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Abstract
Knowledge graph (KG) embedding approaches are widely used to infer underlying miss-
ing facts based on intrinsic structure information. However, the presence of noisy facts in
automatically extracted or crowdsourcing KGs significantly reduces the reliability of vari-
ous embedding learners. In this paper, we thoroughly study the underlying reasons for the
performance drop in dealing with noisy knowledge graphs, and we propose an ensemble
framework, Adaptive Knowledge Subgraph Ensemble (AKSE), to enhance the robustness
and trust of knowledge graph completion. By employing an effective knowledge subgraph
extraction approach to re-sample the sub-components from the original knowledge graph,
AKSE generates different representations for learning diversified base learners (e.g., TransE
and DistMult), which substantially alleviates the noise effect of KG embedding. All embed-
ding learners are integrated into a unified framework to reduce generalization errors via
our simple or adaptive weighting schemes, where the weight is allocated based on each
individual learner’s prediction capacity. Experimental results show that the robustness of
our ensemble framework outperforms exiting knowledge graph embedding approaches on
manually injected noise as well as inherent noisy extracted KGs.

Keywords Trustworthy knowledge graph · Knowledge graph completion ·
Link prediction · Knowledge graph embedding · Never-ending language learning

1 Introduction

Knowledge graphs, also known as graph-structured knowledge bases (KBs), such as Free-
base [1], WordNet [19], and Never-ending language learning (NELL) [20], have attracted
wide attention due to their benefits in numerous downstream applications, including ques-
tion answer [10], information retrieval, recommendation systems [40], etc. Knowledge
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graphs are directed graphs consisting of facts. A fact is stored in the form of triplet (h, r, t),
where r refers to relation, and h and t denote head entity and tail entity. For example,
(washington, capital of, america) indicates that Washington is the capital of
America. Despite of large scale, knowledge graphs still suffer from incompleteness and
unreliable facts. Knowledge graph completion (KGC) aims to mine missing facts based on
observed knowledge.

Recently there has been increasing methods on knowledge graph embedding approaches
[4, 27, 31] for KGC. These methods learn topological connection information and asso-
ciated entities and relation into a low dimensional continuous vector or matrix. The score
function is defined to measure the plausibility of triplets [21]. Then KGC, also known as
link prediction, can be carried out simply by means of a ranking procedure.

However, most embedding approaches only perform well on reliable human-curated
knowledge graphs. Considering bottom-up automatically constructed knowledge graphs or
crowdsourcing knowledge graph, Never Ending Language Learning (NELL) [20], Con-
ceptNet [28], etc., such knowledge construction systems often suffer from the pollution of
incorrect facts [34]. Embedding models fall short on such noisy KGs [26]. The noise in the
extracted KGs is divided into source noise and extraction errors. The former come from low-
quality Web text [38], and the latter is from the limitations of NLP approaches [25, 39]. For
instance, the sentence New York was the capital of America in 1789. is
prone to be misunderstood as knowledge (new york,capital of,america) by
extraction systems (Figure 1). Consequently, these errors render triplets corrupted and
cause incorrect links [14–16]. Then the wrong structure information is learned with per-
turbed supervised label information. As a result, the robustness of the learned models is
inevitably degenerated, resulting in dubious link prediction, especially using neural network
models [42].

Ensemble approaches, such as bagging [3], and boosting [5], etc., have successfully
achieved impressive performance in various applications. Compared with a single learner,
the ensemble methods are able to improve the accuracy, robustness, and stability. However,
due to the large size of KGs, the traditional ensemble strategy fail to adapt to the existing
knowledge graph embedding approaches. More than that, knowledge graphs are in the form
of heterogeneous graph, of which entities and relations have correlations with each other so
that disobey the independent and identically distributed assumption.

....New York 
was the 
capital of 
America in 
1789.....

Web Text new_york

america
Extraction error

Knowledge Graph

capital_of

Figure 1 Effect of incorrect facts extracted from Web text on a real-world knowledge graph. The extraction
system extracted a fact (new york,capital of,america). Thus, the wrong link between new york
and america was made



World Wide Web

Inspired by the above observations, in this paper, we propose a simple but efficient
ensemble strategy that adaptively captures the diversity of the subgraphs of the knowledge
graph and builds a robust embedding learner on noisy KG, hence improving the KGC task
[13]. Our basic idea is presented in Figure 2. First, we under-sample a KG G to generate
a set of knowledge subgraphs {G1,G2,G3, · · · ,Gk} so that partial entities (including true
and false facts) are abandoned. It is noted that these knowledge subgraphs not only gener-
ate the high-diversity embedding learners but also lower the effect of noisy data on each
embedding learner. Then for each knowledge subgraph Gk , we train a learner fk using the
base knowledge graph embedding learner. In the next stage, each learner makes a predic-
tion on an out-of-bag subset, and the empirical variance is obtained to measure prediction
capability. We apply softmax probability to assign the weights of every learners adaptively.
Finally, multiple knowledge subgraph learners are integrated to generate a unified represen-
tation. Based on such joint representation, we conducted link prediction on human-curated
KGs and an automatically extracted KG, NELL. The results of this study show that our
strategy has more robust performance both on manually injected noise and inborn errors.

Our main contributions are summarized as follows:

– We thoroughly study the problem of noise knowledge graph completion, point out the
underlying reasons of the low performance of exiting algorithms, and present a novel
ensemble algorithm ASKE as a solution.

– We propose a novel ensemble-based algorithm for knowledge graph embedding. Our
method essentially reduces the generalization error by an effective knowledge subgraph
extraction mechanism and an adaptive weighting scheme.

– We demonstrate that our algorithm significantly enhances the robustness of embedding
in dealing with noise KGs.

The rest of this article is organized as follows. Section 2 reviews related works. Section 2
provides basic notations and definitions. In Section 3, we discuss ensemble strategy on
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Figure 2 The ASKE framework. From left to right: 1) Knowledge subgraph extraction process, 2) multi-
ple learners training, 3) adaptive weight ensemble to obtain robust entities and relations representation, 4)
knowledge graph completion (link prediction)
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knowledge graph embedding approaches, then introduce our framework. Section 5 describes
our experiment datasets,evaluation protocols and parameter settings. Section 6 discusses our
experimental results. In Section 7, we present our conclusions.

2 Related works

2.1 Knowledge graph embedding

KG embedding aims to embed entities and relations into low-dimensional continuous space,
so as to simplify computations on the KG. Based on the semantic similarity in the embed-
ding space, KGC is conducted to infer missing facts. Originating from word2vec [18],
TransE [2] assumes that the head entity vector should be closed to the tail entity vector
once translated by the relation vector, i.e., h + r ≈ t. Many other efforts have attempted to
deal with the poor performance of TransE in the cases of 1-N, N-1, N-N relations. TransR
[11] is proposed to enrich the expression of TransE by introducing relation-specific space.
The entities are projected into relation vector space by relation-specific matrix. TransH
[32] shares a similar idea with TransR. Rescal [23] models triplets by means of bilinear
operations over entity vector and relation matrix based on tensor factorization. DistMult
[37] simplifies Rescal by restricting the relation matrix to diagonal matrix. ComplEx [29]
introduces complex-valued representation to extend DistMult to better deal with asymmet-
ric relations. Recently, Demetters [4] first proposed a CNN-based neural networks ConvE
to learn latent feature on KG. Entities and relation vectors are reshaped and concatenated
for CNN filter kernels. Then the feature map is classified by the full connected layer,
and the link prediction result is assigned by the classification labels. Another convolu-
tion idea neural networks is RGCN [27], where the convolution operator capture nodes
structure feature map, i.e. entity or relation embedding, by first-order approximation in
locality information in KG and self loop mechanism. Although these methods have made
significant progress on modeling KG and downstream tasks, the noise attack issues have
been less studied.

2.2 Noisy knowledge graph completion

Automatic extracted and crowdsourcing KGs such as NELL [20], and ConcepNet [28], suf-
fer from possible noise and conflicts due to limited human supervision [12, 35]. NELL
is a semi-supervised, ontology-driven, iterative system that extracts facts from the Web
text of more than one billion documents. In each iteration, NELL learns new facts and
assigns a confidence score using seed facts and available evidence. As NELL is based
solely on confidence scores, it is difficult to avoid corruption due to incorrect facts. Pujura
et al. [26] investigated the robustness of classic embedding approaches on several realis-
tic KGs. They found that existing embedding methods are sensitive to the sparsity and the
noise in KGs.

A promising direction for this challenge is error detection [25, 41], which tries to select
clean facts out of noisy facts. However, these methods are constrained by feature engineer-
ing due to the incompleteness of external information. Another direction is to build noise
robust embedding. Xie et al. proposed CKRL [36] by defining local triplets confidence and
global path confidence as an extension of TransE. The model is tested on FB15K only
with additional noise, but in the real-world knowledge graph, the noise attack perturbs the
structure information of KG.
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2.3 Ensemble learning

Ensemble learning is well known in machine learning and its applications are broad. There
are various classifier ensemble approaches, including bagging [3], boosting [5], etc. Noisy
training data tends to increase the variance in the results produced by a given learner. By
learning a combination of learners, the variance can be reduced [6]. Variance-reducing
methods such as the bagging decision tree have been shown to be robust in the presence
of high-level noise [17]. In addition, bagging has been shown to perform well on imbal-
anced classification problems [7]. However, these algorithms have typically been applied to
traditional classification tasks, but we focus on embedding learning in this paper.

3 Formulations

In this section we formally define some problems and notations. Let E = {e1, · · · , en} be
the set of all entities and R = {r1, · · · , rm} be the set of all relations. A knowledge graph
is a directed graph as G = (E,R, E), where E denotes a set of edges as well as facts,
E ⊆ E×R×E. A fact stored in the form of triplet (e1, r, e2). We also use (h, r, t) to clarify
the head entity and the tail entity. In a real world knowledge graph, facts are collected into
a positive triplet set D+ ⊆ E. We model each possible triplet (hi, rj , tk) over E and R as a
binary random variable yijk ∈ {0, 1} that indicates its existence.

yijk =
{

1, (h, r, t) ∈ D+
0, otherwise.

(1)

Definition 1 (Noisy knowledge graph) Given a noisy knowledge graph G = (E,R,D+)

collected from experts or automatic extract systems, ∃N = {(hi, rj , tk)} ⊂ D+, where
∀(hi, rj , tk) ∈ N, ŷijk �= yijkg . ŷijk is the is the observed value. yijkg is the true value.

The presence of noise mislabels the edges and cause incorrect link. Therefore the model
learns wrong structure information, leading to reduce the trust of prediction.

Definition 2 (Knowledge graph embedding) Given the input of a knowledge graph G =
(E,R,D+), a knowledge graph embedding is a mapping f : (ei, ri) → (Rd1 , R

d2),∀ei ∈
E, ∀ri ∈ R, such d1 
 |E|, d2 
 |R| and the mapping f preserves some proximity
measure defined on the knowledge graph G.

The goal of knowledge graph embedding can be stated as producing a model with small-
est possible loss L. The prediction for a model f and test example x is y = f (x). Then we
can define bias and variance for a knowledge graph embedding model.

Definition 3 (Bias of knowledge graph embedding) The bias of a knowledge graph
embedding model f is Bf = (ȳ − y)2

Definition 4 (Variance of knowledge graph embedding) The variance of a knowledge graph
embedding model f is Varf = E[(y − ȳ)2]

Definition 5 (Noise of knowledge graph) The noise of a knowledge graph is ε = y − yg .
yg is the true label.
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In words, the bias is the loss incurred by prediction relative to the optimal prediction. The
variance is the average loss incurred by predictions relative to the main prediction. Noise is
the unavoidable component of the loss, incurred independently of the models.

Knowledge graph completion expects a model f to predict potential correct facts.
An embedding based approach defines the score function fr((hi, rj , tk)) to measure the
probability if the fact (hi, rj , tk) exists. Bold letters h, r, t denote embedding vector.

4 Methodology

4.1 Knowledge graph embeddingmodel ensemble

Suppose a given KG consists of m relations and n entities. In a typical KG embedding
method, score function fr(h, r, t) is defined to describe the plausibility for an observed fact
(hi, rj , tk). Here, we introduce the probability model to interpret the score function,

P(yijk = 1) = σ(fr(hi, rj , tk)), (2)

where σ is the sigmoid function.
The model predicts the existence of a triplet (h, r, t) which represents the confidence that

a triplet exists. Notably, the presence of specific triplets is correlated with other triplets. It is
almost impossible to achieve joint probability distribution on a whole KG. Thus, knowledge
graph embedding approaches assume the y of all triplets are conditionally independent.
Based on the assumption, the training KG embeddings can be converted into binary classifi-
cation. The supervised constraint refers to whether or not a triplet belongs to D+. A general
loss function of a KG embedding model can be written as follows:

L = L(f ((h, r, t)), yg), (3)

where yg is true value and L is a certain loss.
Based on the above proposition, we apply bias-variance decomposition to study a KG

embedding model [30]. For the sake of simplicity, we study the mean squared error (MSE)
loss rather than the pairwise ranking loss that common sight in the previous works. The
generalization error E0

G = EG[L] of the model f on a knowledge graph G can be written
as follows:

E0
G = EG[(f (x) − yg)

2]
= EG[(f (x) − f̄ (x))2] + (f̄ (x) − y)2

+EG[(y − yg)
2]

= Varf + B2
f + ε2, (4)

where ε2 denotes the label noise error with zero mean assumption that E[ε] = 0, V arf
denotes the variance, and Bf denotes the bias. In (4), it is clear that the generalization error
of a single knowledge graph embedding model depends on its variance, bias, and noise. The
noise in the KG caused by incorrect facts are in the form of incorrect labels.

Let f1, f2, · · · , fk denote K knowledge graph embedding models separately trained on
G. The output of the ensemble knowledge graph embedding estimators for input x is defined
as the simple average method,

fens(x) = 1

K

K∑
k=1

fk(x). (5)
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Then, its generalization error is

Eens
G = EG[( 1

K

K∑
k=1

fk(x) − yg)
2]. (6)

If K models are the same and mutually uncorrelated, then we have

Eens
G = 1

K
EG[(f (x) − f̄ (x))2]

+ (f̄ (x) − y)2 + EG[(y − yg)
2]

= 1

K
Varf + B2

f + ε2. (7)

In (7), Eens
G � E0

G always holds. Varfens reduces to 1
K
Varf , and this reduction decreases

the generalization error due to multiple models averaging. The presence of incorrect facts
increases the V ar and ε of knowledge graph embedding model. Therefore, an ensemble
strategy has the potential to improve knowledge graph embedding approaches, even if there
are many unreliable facts.

4.2 Latent feature level adaptive ensemble strategy

In Section 4.1, we discuss the potential of knowledge graph embedding ensemble strategy
in terms of reducing variance in order to dealing with noisy data. However, directly utilizing
(5) costs expensive computation due to the large size of candidate set E that has to be
traversed during the prediction procedure. The time complexity is nearly O(k|E|fr), where
k is the number of learners. For dealing with the problem, we proposed a combination
strategy as follows:

hi =
K∑

k=1

wk,rhk,i , ri =
K∑

k=1

wk,rrk,i , ti =
K∑

k=1

wk,r tk,i ,

fens(x) = f (hi, ri, ti),

s.t .
K∑

k=1

wk,r = 1, r ∈ R, (8)

where hk,i , tk,i , rk,i are i-th latent representations , i.e. embeddings, trained from k-th
knowledge graph embedding models fk . wk,r is weight coefficient for r-th relation. The
weights are normalized for each k. For toy example, 3 base models are trained. For a query
(h, r, ?), assuming wk,r = 1/3 for r-th relation, then h = 1/3 · h1 + 1/3 · h2 + 1/3 · h3,
r = 1/3 · r1 + 1/3 · r2 + 1/3 · r3.

Our strategy can be regarded as a latent feature level fusion method instead of a direct
ensemble. Thus, the time complexity of predict procedure is equal to a single knowledge
graph embedding model, i.e. O(|E|fr). On the other hand, considering the imbalanced rela-
tion triplets and the variability of prediction capability on different relations, we reduce the
weights granularity from individual model to specific relation.

For assigning the weights of different knowledge graph embedding learners, we propose
two combination strategies: Simple average and Adaptive weighting.



World Wide Web

Simple Average Simple average is the original methods of bagging [3]. The weights are
equal to each other from K models, which simply average the embedding vectors in the
parameter space:

wk,r = 1

K
, (9)

where r ∈ R, k = 1, · · · , K . This method is named as KSE.

Adaptive Weighting An alternative combination strategy is to assign different weights to
each of models, the rationale being that the models should be weighted according to the
prediction capability. We present a measurement of capability as follows:

αk,r = 1

V ar(fk)G′
k,r

, (10)

where G′
k,r is the out-of-bag of r relation, and G′

k,r ⊂ G′
k,G

′
k = D+ −Gk . V ar(fk)G′

k,r
=

(fk(x;Gk)−fens(x))2 means the empirical variance to k-th model on the r-th relation. αk,r

is the uncertainty of the specific learners in order to measure prediction capability. Then,
we assign weights according to αk,r with softmax probability:

wk,r = eαk,r∑K
i=1e

αi,r

. (11)

In (11), the k learners are weighted by the inverse of the corresponding out-of-bag prediction
variance, i.e., with larger variance, the weights are assigned with smaller weights. We name
this method AKSE.

4.3 Knowledge subgraph extraction

Diversity among all learners has a significant effect on ensemble framework [3]. In order to
obtain diverse estimators, we construct a series of diverse subgraphs as input via re-sampling
approaches.

However, traditional sampling approaches from machine learning tasks are not suitable
for the graph-based data due to the ignorance of correlation among training triplets. Gen-
erally, facts in a KG indeed are linked to each other. Therefore we give two definitions to
describe the correlation:

Definition 6 (Fact neighbor) Given a positive facts set D+. The fact neighbor of a fact
T0 = (h0, r0, t0) is a triplet set B, where B = {(h0, r, t)|(h0, r, t) ∈ D+, (h0, r, t) �=
T0} ∪ {(h, r, t0)|(h, r, t0) ∈ D+, (h, r, t0) �= T0}.

Definition 7 (Facts network) A facts network is an undirected graph GD+ = (D+, E),
where D+ denotes the positive triplet set, and E is the set of undirected edges. An edge
(Tv, Tu) links two facts from Tv to Tu if Tv ∈ BTu .
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Based on the concept facts network, we propose an alternative re-sampling approach
named knowledge subgraph extraction to build diverse input training subgraphs. We keep
the nodes at facts level. Therefore graph-based sampling methods can be applied to facts
network. Random walk is computationally efficient in terms of both space and time
requirements. We describe each jump of the walk as following:

P(Tt |Tt−1, S̄) =
{ π(t,t−1)

Z
, Tt ∈ BTt−1

0, otherwise,
(12)

P(S = ‘Restart’) = p, p ∈ [0, 1], (13)

where Tt−1 is the current node, Tt is the next node. P(Tt |Tt−1) models the probability that
the walk reach to the next node. π(t,t−1) is the unnormalized transition probability between
facts Tt and Tt−1. In the facts network GD+ , we suppose that the weights of each edges
are equal so that π(t,t−1) = 1. Then the transition probability is normalized by degree Z

of Tt−1.Here we introduce restart mechanism P(S) to control random walk. p is restart
probability. Before each jump, the walk randomly chooses ‘Continue’ or ‘Restart’. If S =
‘Restart’, the walk restarts with a random triplet, otherwise continue to search the next
node in neighbor facts set, as shown in Figure 3. The restart mechanism not only controls
the length of random walk but balances the depth and breadth exploration.

Our subgraph extract method can extract local connection information among facts net-
works. In addition, using random walk as the basis for our algorithm gives us two other
benefits: 1) the method is flexible in exploring KG neighborhoods by means of restart
probability p and subgraph scale l, 2) the under-sampling mechanism results in that par-
tial noisy facts are stayed in Gk . This means each individual knowledge graph embedding
learner are trained under less noise attack than the whole original KG so that increase noise
resistance.

Figure 3 Random walk on facts
network

1-p

1-p

: Entity :Random walk : Fact
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4.4 Base knowledge graph embedding learners

Existing knowledge graph embedding approaches could be divided into shallow models and
deep models. Due to the expensive cost of computation and the complexity using deep mod-
els, we choose shallow models as the base learners. Specifically, TransE and DistMult are
the two most representative shallow models, and TransR is an extension of TransE. TransE
embeds entities and relations into geometric vector space based on semantic translation
equivalence. A triplet (h, r, t) is scored as

fr(h, r, t) = ‖h + r − t‖q, (14)

where q is L1 or L2 norm.
TransR makes an assumption that entity vector and relation vector should not be in the

same space due to semantic difference. Therefore relation-specific space Mr is introduced
to project entities into relation space, then translation vector is modeled in that space. Given
a triplet (h, r, t), the score function is defined as

h⊥ = Mrh, t⊥ = Mrt,

fr (h, r, t) = ‖h⊥ + r − t⊥‖q, (15)

where h, t ∈ R
d , r ∈ R

n, Mr ∈ R
n×d is relation-specific space.
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DistMult is based on tensor factorization, which associate relation r to a diagonal matrix
Rr ∈ R

d×d . The score function is

fr(h, r, t) = hTRrt. (16)

Notably, the recent improvement on DistMult presents competitive performance on standard
benchmarks [9], which indicates an improvement gap for shallow models.

4.5 The AKSE algorithm

The pseudo-code for AKSE is given in Algorithm 1. AKSE consists of two main compo-
nents: first, a subgraph generator, and second, a parallel training framework. In a subgraph
generator, the random walk starts with an initial fact T0 that uniformly sampled from G.
Then the walk uniformly samples from the neighbors of the fact. If p, the walk restarts,
otherwise continue to explore the next node. The random walk is repeated running until
‖Gk‖ = l‖G‖, l ∈ [0, 1]. Then we obtain a series of subgraphs {G1,G2, G3, · · · , Gk}.
In the model training stage, each of the k-th learner is independently trained on Gk . In the
next, the weights for multiple learners are determined by an out-of-bag estimation on G′

k,r .
Finally, all latent representations of entities and relations are merged into a unified ensemble
embedding.

5 Experimental settings

Datasets We conducted experiments on human-curated KGs with injected manual noise:
WN18 and FB15K. Due to the test set leakage problems [4], we also conducted experiments
on FB15K-237 and WN18RR. Furthermore, the models are evaluated on the inborn noisy
KG, NELL. Because of its large scale, we extracted a subset from the 1115th dump of
NELL.1 In recent evaluations [20], NELL facts had a precision level ranging from 0.75-0.85
for confident extractions. Thus NELL79K preserved partial unreliable facts from NELL.
Table 1 summarizes the datasets used in this paper.

Training To better evaluate our ensemble strategy, we selected and compared eight classical
knowledge graph embedding methods: TransE [2], TransR [11], HoLE [22], Distmult [9,
37], ComplEx [29], CKRL(LT) [36], RGCN [27], and ConvE [4].2 They all based on public
implementation [8].3 These approaches mainly based on energy function framework:

L =
∑

(h,r,t)∈D+

∑
(h′,r ′,t ′)∈S′

(h,r,t)

max(0, γ + fr(h, r, t) − fr(h
′, r ′, t ′)), (17)

where γ is a margin hyper-parameter. S′
(h,r,t) is the negative sampling triplet set of (h, r, t).

In the baselines training stage, we followed the hyper-parameter settings of previous works.
For our AKSE and KSE, the number of base learner k was in {10, 25, 50, 75, 100}. Restart
probability p was in {0.05, 0.1, 0.2, 0.3, 0.5, 0.6}. Subgraph scale l was fixed at 0.7. The
hyper-parameters about the base learners of AKSE and KSE are re-gridsearched.

1https://rtw.ml.cmu.edu/rtw/
2https://github.com/TimDettmers/ConvE
3https://github.com/thunlp/OpenKE

https://rtw.ml.cmu.edu/rtw/
https://github.com/TimDettmers/ConvE
https://github.com/thunlp/OpenKE
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Table 1 Statistics of the datasets

Datasets |E| |R| Train Test Valid

FB15K 14951 1345 483142 59071 50000

WN18 40943 18 141442 5000 5000

FB15K-237 14541 237 272115 20466 17535

WN18RR 40943 11 86835 3134 3034

NELL79K 79222 810 610147 10000 10000

Evaluation Protocol Link prediction is a widely used protocol for evaluation the perfor-
mance of knowledge graph completion tasks. It aims to predict an entity given an incomplete
fact (h, r, ?) or (?, r, t). Suppose the i-th test triplet (h, r, ?) for predicting the possible tail
entities, we generate a set of all possible facts P = {(h, r, ti )|∀ti ∈ E}. In this task, candi-
date set are ranked according to their predicted scores. The rank of the i-th test triplets is as
follows:

Ranki =
∑
xj ∈P

I [fr(xj ) ≤ fr(x̃i)], (18)

where I [Q] is 1 if the condition Q is true, and 0 otherwise. The rank of head/tail entity is
also referred to left/right rank. Following previous works [2, 11], we report two measures as
our evaluation metrics: the average rank of all the correct entities (Mean Rank) and Hit@10.

MR = 1

2|T|
∑
xi∈T

Rank
lef t
i + Rank

right
i , (19)

Hit@k (%) = 100

2|T|
∑
xi∈T

I [rank
lef t
i ≤ k] + I [rank

right
i ≤ k], (20)

where T is test set.
We also conduct triplet classification to evaluate the performance. triplet classification

aims to make a judgment on a triplet (h, r, t), which is a binary classification task. Based on
the plausibility of triplets, a threshold τ is learned as the classification boundary. Following
previous works, we learn the τ by maximizing the classification accuracy on the validation
set.

Considering that a triplet (h′, r, t) or (h, r, t ′) may also exist in the KG, the metrics may
be underestimated. Therefore, we filtered the triplets that appeared in the train set during
the test process. This is referred to as the filtered setting in Bordes et al. [2].

6 Results and discussions

6.1 Evaluation on KGwith injected noise

In this section, we evaluate the robustness of knowledge graph embedding methods on
benchmark datasets with injected noise. x% triplets were replaced by corrupted triplets,
where the head entity or tail entity was randomly selected from entity candidate set E. Then,
the embedding approaches were trained with a noisy version of the benchmark.

The results are presented in Figure 4 and Table 2. As Table 2 shows, when KGs are free
of noise, the ensemble strategy still presents competitive enhancements to shallow models,
especially in inverse relation filtered KGs, FB15K-237, and WN18RR. Once incorrect facts
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Figure 4 Hit@10 metric vs. injected noise ratio. a FB15K; b FB15K-237; c WN18;d)WN18RR

attack, the performance of knowledge graph embedding models has degenerated. However,
our ensemble strategy significantly improves the performance of knowledge graph embed-
ding models. As Figure 4 shows, with an increase in noise, the performance of all knowledge
graph embedding approaches sharply decreases, indicating neural-based models are unsta-
ble to noisy training facts. In contrast, as the solid line shows, ensemble methods KSE and
AKSE on TransE, DistMult, and TransR have a lower descending rate, demonstrating more
robust performance in the event of noise increase. Additionally, both base learners TransE,
DistMult and TransR are greatly enhanced by the ensemble strategy. AKSE shows superior
performance than KSE in most cases. It reveals that our weight strategy is useful in terms of
improving its prediction capacity by adaptively discounting weights assignment according
to individual leaner prediction uncertainty. Further analysis and a visualization about AKSE
are presented in Section 6.3.

6.2 Evaluation on extracted knowledge graph

Due to input data errors or extraction errors, bottom-up constructed KGs are polluted by
many incorrect facts. In this section, we applied our ensemble methods on such noisy KGs.
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Figure 5 Link prediction on NELL79K, a Mean rank (MR), b Hit@10. Our methods are shown in the right
of dash line

In order to eliminate the effect of sparsity, we filtered entities and relations whose degree
were less than 3. Due to the large scale of entity set, we failed to apply recent state-of-
the-art approaches (ConvE, RGCN) to NELL79K. Thus we only consider shallow models
as the baselines. We applied our ensemble strategy to TransE and DistMult. The results
are reported in Figure 5. As the results show, ensemble strategy yields an enhancement for
base learners, where AKSE(DistMult) significantly outperforms other models. Notes that
the unbalance of 1 to 1 and 1 to M relations cause the performance gap between left and
right prediction results.

6.3 Visualization of the adaptive weighting

Our two link prediction experiments both show the superiority of Adaptive weighting. To
further understand how Adaptive weighting works, we present a visualization of weight
vector and corresponding Hit@10 metric in Figure 6. Our experiments conducted AKSE

Location

Produces

Specialization_of

Learner 1, ... , Learner k
Weight

1.0

0.75

0.5
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0.0
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Figure 6 Visualization of weight and Hit@10 on relation, location, Produce, Specialization of.
Red square means assigned weights. Gray squares mean Hit@10 performance on the validation set
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(DistMult) on FB15K with 30% injected noise. For intuition, we set k as 10 and selected
three relation cases, Location, Produce, Specialization of. We tested Hit@10
of all learners on the three relations on the validation set, shown as gray squares. Red square
means the weights. As the results show, the learners exhibit different prediction capabilities.
Meanwhile, a series of variant weights are assigned for each of individual learners according
to learners’ out-of-bag variance. By observing weights and metrics, the value of the weights
is significantly correlated to the performance of the specific learner in most cases. There-
fore, our method can capture the prediction capability of a single learner, and adaptively
assign weights, finally resulting in better performance than Simple average. Additionally,
Adaptive weighting is free of hyper-parameters and sufficient to utilize out-of-bag data.

6.4 Triplet classification

We conduct triplet classification on FB15K, WN18, and NELL79K. FB15K and WN18
are human-curated knowledge graphs, and NELL79K is a inborn noisy knowledge graph.
Therefore random incorrect triplets noise were injected into FB15K and WN18. Our exper-
imental results are shown in Table 3. Despite of no obvious improvement on noise-free KGs
(FB15K, WN18), our methods exhibit superior performance on noisy datasets. It means our
methods are more robust than the baselines, which could find the correct candidate sets with
high plausibility.

6.5 Parameter analysis

The AKSE algorithm involves two key parameters. In this section, we examine how the
different choices of parameters affect the performance of AKSE and KSE on FB15K dataset.

In order to examine how changes in the number of learners affects our proposed model’s
performance in the link prediction task, we trained a series of KSE and AKSE models, of

Table 3 Triplet classification on FB15K, WN18, and NELL79K. 0%/30% noise are injected into FB15K and
WN18. Bold letters indicate a best performance in the column

Methods FB15K WN18 NELL79K

TransE 0.842/0.735 0.931/0.786 0.737

TransR 0.797/0.697 0.921/0.773 0.648

HoLE 0.81/0.714 0.946/0.803 0.749

ComplEx 0.886/0.756 0.953/0.813 0.783

DistMult 0.857/0.773 0.935/0.821 0.812

CKRL(LT) 0.731/0.647 0.873/0.834 0.778

KSE(TransE) 0.851/0.832 0.929/0.842 0.841

AKSE(TransE) 0.853/0.847 0.933/0.869 0.873

KSE(TransR) 0.841/0.827 0.913/0.839 0.829

AKSE(TransR) 0.848/0.821 0.923/0.847 0.821

KSE(DistMult) 0.859/0.843 0.941/0.871 0.842

AKSE(DistMult) 0.874/0.862 0.937/0.869 0.815
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which k are ranging from 1 to 100. The other hyper-parameters are the same as the link
prediction experiment. As Figure 7a shows, AKSE andKSE both present a rapid increase in
Hit@10 with an increase in k. The optimized k of DistMult-based methods is 50 and TransE-
based is 60. In particular, even using � 10 learners, the robustness of the base learner can be
significantly improved. In addition, AKSE outperforms KSE in the corresponding optimal
k, the performance concerning which is shown in Table 2.

We also measure how the restart probability p affect the performance. The restart prob-
ability p control the likelihood of immediately revisiting a fact during sampling. Setting it
to a low value enable to explore deep nodes in the facts network. On the other hand, if p is
low, it would keep the walk in the local nodes. Figure 8 is a series of subgraphs that sam-
pled from the original KG, which start with the triplet (Walk The Line, language,
Russian). When p = 0.2, the walk visits nodes which are further away from the start-
ing triplet, indicating a DFS-like exploration. When p = 0.5, the walk shows a BFS-like
exploration and visits neighboring nodes. The numerical results are shown in Figure 7b. We
observe a performance peak around 0.3 both on AKSE and KSE. It can be explained as the
exploration-exploitation trade-off.
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7 Conclusion

In this paper, we analyzed the potential of multiple model ensemble to lower generaliza-
tion error even with the presence of facts noise in KG. We proposed an ensemble strategy
to enhance the robustness and trust of existing knowledge graph embedding approaches on
noisy KGs. The strategy has two parts. 1) Knowledge subgraph extraction. The re-sampling
method is flexible and structures sensitive in terms of constructing a new training set with
high diversity. Meanwhile, it reduces the attack of noisy facts during the model train-
ing stage. 2) Combination strategy. We proposed Adaptive weighting to combine multiple
shallow models according to their prediction capability adaptively . Experimental results
show that the ensemble strategy significantly benefits the robustness of two classic models,
TransE, DistMult and TransR.

In future, we will integrate our model into graph neural networks [24, 33] to learn better
representation for knowledge graph completion.
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