integrat-
ing social information for rating prediction, recommendation
with social regularization exerts social constraints on the
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MF framework [10]. Users may take the average prefer-
ence of neighbors, or they may have similar interests with
each neighbor. Both trust networks and social networks are
considered. Social relations are not homogeneous among dif-
ferent users, and weak dependency connections exist widely
in social networks. Weak dependency connections represent
the relations among users in a group that have similar tastes.
In [24], after community detection, social dimensions that
express user tastes were exploited, and a user may be involved
in different dimensions. Based on social dimensions, a rec-
ommendation framework was proposed, which incorporates
the heterogeneity of social relations and weak dependency
connections. Social dimensions improve the effectiveness of
recommendation.

From an analysis of real-world datasets, rating data and
social data in social networks are usually complementary.
Guo et al. [6] incorporated both the explicit and implicit
influence of user trust, and both trusted and trusting users
were considered in the prediction of ratings for an active user.
Explicit and implicit influence result in a better performance
than other social-based models.

User preferences do not always remain unchanged, instead,
they drift over time. Zhang et al. [25] inferred the latent
social network from cascade data, and identified the dynamic
changes of users over time using the latest updated social
network. A model of implicit dynamic social recommendation
was proposed to address the common existing preference draft-
ing issues. Mining social information in time helps to improve
recommendation. Tang et al. [26] leveraged social science the-
ories to develop a methodology for this paper of online trust
evolution. The dynamics of user preferences were exploited to
reveal trust evolution. The trust evolution model can be applied
for trust prediction, rating prediction, and ranking prediction.

User relations are not always positive, and social networks
also contain negative links. The work in [27] exploited signed
social networks for recommendation, and leveraged positive
and negative links in signed social networks. The preferences
of users are likely to be closer to those of their friends than
those of their foes. The results proved that negative links in
signed social networks were as important as positive links for
recommendation.

These aforementioned studies utilized social information
directly, and user relations were incorporated with latent
interest vectors in recommender systems. Hu et al. [28]
measured user influence from network topology. They distin-
guished different social relations among users, and latent user
preferences were learned from those who have the most influ-
ence in the social network. The Shannon entropy principle was
used to optimize an influence factor, and the topological dis-
tances of users were calculated for the building of influence.
Zhang et al. [29] developed the global influential model and
local influential model to find influential users. They carried
out Monte-Carlo simulations to obtain an approximate result
while handling large-scale user networks. Global and local
influence were used as regularization terms in the MF frame-
work. The experiment results proved that these methods which
explore user influence from social relations have an advantage
in terms of accuracy and stability.

III. REGULARIZED MATRIX FACTORIZATION

MF is an effective approach for recommender systems to
predict missing ratings. This method assumes that user deci-
sions are determined by a few latent factors, and a rating is
estimated according to how an item meets a user’s preference
toward the latent factors.

We define the set of users as {u1, u2, . . . , um}, and the set
of items as {v1, v2, . . . , vn}. m denotes the number of users,
and n denotes the number of items. The ratings are given by a
matrix R ∈ R

m×n. MF decomposes the m×n rating matrix into
two low-rank matrices U ∈ R

m×d and V ∈ R
n×d, obviously

d < min(m, n). The rating matrix is expressed by R = UVT ,
meaning that the target matrix R can be approximated by the
product of two low-rank matrices. For an accurate description,
we rewrite the approximation process as

R = UVT + e (1)

where e is the error matrix. One can find suitable U and V
to make the error as small as possible. Thus, we approximate
the rating matrix by minimizing

L = 1

2

∥
∥R− UVT

∥
∥

2
(2)

where ‖ ·‖ denotes the Frobenius norm. U and V are obtained
from the observed ratings, and they can be utilized to predict
the missing ratings. Considering the observed ratings, (2) is
changed to

min
U,V

L = min
U,V

1

2

m
∑

i=1

n
∑

j=1

Iij

(

Rij − UiV
T
j

)2
(3)

where I is a binary function standing for whether user i
has rated item j. To avoid over fitting, quadratic regulariza-
tion terms are added to the sum-of-squared-errors objective
function as

min
U,V

1

2

m
∑

i=1

n
∑

j=1

Iij

(

Rij − UiV
T
j

)2 + λ

2
‖U‖2 + λ

2
‖V‖2 (4)

where λ is the extent of regularization, and λ > 0. Stochastic
gradient descent (SGD) is applied to optimize the objective
function and find a local minimum. In each iteration of train-
ing, all the observed ratings are estimated by latent vectors,
and the corresponding vectors are updated as follows:

∂L
∂Ui
= −

∑

j

(

Rij − UiV
T
j

)

Vj + λUi

∂L
∂Vj
= −

∑

i

(

Rij − UiV
T
j

)

Ui + λVj

Ui ← Ui − γ
∂L
∂Ui

Vj ← Vj − γ
∂L
∂Vj

(5)

where γ denotes the learning rate. MF is one of the most
popular methods in model-based collaborative filtering.
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IV. RECOMMENDATION WITH OPINION

DYNAMICS AND USER INFLUENCE

In this section, we introduce our recommendation method
in detail. We define the influence of each user, and use it to
weight the objective function of MF. Opinion interactions are
characterized by evolutionary game theory, and they are incor-
porated into the SGD training of MF. In the following, first, we
introduce the game theory model of opinion dynamics. Then,
we describe the method of MF with user influence. We detail
the whole training algorithm in Section IV-C. Last, we analyze
the computational complexity of the proposed method.

A. Game Theory Model of Opinion Evolution

User i’s latent vector Ui is treated as user i’s opinion toward
latent factors, revealing how each factor applies to the user.
Opinions of users do not always remain unchanged. Users try
to persuade others to adopt their opinions, and therefore, opin-
ions are dynamic. Users in online social networks may interact
with other users, and exchange opinions. On product review
websites, when a user publishes a rating or comment on an
item, some other users may read the comment and discuss the
item with the user. After the interaction, they may change their
opinions. Therefore, opinions evolve during the dynamics.

Many opinion models were proposed to characterize the
process of opinion interactions. As a typical representative of
continuous opinion models, the DW model describes pairwise
interactions between users who have similar opinions. In each
update event, two agents i and f are selected at random, and
they start a conversation. Meanwhile, the assumption of bound
confidence is introduced to the opinion model. When the opin-
ions of these two agents are close enough, they will change
their opinions. Therefore, if the opinions of user i and f satisfy
‖Ui − Uf ‖ < ε (ε > 0), each opinion moves in the direction
of the other as

Ui ← Ui + μ · (Uf − Ui
)

(6)

Uf ← Uf + μ · (Ui − Uf
)

(7)

where μ (0 < μ ≤ 0.5) is the trust parameter of users, and
ε is the tolerance threshold. In the DW model, ε and μ are
constants during the evolution. For a special case in which
opinions have only one dimension, i.e., d = 1, if ε > 0.5,
all opinions converge to a single central one, and the system
reaches consensus. If ε < 0.5, the system reaches a state
of fragmentation, in which a final number of opinion clus-
ters occur, scaling with the number of users. The number of
clusters is in proportion to 1/ε.

The DW model characterizes user interaction behaviors, but
the impacts of item factors and observed ratings are ignored
during the evolution. In addition, the tolerance threshold ε is
fixed for each user; however, users in real society often have
different thresholds. Now, we use evolutionary game theory
to model the process of user interactions with item and rating
information. Game theory investigates the process of decision
making when two players struggle to maximize their own pay-
offs. Meanwhile, game theory can also be used to explore user
behaviors in opinion dynamics.

We present the opinion dynamic model through the frame-
work of evolutionary game theory as follows. In each
interaction, two users i and f are selected at random, and
are regarded as players in a game. An item j is randomly
selected, and is treated as a topic. Users generally try to per-
suade others or reach agreement on the topic. The interaction
strategies available to each player are either to change their
opinions or maintain their opinions. The payoffs that the play-
ers receive depend on the strategies they implement in the
game. A strategy with a higher payoff is preferred by play-
ers [30]. In real interactions, each player wants to convince the
other one that its opinion is correct. Meanwhile, each player
tends to adopt the strategy that can decrease errors of esti-
mated ratings. Therefore, user opinions and ratings should
be included in payoffs. Assume that in an interaction, user
i changes its opinion Ui, and then its opinion will be updated
to Ui,new following (6). Considering the observed rating Rij

and item j’s latent vector, the payoffs for the strategies are
defined as follows.

1) If user i changes its opinion, the payoff that user i obtains
is |Rij − UiVT

j | − |Rij − Ui,newVT
j |. Users should adapt

their opinions to reduce the errors between the observed
ratings and estimated ratings. Therefore, if the error for
the estimated rating decreases after the opinion update,
user i will obtain a positive payoff and it is willing to
change its opinion. We suppose that the payoff for the
strategy, i.e., the user changing its opinion, depends on
the difference between the original error and that after
this strategy is adopted.

2) If user i retains its opinion, the payoff for i is β ·
|UiVT

j − Uf VT
j | where β (β > 0) is used to control

the contribution of this strategy which represents indi-
vidual stubbornness. Users generally prefer to persuade
their opponents rather than changing their own opin-
ions, since changing an opinion may incur a cost. The
payoff correlates with the difference between user i’s
and f ’s estimated ratings on item j, and a large differ-
ence between ratings leads to a large cost when changing
opinions. If users decide to maintain their opinions, they
will receive a positive payoff.

3) If user f changes its opinion, user i receives the payoff
β · |UiVT

j −Uf VT
j |. If a user succeeds in persuading its

opponent to change an opinion, it will obtain a positive
payoff.

When user i and f interact in relation to topic j, the payoffs
for user i are shown in Table I.

The Nash equilibrium point of the aforementioned game is
related to latent item vector Vj and rating Rij. We can infer
the Nash equilibrium point from Table I as follows.

1) When |Rij − UiVT
j | − |Rij − Ui,newVT

j | − β · |UiVT
j −

Uf VT
j | > 0, the Nash equilibrium strategy for user i is

changing its opinion.
2) When |Rij−UiVT

j |−|Rij−Ui,newVT
j |−β·|UiVT

j −Uf VT
j | ≤

0, the Nash equilibrium strategy for user i is maintaining
its opinion.

The analogous Nash equilibrium strategy can be found for
user f . For the aforementioned evolutionary game model, the
condition for opinion updates varies with time. The model
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TABLE I
PAYOFFS FOR USER i

does not have a fixed tolerance threshold ε. Inserting (6) into
the Nash equilibrium condition, we have

∣
∣
∣Rij − UiV

T
j

∣
∣
∣−

∣
∣
∣Rij − UiV

T
j − μ · (Uf − Ui

)

VT
j

∣
∣
∣

− β ·
∣
∣
∣UiV

T
j − Uf VT

j

∣
∣
∣ > 0. (8)

From (8), if user i changes its opinion in an interaction, it
holds true that UiVT

j < Rij & Uf VT
j > UiVT

j , or UiVT
j > Rij

& Uf VT
j < UiVT

j . In addition, if we do not consider the impact
of observed ratings, so the condition for opinion updates in (8)
reduces to |UiVT

j −Uf VT
j | < ε. As in [31], when the system in

homogeneous networks converges, the initial average value of
|UiVT

j −Uf VT
j | over all users should be below ε. Ui and Vj are

d-dimensional vectors, and each dimension in the beginning
is randomly distributed from [0, 1]. The expectation of initial
UiVT

j is d/4. It can be inferred that the expectation of initial
|UiVT

j − Uf VT
j | is d/18. A large number of latent factors d

leads to a large divergence of opinions and prevents the system
from converging.

In each iteration of SGD during the training process, we
implement opinion interactions of users following the evo-
lutionary game model. In multiagent opinion dynamics, a
Monte-Carlo time step contains m times of opinion interactions
for a population of m users, and hence, we introduce m such
interactions into an iteration of SGD. In an opinion interaction,
two users are selected at random, and they employ different
strategies according to their payoffs in relation to a randomly
selected item. In an iteration of SGD, opinion interactions
are asynchronously implemented m times. When the objec-
tive function reaches convergence, for a majority of user-item
pairs, the product of latent vectors UiVT

j approaches Rij, so
that in the stable state, |Rij − UiVj

T | for these user-item pairs
is small. Therefore, for most of users, the payoff of changing
their opinions |Rij − UiVj

T |−|Rij − Ui,newVj
T | is often smaller

than that of maintaining their opinions β · |UiVj
T − Uf Vj

T |. In
the stable state of the network, the strategy of maintaining
one’s opinion dominates in opinion interactions.

B. Matrix Factorization With User Influence

User influence represents the role of a user in a network.
This influence is often regarded as a contribution in the pro-
cess of information diffusion. With large influence, a user may
diffuse its information to a greater number of other users, and
information recommended by this user is readily accepted by
neighbors. Therefore, it has a large impact on others’ prefer-
ences. Some features of the underlying topology can be used to
measure influence, such as the degree centrality, betweenness
centrality, k-core index, average clustering coefficient, etc [32].

Here, for the sake of simplicity, we choose degree centrality
as the indicator of user influence.

In the real world, users generally consult their friends before
making decisions on items, since they tend to trust the prefer-
ences of their friends. From trust relations found on movie or
product review websites, a trust network can be obtained and
then user influence can be calculated. We define the number
of users that trust user i as F−i . F−i is quite heterogeneous for
different users, and therefore, we should renormalize it. User
i’s influence is given by

ϕi = log
(

F−i /α1 + α2
)

log

(

max
f

F−f /α1 + α2

) . (9)

The offset α2 in the logarithmic function increases user influ-
ence to be greater than 0, as some users do not have any
trust relations. The value of α2 should be set in the interval
(2, 10), since too large α2 reduces the effect of user influ-
ence. The denominator in (9) renormalizes the influence and
limits the value of ϕi in the interval (0, 1]. The parameter α1
is used to control the decay of user influence. If a user has
larger influence, its preference makes a greater contribution
in the sum-of-squared-errors objective function. The objective
function of (4) is rectified as

min
U,V

1

2

m
∑

i=1

ϕi

n
∑

j=1

Iij

(

Rij − UiV
T
j

)2 + λ

2
‖U‖2 + λ

2
‖V‖2.

(10)

Then, the derivatives of the corresponding latent vectors in
SGD are calculated as follows:

∂L
∂Ui
= −

∑

j

ϕi

(

Rij − UiV
T
j

)

Vj + λUi (11)

∂L
∂Vj
= −

∑

i

ϕi

(

Rij − UiV
T
j

)

Ui + λVj. (12)

C. Model Learning

Here, we present our recommendation method with opinion
interactions and user influence. The whole training algorithm is
shown in Algorithm 1. The method is based on the framework
of MF, and opinion dynamics are introduced to the process of
SGD. Our method comprises two steps in an iteration of SGD.

1) For each observed rating, SGD is used to update latent
user vector Ui and item vector Vj. User influence given
in (9) from the trust network is included.

2) Opinion interactions are implemented in each iteration
of SGD. In each interaction, two users i and f are
selected at random. User i randomly selects an item j
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Algorithm 1: Proposed Recommendation Method With
Evolutionary Opinion Dynamics

Input: List of tuples 	 = (users, items, ratings), list of
tuples SNS = (users, trusted users); the number of
latent factors d, the learning rate γ , regularization
parameter λ, user influence parameter α1, α2,
trust parameter μ, and payoff parameter β

Output: Latent user matrix U and latent item matrix V
1 Task 1: Generating user influence
2 for i← 1, 2, . . . , m do
3 Calculate ϕi according to Eq. (9)
4 end
5

6 Task 2: Learning user matrix U and item matrix V
7 Initialize U and V randomly
8 while not convergence do
9 (1) SGD training

10 Calculate ∂L/∂U according to Eq. (11)
11 Calculate ∂L/∂V according to Eq. (12)
12 Update U← U − γ · ∂L/∂U
13 Update V← V − γ · ∂L/∂V
14 (2) Opinion interactions
15 for i← 1, 2, . . . , m do
16 Select two users i and f at random
17 Select an item j randomly that user i has rated
18 if Eq. (8) holds then
19 Ui ← Ui + μ · (Uf − Ui

)

20 end
21 end
22 end

that i has rated in the training data. Then, user i inter-
acts with f for item j according to the Nash equilibrium
of the game shown in Table I. If the condition of (8)
holds true, user i changes its opinion following (6). In
each iteration, m interactions are implemented. Here, we
do not consider the trust network, since a user in online
social networks can exchange its opinion with any other
users even if it does not have any trust relation with
them. Users’ comments and ratings on an item are acces-
sible to all other users, so that they can have a discussion
on the item.

D. Complexity Analysis

We analyze the computational complexity for the proposed
method. We define the number of observed ratings in the
training data as |R|, and the number of iterations as N. The
computational complexity of SGD in MF is O(d · N · |R|),
where d is the number of latent factors. As previously men-
tioned, m is the number of users. Thus, the average number
of observed ratings for each user is |R|/m. To calculate user
similarities, the computational complexity O(m2 · |R|/m) =
O(m·|R|) is required. The computational complexity for SoReg
is O(d · N · (|R| + 2m · |f |) + m · |R|), where |f | is the aver-
age number of trusted friends for each user. Since m is often
much larger than d · N, the computation of user similarities

TABLE II
STATISTICS OF DATASETS

in SoReg accounts for a greater proportion than that of SGD
for MF. For TrustSVD [6], the computational complexity is
O(d · N · (|R| + |T|) · max(|f |, k)), where |T| is the number
of observed relations and k is the average number of ratings
received by an item.

We simply write our recommendation method with evolu-
tionary opinion dynamics and user influence as REOD in the
following. For REOD, the computation is mainly caused by
SGD training and opinion dynamics. In the process of opin-
ion dynamics during an iteration, m opinion interactions are
implemented, each of which only contains one opinion update.
An opinion update takes the computational complexity O(d).
Therefore, opinion dynamics result in the computational com-
plexity O(d ·N ·m). Overall, the computational complexity for
REOD is O(d ·N · (|R|+m)). Since |R| is much larger than m,
the complexity of our method approximates MF which costs
O(d ·N · |R|), and REOD involves much less computation than
state-of-the-art models.

V. EXPERIMENTS

In this section, we address the following questions: 1)
does the proposed method with evolutionary opinion dynamics
and user influence improve the accuracy of recommendation?
2) what is the contribution of opinion interactions and user
influence for recommendation? and 3) how do the intrinsic
parameters of opinion interactions and user influence affect
the recommendation results? First, we use two real-world
datasets to evaluate our method, and compare the recom-
mendation results of our approach with other state-of-the-art
recommendation models to answer the first question. Then,
we investigate the effects of the components in our method
to answer the second question. Last, we vary the parameters
of opinion interactions to explore their effects to answer the
third question.

A. Datasets and Metrics

To evaluate the proposed recommendation method, we col-
lected two datasets, which were taken from the popular social
networking websites Ciao1 and Epinions.2 Statistics on these
datasets are presented in Table II. Users of these social
networking services can rate items, browse/write reviews, dis-
cuss with others, and add trusted friends. Therefore, we can
obtain rating and social relation data from these websites.

Ciao and Epinions are well-known product review websites,
where users can rate a product using one of five discrete ratings

1http://www.ciao.co.uk/
2http://www.epinions.com/
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TABLE III
RESULTS OF RECOMMENDATION ON MAE AND RMSE IN CIAO

from 1 to 5. Ratings imply the sentiment of users toward a
given item. If a user is not satisfied with a product, it will give
the product a rating of 1; if a user appreciates a product, it will
give the product a rating of 5. Each user maintains a “trust”
list which includes the user’s social relations. For Ciao, we
collected 7267 users, 11 211 items, and 149 147 ratings. The
density of the user-item rating matrix is 0.183%. For Epinions,
we collected 7411 users, 8728 items, and 276 116 ratings, and
the density of the user-item rating matrix is about 0.427%.

In both datasets, F−i follows a power-law distribution. The
power exponent in the Ciao dataset is −1.076 ± 0.023, and
that in Epinions is −0.991±0.021. The average and maximal
values of F−i in Ciao are 15.2408 and 796, while those in
Epinions are 7.1491 and 336, respectively.

For each dataset, we choose x% as the training set to learn
the parameters and use the remaining 1 − x% as the test set.
We set x at 60, 70, and 80, respectively, and obtain the results.
The experiments are conducted five times independently, and
we give the average performance.

We use two metrics to evaluate the performance, i.e., mean
absolute error (MAE) and root mean square error (RMSE).
MAE is defined as

MAE = 1

|Rtest|
∑

Rij∈Rtest

∣
∣
∣Rij − UiV

T
j

∣
∣
∣ (13)

where Rtest refers to the test set, and |Rtest| refers to the number
of ratings in Rtest. RMSE is defined as

RMSE =
√

1

|Rtest|
∑

Rij∈Rtest

(

Rij − UiVT
j

)2
. (14)

It has been proved that a smaller MAE or RMSE value means
a better performance.

B. Baselines

In this section, to demonstrate the effectiveness of the
proposed method, we compare it with the following repre-
sentative recommendation models.

PMF [33]: This method only utilizes the user-item rating
matrix, and performs probabilistic MF to make recommenda-
tions.

LLORMA [34]: This method relaxes the low-rank assump-
tion, and approximates the observed matrix as a weighted sum
of local low-rank matrices.

SocialMF [35]: This method introduces the mechanism of
trust propagation into the model.

SoRec [36]: This method is based on probabilistic MF, and
performs a co-factorization on the user-item rating matrix and
user-user social relation matrix.

RSTE [23]: This method makes social recommendation by
using social trust ensemble and naturally fusing the prefer-
ences of users and their trusted friends together.

TrustMF [37]: This method performs MF to map users into
low-dimensional latent spaces in terms of their trust relations.

SoReg [10]: This method incorporates social regulariza-
tion into MF, and social regularization represents the social
constraints on recommender systems.

TrustSVD [6]: This method incorporates the explicit and
implicit influence of rated items and trusted users on the
prediction of items.

To focus on model evaluation and a fair comparison, for
all methods, we set the same number of latent factors d = 20.
For different parameters in baseline models, we employ cross-
validation to determine the optimal values. For PMF, the
parameters are λ = 0.1, γ = 0.01 in Ciao, and λ = 0.1,
γ = 0.005 in Epinions. For SoRec, we set γ = 0.005,
λc = 1, λ = 0.001 in Ciao, and γ = 0.005, λc = 1,
λ = 0.005 in Epinions. For TrustMF, the parameters are
γ = 0.3, λ = 0.005, λt = 1 in Ciao, and γ = 0.2, λ = 0.005,
λt = 5 in Epinions. For TrustSVD, we set γ = 0.001, λ = 0.5,
λt = 1 in Ciao, and γ = 0.001, λ = 0.9, λt = 0.5 in Epinions.
For the remaining methods, we set the regularization param-
eter λ = 0.001 in both datasets. For LLORMA, the learning
rate is γ = 0.01 in both datasets. For SocialMF, we set the
parameters λt = 5, γ = 0.1 in Ciao, and λt = 5, γ = 0.05
in Epinions. For RSTE, we set γ = 0.04, and α = 0.9 in
both datasets. For SoReg, the parameters are γ = 0.0005 and
β = 5. For REOD, we set the payoff parameter β = 0.05, the
trust parameter μ = 0.12, the learning rate γ = 0.001, and the
influence offset α2 = 6 in both datasets. The influence decay is
α1 = 30 in Ciao, and it is α1 = 80 in Epinions. Degrees of the
trust network have a heavy tailed distribution, and many users
have a tiny F−i in (9). Therefore, the ratings of these users
make little contribution to the objective function, so (10) may
cause over fitting. To alleviate this problem, we multiply ϕi by
a positive random number with normal distribution for each
iteration. Some baselines are implemented by LibRec3 [38].

C. Performance Comparisons

Tables III and IV compare the results of the different
methods for all users. More training data leads to higher

3https://www.librec.net/



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

TABLE IV
RESULTS OF RECOMMENDATION ON MAE AND RMSE IN EPINIONS

(a) (b)

Fig. 1. Performance comparison of SoReg, TrustSVD, and REOD for cold-start users. (a) Ciao. (b) Epinions.

recommendation accuracy, especially in Ciao which has
sparser rating data. PMF performs worse than all social recom-
mendation models except in the case where TrustMF performs
the worst when 80% of data in Epinions is used for train-
ing. The reason for this is that the dataset of Epinions has
much sparser user relations. Directly factorizing the matrix of
the sparse trust network may harm the prediction accuracy on
unknown ratings for recommender systems. LLORMA has low
accuracy in Ciao, but it performs well in Epinions and even
outperforms some social recommendation methods. LLORMA
obtains low-rank matrices that are limited to a local region of
the observed matrix, so that it achieves a high performance in
denser rating data. In Epinions, SocialMF and SoRec almost
perform the same, but when more user relations are avail-
able, SocialMF has higher accuracy in the Ciao dataset. RSTE
uses social trust ensemble and requires more relation data, so
that it performs worse than SoRec in Epinions. SoReg has a
smaller MAE and RMSE than SocialMF, SoRec, RSTE, and
TrustMF, since SoReg uses better social regularization terms.
TrustSVD incorporates the implicit influence of user trust and
item ratings, so recommendation accuracy is improved and it
performs the best of the state-of-the-art methods. Clearly, our
method REOD outperforms the other models. When 60% of
the training data of Ciao is used, REOD decreases MAE as
high as 3.501% in contrast to SoReg, and 2.076% in contrast
to TrustSVD; in Epinions, the corresponding improvement
is 3.568% in contrast to SoReg, and 1.507% in contrast to
TrustSVD. Although in Ciao, the RMSE of REOD approaches
that of TrustSVD, REOD can obtain a better performance with
sparse social connections. Therefore, we draw the conclusion
that REOD improves the accuracy of recommendation.

Recommender systems often suffer from cold start prob-
lems, degrading the recommendation performance. We address
the accuracy of these models for cold start users who have
only rated a few items (equal to or less than five ratings).
Fig. 1 shows the performance of SoReg, TrustSVD, and our
approach for cold start users. The parameters are the same
as above. We select cold start users and evaluate the MAE
and RMSE on these users. Here, we use 80% of the data
as training data, and the results are similar for different
proportions of training data. Fig. 1 shows that REOD still
outperforms the other methods for cold start users, although
the RMSE of TrustSVD approximates our method. In both
datasets, SoReg has a similar MAE with TrustSVD, but has
a larger RMSE than the other two methods. The results
demonstrate that incorporating evolutionary opinion dynam-
ics can help recommender systems cope with cold start
situations.

Now, we focus on the second issue of examining the effects
of user influence and opinion interactions. It has been proved
above that recommendation with both effects outperforms the
representative recommendation models. We investigate which
aspect plays a more significant role in social recommenda-
tion. We eliminate the effect of opinion interactions or user
influence separately by defining the following algorithmic
variants.

1) REOD\UI: Eliminating the effect of user influence.
Evolutionary opinion dynamics are considered. The
objective function of (10) reduces to that of traditional
MF in (4).

2) REOD\OP: Eliminating the effect of opinion inter-
actions. User influence is calculated from the trust



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIONG et al.: SOCIAL RECOMMENDATION WITH EVOLUTIONARY OPINION DYNAMICS 9

(a) (b)

Fig. 2. Impact of user influence and opinion interactions on recommendation in the Ciao dataset. (a) MAE. (b) RMSE.

(a) (b)

Fig. 3. Impact of user influence and opinion interactions on recommendation in the Epinions dataset. (a) MAE. (b) RMSE.

network. Opinion interactions are removed from each
iteration of SGD training.

3) REOD\UI&OP: Eliminating both the effects of opinion
interactions and user influence.

We also use cross-validation to determine the parameters
of these variants. In the Ciao dataset, for REOD\UI&OP and
REOD\UI, we set γ = 0.0005 and λ = 0.001. For REOD\UI,
the parameters in opinion interactions are μ = 0.12 and
β = 0.05 in both datasets. For REOD\OP, the parameters
are γ = 0.001 and λ = 0.001, α1 = 40 and α2 = 8. We find
the optimal parameters for these three algorithmic variants in
Epinions are the same as those in Ciao. Figs. 2 and 3 show
the accuracy of these variants in Ciao and Epinions, respec-
tively. In general, each component in our method contributes
to better recommendation, and eliminating the effect of opin-
ion interactions or user influence degrades the performance.
In both datasets, opinion interactions play a far more signifi-
cant role in the prediction of unknown ratings, compared with
user influence. Therefore, when 60% of the data is used for
training, REOD\OP has a 7.884% relative performance reduc-
tion for MAE in Ciao data, and 5.608% in Epinions data. The
procedure of opinion interactions in each iteration of SGD
does not need the trust network, therefore, it will not suf-
fer from the sparsity problem of trust relations. User influence
slightly reduces MAE and RMSE in both datasets whether the
effect of opinion interactions is included or not. Furthermore,
the improvement of the performance under the action of user

influence is more obvious in Ciao data than in Epinions data,
as a result of denser user relations in Ciao, especially when
less training data are applied.

We are concerned about the evolution of user opinions dur-
ing the SGD training of our method. We use the average
squared distance of individual opinions to reflect the diver-
gence of opinions. The average squared distance is defined as

D(t) =
∑

i‖Ui(t)− E(U(t))‖2
m

(15)

where E(·) means the expectation operation. A larger squared
distance means more disordering exists in user opinions. Fig. 4
shows the average squared opinion distance versus the iteration
number with or without opinion interactions, when 70% of the
data is used for training. We also find that with different train-
ing data, the evolution of opinions is analogous. For REOD,
the average squared distance drops to a very low value and
gradually becomes stable in about 50 iterations. Consensus is
almost achieved, especially in the Epinions data, implying very
small divergence among user opinions. Due to the existence
of opinion interactions, users tend to adapt their opinions so
that they are close to each other. This phenomenon is in accor-
dance with real situations in social networks [39], since users
tend to persuade others to trust their opinions during opinion
interactions. As a result, opinion interactions clearly improve
the recommendation accuracy. However, for REOD\OP, the
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(a) (b)

Fig. 4. Average squared distance of user opinions versus iteration number with 70% training data. (a) Ciao. (b) Epinions.

(a) (b)

Fig. 5. Performance variations of REOD versus the trust parameter μ. (a) Ciao. (b) Epinions.

average squared distance only marginally decreases, and user
opinions are quite divergent.

Now, we address the third issue: the effects of parameters
for opinion interactions and user influence on the performance.
The parameter μ determines the rate of opinion exchanges.
We change the value of μ, and investigate the correspond-
ing recommendation accuracy. Since users generally update
their opinions so that they are close to their neighbors’ opin-
ions, the value of μ does not exceed 0.5. Fig. 5 shows the
impact of μ with different training data. The variations of
RMSE are similar to those of MAE, and therefore, we do
not depict RMSE here. We can clearly observe a transition
at μ = 0.05 below which the method has larger MAE. MAE
starts a precipitous decline around μ = 0.05, and reaches
a plateau in the interval [0.05, 0.2]. We investigate opinion
evolution with different μ. For μ < 0.05, the final average
squared opinion distance is larger than 1.5, while that for
μ > 0.05 is below 0.08. Therefore, if μ < 0.05, user opin-
ions have few changes during opinion interactions, and opinion
interactions do not take effect in recommendation. Then, our
method reduces to REOD\OP. If μ > 0.2, MAE increases
slowly with μ. For large μ, the variation of an estimated rat-
ing |μ·(Uf−Ui)VT

j | may be larger than 2·|Rij − UiVj
T |, so that

we have |Rij − Ui,newVj
T | > |Rij − UiVj

T | and errors of esti-
mated ratings may increase. Generally, our method achieves
lower MAE in the interval [0.05, 0.2] of μ in both datasets,
irrespectively of the proportion of training data. Thus, we can

Fig. 6. Performance variations of REOD versus the payoff parameter β with
70% training data.

typically set μ = 0.12 without loss of generality. Since the
impact of μ does not depend on the datasets, the complexity
of our method can be reduced.

The parameter β controls the equilibrium between the strat-
egy of changing an opinion or maintaining an opinion in the
evolutionary game model. Here, we only consider one case
with 70% training data. In other cases with a different amount
of training data, the performance variations are similar. Fig. 6
shows the impact of β on MAE. When 0 < β < 0.1, MAE
remains relatively stable in both datasets as β varies. Around
β = 0.05, MAE reaches the lowest value. When β > 0.1,
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Fig. 7. Performance variations of REOD versus the influence decay parameter
α1 with 70% training data.

TABLE V
RESULTS OF RECOMMENDATION ACCURACY WITH

DIFFERENT USER INFLUENCE IN CIAO

MAE increases rapidly, demonstrating that the error for the
estimated rating should preferentially be considered in the
evolutionary game of opinion interactions. From (8), when β

approaches μ, increasing β makes users choose the strategy of
maintaining their opinions, and restrains the effect of opinion
interactions in recommendation. In addition, the impact of the
payoff parameter β is also independent of the datasets, reduc-
ing the complexity of our method. In different datasets, we can
empirically set the value of β. Fig. 7 shows the impact of the
influence decay parameter α1. It is obvious that MAE in both
datasets does not have a close correlation with α1. Although
the best performance in different datasets varies with α1, the
change of MAE is small and we obtain relatively low MAE
in the interval (20, 90) of α1. Most of degrees F−i in both
datasets are less than 50. When α1 > 20, the variation of user
influence versus α1 is very small. The aforementioned prop-
erties of parameters are useful from a practical point of view
because they make it easier to set parameters in using our
method.

We use other topological descriptors to measure user influ-
ence, such as betweenness centrality, clustering coefficients
and k-core index, and incorporate the influence into recom-
mender systems. We use 80% data as training data, and
evaluate the recommendation performance with different forms
of user influence. All parameters are determined by cross-
validation. Results of recommendation accuracy with different
user influence are shown in Tables V and VI. Although
topological descriptors have different capabilities of mea-
suring user influence, their effects on the recommendation
performance are similar in both datasets. MAE and RMSE
of degree centrality, clustering coefficients and k-core index
are approximately the same, but the descriptor of between-
ness centrality has a lower performance. The reason is that

TABLE VI
RESULTS OF RECOMMENDATION ACCURACY WITH

DIFFERENT USER INFLUENCE IN EPINIONS

betweenness in these networks is more heterogeneous than
other descriptors, so that users with large betweenness play
an excessively important role in the sum-of-squared-errors
objective function. Ratings of the users that have very small
betweenness have limited contribution to the objective func-
tion, but these users may have many ratings and cannot be
ignored in recommendation. In addition, we also measure
user influence by tie strength, and incorporate user influence
and social regularization into recommender systems, but the
accuracy cannot be improved.

VI. CONCLUSION

When users in online social networks interact with their
friends, their opinions are influenced by others. User inter-
actions can be applied in recommender systems to improve
performance. Social recommendation models utilize social
relations, and introduce neighbors’ impact into the MF frame-
work. In this paper, we investigated the impact pattern of
other users on latent preferences, and studied its effect on rec-
ommendation. We proposed an evolutionary game model to
characterize opinion interactions. We defined two interaction
behaviors, i.e., maintaining one’s opinion or changing one’s
opinion, and determined the payoff for each behavior accord-
ing to the rating on a given item. Users choose the behavior
which maximizes their payoffs. Then, we measured user
influence according to node ingoing degrees in the social
network. We further used user influence to weight the objective
function of MF, and conducted dynamic opinion interac-
tions during each iteration of training. Experiment results on
real-world datasets demonstrated that our method performs
better than state-of-the-art recommendation models for all
users and cold start users. Meanwhile, our method has much
less computational complexity than the other models. Opinion
dynamics drive user opinions to converge and reduce the diver-
gence, coinciding with the real situation in online interactions.
Moreover, our method does not have a significant dependence
of opinion interaction or user influence parameters.

We considered random opinion interactions and user influ-
ence in recommendation, but information diffusion and the
implicit influence of the network were not involved. In online
social networks, users diffuse information about an item, and
meanwhile, they exchange their opinions. In future work,
we will incorporate diffusion dynamics into recommender
systems, and investigate the concurrent process of information
diffusion and opinion interactions. Furthermore, we will extent
the method by incorporating the implicit influence of ratings
and social relations to make a more accurate recommendation.
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