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ABSTRACT
In recent years, graph neural networks (GNNs) have emerged as
a successful tool in a variety of graph-related applications. How-
ever, the performance of GNNs can be deteriorated when noisy
connections occur in the original graph structures; besides, the de-
pendence on explicit structures prevents GNNs from being applied
to general unstructured scenarios. To address these issues, recently
emerged deep graph structure learning (GSL) methods propose to
jointly optimize the graph structure along with GNN under the
supervision of a node classification task. Nonetheless, these meth-
ods focus on a supervised learning scenario, which leads to several
problems, i.e., the reliance on labels, the bias of edge distribution,
and the limitation on application tasks. In this paper, we propose a
more practical GSL paradigm, unsupervised graph structure learning,
where the learned graph topology is optimized by data itself with-
out any external guidance (i.e., labels). To solve the unsupervised
GSL problem, we propose a novel StrUcture Bootstrapping con-
trastive LearnIng fraMEwork (SUBLIME for abbreviation) with the
aid of self-supervised contrastive learning. Specifically, we generate
a learning target from the original data as an “anchor graph”, and
use a contrastive loss to maximize the agreement between the an-
chor graph and the learned graph. To provide persistent guidance,
we design a novel bootstrapping mechanism that upgrades the
anchor graph with learned structures during model learning. We
also design a series of graph learners and post-processing schemes
to model the structures to learn. Extensive experiments on eight
benchmark datasets demonstrate the significant effectiveness of
our proposed SUBLIME and high quality of the optimized graphs.
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1 INTRODUCTION
Recent years have witnessed the prosperous development of graph-
based applications in numerous domains, such as chemistry, bioin-
formatics and cybersecurity. As a powerful deep learning tool to
model graph-structured data, graph neural networks (GNNs) have
drawn increasing attention and achieved state-of-the-art perfor-
mance in various graph analytical tasks, including node classifica-
tion [22, 40], link prediction [21, 32], and node clustering [42, 55].
GNNs usually follow a message-passing scheme, where node repre-
sentations are learned by aggregating information from the neigh-
bors on an observed topology (i.e., the original graph structure).

Most GNNs rely on a fundamental assumption that the original
structure is credible enough to be viewed as ground-truth informa-
tion for model training. Such assumption, unfortunately, is usually
violated in real-world scenarios, since graph structures are usu-
ally extracted from complex interaction systems which inevitably
contain uncertain, redundant, wrong and missing connections [45].
Such noisy information in original topology can seriously damage
the performance of GNNs. Besides, the reliance on explicit struc-
tures hinders GNNs’ broad applicability. If GNNs are capable of
uncovering the implicit relations between samples, e.g., two images
containing the same object, they can be applied to more general
domains like vision and language.

To tackle the aforementioned problems, deep graph structure
learning (GSL) is a promising solution that constructs and improves
the graph topology with GNNs [7, 12, 20, 58]. Concretely, these
methods parameterize the adjacency matrix with a probabilistic
model [12, 45], full parameterization [20] or metric learning model
[7, 11, 53], and jointly optimize the parameters of the adjacency
matrix and GNNs by solving a downstream task (i.e., node classifi-
cation) [58]. However, existing methods learn graph structures in
a supervised scenario, which brings the following issues: (1) The
reliance on label information. In supervised GSL methods, human-
annotated labels play an important role in providing supervision
signal for structure improvement. Such reliance on labels limits
the application of supervised GSL on more general cases where
annotation is unavailable. (2) The bias of learned edge distribution.
Node classification usually follows a semi-supervised setting, where
only a small fraction of nodes (e.g., 140/2708 in Cora dataset) are
under the supervision of labels. As a result, the connections among
these nodes and their neighbors would receive more guidance in
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(a) Supervised GSL paradigm.

Node 
Labels

Data Learned
Graph

… ……

GNN-based Model

… ……

Improve
Supervise

Input

Data
Input

Learned
Graph

Improve

GNN-based Model

Benefit

Benefit
Node Classification

Node Clustering
Link Prediction

…

Downstream Tasks

Node Classification
Task for Supervision

(b) Our proposed unsupervised GSL paradigm.

Figure 1: Concept maps of (a) the existing supervised GSL
paradigm and (b) our proposed unsupervised GSL paradigm.

structure learning, while the relations between nodes far away from
them are rarely discovered by GSL [11]. Such imbalance leads to
the bias of edge distribution, affecting the quality of the learned
structures. (3) The limitation on downstream tasks. In existing meth-
ods, the structure is specifically learned for node classification, so
it may contain more task-specific information rather than general
knowledge. Consequently, the refined topology may not benefit
other downstream tasks like link prediction or node clustering,
indicating the poor generalization ability of the learned structures.

To address these issues, in this paper, we investigate a novel un-
supervised learning paradigm for GSL, namely unsupervised graph
structure learning. As compared in Fig. 1, in our learning paradigm,
structures are learned by data itself without any external guidance
(i.e., labels), and the acquired universal, edge-unbiased topology
can be freely applied to various downstream tasks. In this case, one
natural question can be raised: how to provide sufficient supervi-
sion signal for unsupervised GSL? To answer this, we propose a
novel StrUcture Bootstrapping contrastive LearnIng fraMEwork
(SUBLIME for abbreviation) to learn graph structures with the aid of
self-supervised contrastive learning [25]. Concretely, our method
constructs an “anchor graph” from the original data to guide struc-
ture optimization, with a contrastive loss to maximize the mutual
information (MI) between anchor graph and the learned structure.
Through maximizing their consistency, informative hidden connec-
tions can be discovered, which well respects the node proximity
conveyed by the original features and structures. Meanwhile, as
we optimize the contrastive loss on the representations of every
node, all potential edge candidates will receive the essential super-
vision, which promotes a balanced edge distribution in the inferred
topology. Furthermore, we design a bootstrapping mechanism to
update anchor graph with the learned edges, which provides a
self-enhanced supervision signal for GSL. Besides, we carefully de-
sign multiple graph learners and post-processing schemes to model
graph topology for diverse data. In summary, our core contributions
are three-fold:
• Problem.We propose a novel unsupervised learning para-
digm for graph structure learning, which is more practical
and challenging than the existing supervised counterpart. To
the best of our knowledge, this is the first attempt to learn
graph structures with GNNs in an unsupervised setting.
• Algorithm. We propose a novel unsupervised GSL method
SUBLIME, which guides structure optimization by maximiz-
ing the agreement between the learned structure and a crafted
self-enhanced learning target with contrastive learning.

• Evaluations.We perform extensive experiments to corrobo-
rate the effectiveness and analyze the properties of SUBLIME
via thorough comparisons with state-of-the-art methods on
eight benchmark datasets.

2 RELATEDWORK
2.1 Graph Neural Networks
Graph neural networks (GNNs) are a type of deep neural net-
works aiming to learn low-dimensional representations for graph-
structure data [22, 48]. Modern GNNs can be categorized into two
types: spectral and spatial methods. The spectral methods perform
convolution operation to graph domain using spectral graph filter
[3] and its simplified variants, e.g., Chebyshev polynomials filter
[9] and the first-order approximation of Chebyshev filter [22]. The
spatial methods perform convolution operation by propagating and
aggregating local information along edges in a graph [15, 40, 50]. In
spatial GNNs, different aggregation functions are designed to learn
node representations, including mean/max pooling [15], LSTM [15],
self-attention [40], and summation [50]. Readers may refer to the
elaborate survey [48] for a thorough review.

2.2 Deep Graph Structure Learning
Graph structure learning (GSL) problem has been investigated by
conventional machine learning techniques in graph signal process-
ing [10], spectral clustering [2], and network science [26]. However,
these methods are not capable of handling graph data with high-
dimensional features, so they are not further discussed in our paper.

Very recently, there thrives a branch of research that investi-
gates GSL for GNNs with the aim to boost their performance on
downstream tasks, which is named deep graph structure learning
[58]. These methods follow a general pipeline: the graph adjacency
matrix is modeled with learnable parameters, and then jointly opti-
mized along with GNN under the supervision of a downstream node
classification task. In these methods, various techniques are lever-
aged to parameterize the adjacency matrix. Considering the discrete
nature of graph structures, one type of methods adopts probabilis-
tic models, such as Bernoulli probability model [12] and stochastic
block model [45]. Another type of methods models structures with
node-wise similarity computed by metric learning functions like
cosine similarity [7] and dot production [11, 53]. Besides, directly
treating each element in adjacency matrix as a learnable parameter
is also an effective solution [11, 20]. Nevertheless, the existing deep
GSL approaches follow a supervised scenario where node labels
are always required to refine the graph structures. In this paper,
differently, we advocate a more practical unsupervised learning
paradigm where no extra information is needed for GSL.

2.3 Contrastive Learning on Graphs
After achieving significant performance in visual [6, 14] and lin-
guistic [8, 13] domains, contrastive learning has shown competitive
performance and become increasingly popular in graph represen-
tation learning [32, 39, 59]. Graph contrastive learning obeys the
principle of mutual information (MI) maximization, which pulls the
representations of samples with shared semantic information closer
while pushing the representations of irrelevant samples away [25].
In graph data, the MI maximization can be carried out to samples in
the same scale (i.e., node-level [19, 41, 59] and graph-level [52]) or
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different scales (i.e., node v.s. graph [39, 57] and node v.s. subgraph
[32]). Graph contrastive learning also benefits diverse applications,
such as chemical prediction [47], anomaly detection [18, 24], feder-
ated learning [36, 56], and recommendation [54]. However, it still
remains unclear how to effectively improve GSL using contrastive
learning.

3 PROBLEM DEFINITION
Before we make the problem statement of unsupervised GSL, we
first introduce the definition of graphs. An attributed graph can
be represented by G = (V, E,X) = (A,X), whereV is the set of
𝑛 = |V| nodes, E is the set of𝑚 = |E | edges, X ∈ R𝑛×𝑑 is the node
feature matrix (where the 𝑖-th row x𝑖 is the feature vector of node
𝑣𝑖 ), and A ∈ [0, 1]𝑛×𝑛 is the weighted adjacency matrix (where 𝑎𝑖 𝑗
is the weight of the edge connecting 𝑣𝑖 and 𝑣 𝑗 ). Frequently used
notations are summarized in Appendix A.

In this paper, we consider two unsupervised GSL tasks, i.e., struc-
ture inference and structure refinement. The former is applicable to
general datasets where graph structures are not predefined or are
unavailable. The latter, differently, aims to modify the given noisy
topology and produce a more informative graph. Node labels are
unavailable for structure optimization in both tasks.

Definition 3.1 (Structure inference). Given a feature matrix X ∈
R𝑛×𝑑 , the target of structure inference is to automatically learn a
graph topology S ∈ [0, 1]𝑛×𝑛 , which reflects the underlying cor-
relations among data samples. In particular, S𝑖 𝑗 ∈ [0, 1] indicates
whether there is an edge between two samples (nodes) x𝑖 and x𝑗 .

Definition 3.2 (Structure refinement). Given a graph G = (A,X)
with a noisy graph structure A, the target of structure refinement
is to refine A to be the optimized adjacency matrix S ∈ [0, 1]𝑛×𝑛 to
better capture the underlying dependency between nodes.

With the graph topology S which is either learned automatically
from data or refined from an existing graph structure, the hypoth-
esis is that the model performance on downstream tasks can be
essentially improved with G𝑙 = (S,X) as the input.

4 METHODOLOGY
This section elaborates our proposed SUBLIME, a novel unsuper-
vised GSL framework. As shown in Fig. 2, SUBLIME on the highest
level consists of two components: the graph structure learning mod-
ule that models and regularizes the learned graph topology and the
structure bootstrapping contrastive learning module that provides a
self-optimized supervision signal for GSL. In the graph structure
learning module, a sketched adjacency matrix is first parameterized
by a graph learner, and then refined by a post-processor to be the
learned adjacency matrix. Afterwards, in the structure bootstrap-
ping contrastive learning module, we first establish two different
views to contrast: learner view that discovers graph structure and
anchor view that provides guidance for structure learning. Then,
after data augmentation, the agreement between two views is max-
imized by a node-level contrastive learning. Specially, we design
a structure bootstrapping mechanism to update anchor view with
learned structures. The following subsections illustrate these crucial
components respectively.

4.1 Graph Learner
As a key component of GSL, the graph learner generates a sketched
adjacency matrix S̃ ∈ R𝑛×𝑛 with a parameterized model. Most ex-
isting methods [7, 12, 20] adopt a single strategy to model graph
structure, which cannot adapt to data with different unique proper-
ties. To find optimal structures for various data, we consider four
types of graph learners, including a full graph parameterization
(FGP) learner and three metric learning-based learners (i.e., At-
tentive, MLP, and GNN learner). In general, we formulate a graph
learner as 𝑝𝜔 (·), where 𝜔 is the learnable parameters.

FGP learner directly models each element of the adjacency
matrix by an independent parameter [11, 12, 20] without any extra
input. Formally, FGP learner is defined as:

S̃ = 𝑝𝐹𝐺𝑃
𝜔 = 𝜎 (Ω), (1)

where 𝜔 = Ω ∈ R𝑛×𝑛 is a parameter matrix and 𝜎 (·) is a non-linear
function that makes training more stable. The assumption behind
FGP learner is that each edge exists independently in the graph.

Different from the FGP learner, metric learning-based learners
[7, 58] first acquire node embeddings E ∈ R𝑛×𝑑 from the input data,
and then model S̃ with pair-wise similarity of the node embeddings:

S̃ = 𝑝𝑀𝐿
𝜔 (X,A) = 𝜙 (ℎ𝜔 (X,A)) = 𝜙 (E), (2)

where ℎ𝜔 (·) is a neural network-based embedding function (a.k.a.
embedding network)with parameter𝜔 , and𝜙 (·) is a non-parametric
metric function (e.g., cosine similarity or Minkowski distance) that
calculates pair-wise similarity. For different ℎ𝜔 (·), we provide three
specific instances of metric learning-based learners: Attentive, MLP,
and GNN learners.

Attentive Learner employs a GAT-like [40] attentive network
as its embedding network, where each layer compute the Hadamard
production of input feature vector and the parameter vector:

E(𝑙) = ℎ
(𝑙)
𝑤 (E(𝑙−1) ) = 𝜎 ( [e(𝑙−1)1 ⊙ 𝜔 (𝑙) , · · · , e(𝑙−1)𝑛 ⊙ 𝜔 (𝑙) ]

⊺
), (3)

in which E(𝑙) is the output matrix of the 𝑙-th layer of embedding
network, e(𝑙−1)

𝑖
∈ R𝑑 is the transpose of the 𝑖-th row vector of

E(𝑙−1) , 𝜔 (𝑙) ∈ R𝑑 is the parameter vector of the 𝑙-th layer, ⊙ is the
Hadamard operation, (·)⊺ is the transposition operation, and 𝜎 (·)
is a non-linear operation. The input of the first layer E(0) is the
feature matrix X, and the output of the final layer E(𝐿) (𝐿 is the
layer number of embedding network) is the embedding matrix E.
Attentive learner assumes that each feature has different contribu-
tion to the existence of edge, but there is no significant correlation
between features.

MLP Learner uses a Multi-Layer Perception (MLP) as its em-
bedding network, where a single layer can be written by:

E(𝑙) = ℎ
(𝑙)
𝑤 (E(𝑙−1) ) = 𝜎 (E(𝑙−1)Ω(𝑙) ), (4)

where Ω(𝑙) ∈ R𝑑×𝑑 is the parameter martix of the 𝑙-th layer, and the
other notations are similar to Eq. (3). Compared to attentive learner,
MLP learner further considers the correlation and combination of
features, generating more informative embeddings for downstream
similarity metric learning.

GNN Learner integrates features X and original structure A
into node embeddings E via GNN-based embedding network. Due
to the reliance on original topology, GNN learner is only used for
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Figure 2: The overall pipeline of SUBLIME. In the graph structure learning module, the graph learner 𝑝𝜔 generates the sketched
adjacencymatrix S̃, and then the post processor𝑞 converts S̃ into the learned structure S. After that, the structure bootstrapping
contrastive learning module optimizes S by maximizing the agreement between the learner view and anchor view.

the structure refinement task. For simplicity, we take GCN layers
[22] to form embedded network:

E(𝑙) = ℎ
(𝑙)
𝑤 (E(𝑙−1) ,A) = 𝜎

(
D̃−

1
2 ÃD̃−

1
2 E(𝑙−1)Ω(𝑙)

)
, (5)

where Ã = A + I is the adjacency matrix with self-loop, D̃ is the
degree matrix of Ã, and the other notations are similar to Eq. (4).
GNN Learner assumes that the connection between two nodes is
related to not only features but also the original structure.

In SUBLIME, we choose the most suitable learner to model S̃
according to the characteristics of different datasets. In Appendix
B, we analyze the properties of different graph learners and discuss
how we allocate learners for each dataset.

4.2 Post-processor
The post-processor 𝑞(·) aims to refine the sketched adjacency ma-
trix S̃ into a sparse, non-negative, symmetric and normalized ad-
jacency matrix S. To this end, four post-processing steps are ap-
plied sequentially, i.e., sparsification 𝑞𝑠𝑝 (·), activation 𝑞𝑎𝑐𝑡 (·), sym-
metrization 𝑞𝑠𝑦𝑚 (·), and normalization 𝑞𝑛𝑜𝑟𝑚 (·).
Sparsification. The sketched adjacency matrix S̃ is often dense,
representing a fully connected graph structure. However, such
adjacency matrix usually makes little sense for most applications
and results in expensive computation cost [45]. Hence, we conduct
a k-nearest neighbors (kNN)-based sparsification on S̃. Concretely,
for each node, we keep the edges with top-k connection values and
set the rest to 0. The sparsification 𝑞𝑠𝑝 (·) is expressed as:

S̃(𝑠𝑝)
𝑖 𝑗

= 𝑞𝑠𝑝

(
S̃𝑖 𝑗

)
=

{
S̃𝑖 𝑗 , S̃𝑖 𝑗 ∈ top-k(S̃𝑖 ),
0, S̃𝑖 𝑗 ∉ top-k(S̃𝑖 ),

(6)

where top-k(S̃𝑖 ) is the set of top-k values of row vector S̃𝑖 . To
keep the gradient flow, we do not apply sparsification for the FGP
learner. For large-scale graphs, we perform the kNN sparsification
with its locality-sensitive approximation [11] where the nearest
neighbors are selected from a batch of nodes instead of all nodes,
which reduces the requirement of memory.
Symmetrization and Activation. In real-world graphs, the con-
nections are often bi-directional, which requires a symmetric adja-
cency matrix. In addition, the edge weights should be non-negative

according to the definition of adjacency matrix. To meet these con-
ditions, the symmetrization and activation are performed as:

S̃(𝑠𝑦𝑚) = 𝑞𝑠𝑦𝑚

(
𝑞𝑎𝑐𝑡

(
S̃(𝑠𝑝)

))
=

𝜎𝑞

(
S̃(𝑠𝑝)

)
+ 𝜎𝑞

(
S̃(𝑠𝑝)

)⊺
2 , (7)

where 𝜎𝑞 (·) is a non-linear activation. For metric learning-based
learners, we define 𝜎𝑞 (·) as ReLU function. For FGP learner, we
apply the ELU function to prevent gradient from disappearing.
Normalization. To guarantee the edge weights are within the
range [0, 1], we finally conduct a normalization on S̃. In particular,
we apply a symmetrical normalization:

S = 𝑞𝑛𝑜𝑟𝑚

(
S̃(𝑠𝑦𝑚)

)
=

(
D̃(𝑠𝑦𝑚)

)− 1
2 S̃(𝑠𝑦𝑚)

(
D̃(𝑠𝑦𝑚)

)− 1
2
, (8)

where D̃(𝑠𝑦𝑚) is the degree matrix of S̃(𝑠𝑦𝑚) .

4.3 Multi-view Graph Contrastive Learning
Since we have obtained a well-parameterized adjacency matrix S,
a natural question that arises here is: how to provide an effective
supervision signal guiding the graph structure learning without label
information? Our answer is to acquire the supervision signal from
data itself via multi-view graph contrastive learning. To be concrete,
we construct two graph views based on the learned structure and
the original data respectively. Then, data augmentation is applied to
both views. Finally, we maximize the MI between two augmented
views with node-level contrastive learning.
4.3.1 Graph View Establishment. Different from general graph
contrastive learning methods [19, 59] that obtain both views from
the original data, SUBLIME defines the learned graph as one view,
and constructs the other view with input data. The former, named
learner view, explores potential structures in every step. The latter,
named anchor view, provides a stable learning target for GSL.

Learner view is directly built by integrating the learned adja-
cency matrix S and the feature matrix X together, which is denoted
as G𝑙 = (S,X). In each training iteration, S and the parameters used
to model it are directly updated by gradient descent to discover
optimal graph structures. In SUBLIME, we initialize learner views
as the kNN graph built on features, since it is an effective way to
provide a starting point for GSL, as suggested in [11, 12]. Specifi-
cally, for FGP learner, we initialize the parameters corresponding
to kNN edges as 1 while the rest as 0. For attentive learner, we let
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each element in𝜔 (𝑙) ∈ 𝜔 to be 1. Then, feature-level similarities are
computed according to the metric function, and the kNN graph is
obtained by the sparsification post-processing. For MLP and GNN
learners, similarly, we set the embedding dimension to be 𝑑 and
initialize Ω (𝑙) ∈ 𝜔 as identity matrices.

Anchor view plays a “teacher” role that provides correct and
stable guidance for GSL. For the structure refinement task where
the original structure A is available, we define anchor view as
G𝑎 = (A𝑎,X) = (A,X); for the structure inference task where A is
inaccessible, we take an identity matrix I as the anchor structure:
G𝑎 = (A𝑎,X) = (I,X). To provide a stable learning target, anchor
view is not updated by gradient descent but a novel bootstrapping
mechanism which will be introduced in Section 4.4.
4.3.2 Data Augmentation. In contrastive learning, data augmen-
tation is a key to benefiting the model through exploring richer
underlying semantic information by making the learning tasks
more challenging to solve [6, 24, 59]. In SUBLIME, we exploit two
simple but effective augmentation schemes, i.e., feature masking
and edge dropping, to corrupt the graphs views at both structure
and feature levels.
Feature masking. To disturb the node features, we randomly se-
lect a fraction of feature dimensions and mask them with zeros. For-
mally, for a given feature matrix X, a masking vector m(𝑥) ∈ {0, 1}𝑑
is first sampled, where each element is drawn from a Bernoulli dis-
tribution with probability 𝑝 (𝑥) independently. Then, we mask the
feature vector of each node with m(𝑥) :

X = T𝑓𝑚 (X) = [x1 ⊙ m(𝑥) , · · · , x𝑛 ⊙ m(𝑥) ]⊺, (9)
where X is the augmented feature matrix, T𝑓𝑚 (·) is the feature
masking transformation, and x𝑖 is the transpose of the i-th row
vector of X.
Edge dropping. Apart from masking features, we corrupt the
graph structure by randomly dropping a portion of edges. Specif-
ically, for a given adjacency matrix A, we first sample a masking
matrix M(𝑎) ∈ {0, 1}𝑛×𝑛 , where each element M(𝑎)

𝑖 𝑗
is drawn from

a Bernoulli distribution with probability 𝑝 (𝑎) independently. After
that, the adjacency matrix is masked with M(𝑎) :

A = T𝑒𝑑 (A) = A ⊙M(𝑎) , (10)
where A is the augmented adjacency matrix, and T𝑒𝑑 (·) is the edge
dropping transformation.

In SUBLIME, we jointly leverage these two augmentation schemes
to generate augmented graphs on both learner and anchor views:

G𝑙 = (T𝑒𝑑 (S),T𝑓𝑚 (X)), G𝑎 = (T𝑒𝑑 (A𝑎),T𝑓𝑚 (X)), (11)
where G𝑙 and G𝑎 are the augmented learner view and anchor
view, respectively. To obtain different contexts in the two views,
the feature masking for two views employs different probabilities
𝑝
(𝑥)
𝑙

≠ 𝑝
(𝑥)
𝑎 . For edge dropping, since the adjacency matrices of two

views are already significantly different, we use the same dropping
probability 𝑝 (𝑎)

𝑙
= 𝑝
(𝑎)
𝑎 = 𝑝 (𝑎) . Note that other advanced augmen-

tation schemes can also be applied to SUBLIME, which is left for our
future research.
4.3.3 Node-level Contrastive Learning. After obtaining two aug-
mented graph views, we perform a node-level contrastive learning
to maximize the MI between them. In SUBLIME, we adopt a simple

contrastive learning framework originated from SimCLR [6] which
consists of the following components:
GNN-based encoder. A GNN-based encoder 𝑓𝜃 (·) extracts node-
level representations for augmented graphs G𝑙 and G𝑎 :

H𝑙 = 𝑓𝜃 (G𝑙 ), H𝑎 = 𝑓𝜃 (G𝑎), (12)
where 𝜃 is the parameter of encoder 𝑓𝜃 (·), and H𝑙 , H𝑎 ∈ R𝑛×𝑑1
(𝑑1 is the representation dimension) are the node representation
matrices for learner/anchor views, respectively. In SUBLIME, we
utilize GCN [22] as our encoder and set its layer number 𝐿1 to 2.
MLP-based projector. Following the encoder, a projector 𝑔𝜑 (·)
with 𝐿2 MLP layers maps the representations to another latent
space where the contrastive loss is calculated:

Z𝑙 = 𝑔𝜑 (H𝑙 ), Z𝑎 = 𝑔𝜑 (H𝑎), (13)
where 𝜑 is the parameter of projector 𝑔𝜑 (·), and Z𝑙 , Z𝑎 ∈ R𝑛×𝑑2 (𝑑2
is the projection dimension) are the projected node representation
matrices for learner/anchor views, respectively.
Node-level contrastive loss function. A contrastive loss L is
leveraged to enforce maximizing the agreement between the pro-
jections 𝑧𝑙,𝑖 and 𝑧𝑎,𝑖 of the same node 𝑣𝑖 on two views. In our frame-
work, a symmetric normalized temperature-scaled cross-entropy
loss (NT-Xent) [29, 35] is applied:

L =
1
2𝑛

𝑛∑
𝑖=1

[
ℓ (𝑧𝑙,𝑖 , 𝑧𝑎,𝑖 ) + ℓ (𝑧𝑎,𝑖 , 𝑧𝑙,𝑖 )

]
,

ℓ (𝑧𝑙,𝑖 , 𝑧𝑎,𝑖 ) = log 𝑒sim(z𝑙,𝑖 ,z𝑎,𝑖 )/𝑡∑𝑛
𝑘=1 𝑒

sim(z𝑙,𝑖 ,z𝑎,𝑘 )/𝑡
,

(14)

where sim(·, ·) is the cosine similarity function, and 𝑡 is the temper-
ature parameter. ℓ (𝑧𝑎,𝑖 , 𝑧𝑙,𝑖 ) is computed following ℓ (𝑧𝑙,𝑖 , 𝑧𝑎,𝑖 ).

4.4 Structure Bootstrapping Mechanism
With a fixed anchor adjacency matrix A𝑎 defined by A or I, SUBLIME
can learn graph structure S by maximizing the MI between two
views. However, using a constant anchor graph may lead to sev-
eral issues: (1) Inheritance of error information. Since A𝑎 is directly
borrowed from the input data, it would carry some natural noise
(e.g., missing or redundant edges) of the original graph. If the noise
is not eliminated in the learning process, the learned structures
will finally inherit it. (2) Lack of persistent guidance. A fixed anchor
graph contains limited information to guide GSL. Once the graph
learner captures this information, it will be hard for the model to
gain effective supervision in the following training steps. (3) Over-
fitting the anchor structure. Driven by the learning objective that
maximizes the agreement between two views, the learned structure
tends to over-fit the fixed anchor structure, resulting in a similar
testing performance to the original data.

Inspired by previous bootstrapping-based algorithms [5, 14, 37],
we design a structure bootstrapping mechanism to provide a self-
enhanced anchor view as the learning target. The core idea of our
solution is to update the anchor structure A𝑎 with a slow-moving
augmentation of the learned structure S instead of keeping A𝑎

unchanged. In particular, given a decay rate 𝜏 ∈ [0, 1], the anchor
structure A𝑎 is updated every 𝑐 iterations as following:

A𝑎 ← 𝜏A𝑎 + (1 − 𝜏)S. (15)
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Table 1: Node classification accuracy (percentage with standard deviation) in structure inference scenario. Available data for
graph structure learning during the training phase is shown in the first column, where X, Y, A𝑘𝑛𝑛 correspond to node features,
labels and the adjacency matrix of kNN graph, respectively. The highest and second highest results are highlighted with
boldface and underline, respectively. The symbol “OOM” means out of memory.

Available
Data for GSL Method Dataset

Cora Citeseer Pubmed ogbn-arxiv Wine Cancer Digits 20news
- LR 60.8±0.0 62.2±0.0 72.4±0.0 52.5±0.0 92.1±1.3 93.3±0.5 85.5±1.5 42.7±1.7
- Linear SVM 58.9±0.0 58.3±0.0 72.7±0.1 51.8±0.0 93.9±1.6 90.6±4.5 87.1±1.8 40.3±1.4
- MLP 56.1±1.6 56.7±1.7 71.4±0.0 54.7±0.1 89.7±1.9 92.9±1.2 36.3±0.3 38.6±1.4
- GCN𝑘𝑛𝑛 [22] 66.5±0.4 68.3±1.3 70.4±0.4 54.1±0.3 93.2±3.1 83.8±1.4 91.3±0.5 41.3±0.6
- GAT𝑘𝑛𝑛 [40] 66.2±0.5 70.0±0.6 69.6±0.5 OOM 91.5±2.4 95.1±0.8 91.4±0.1 45.0±1.2
- SAGE𝑘𝑛𝑛 [15] 66.1±0.7 68.0±1.6 68.7±0.2 55.2±0.4 87.4±0.8 93.7±0.3 91.6±0.7 45.4±0.4
X, Y LDS [12] 71.5±0.8 71.5±1.1 OOM OOM 97.3±0.4 94.4±1.9 92.5±0.7 46.4±1.6
X, Y, A𝑘𝑛𝑛 GRCN [53] 69.6±0.2 70.4±0.3 70.6±0.1 OOM 96.6±0.4 95.4±0.6 92.8±0.2 41.8±0.2
X, Y, A𝑘𝑛𝑛 Pro-GNN [20] 69.2±1.4 69.8±1.7 OOM OOM 95.1±1.5 96.5±0.1 93.9±1.9 45.7±1.4
X, Y, A𝑘𝑛𝑛 GEN [45] 69.1±0.7 70.7±1.1 70.7±0.9 OOM 96.9±1.0 96.8±0.4 94.1±0.4 47.1±0.3
X, Y IDGL [7] 70.9±0.6 68.2±0.6 70.1±1.3 55.0±0.2 98.1±1.1 95.1±1.0 93.2±0.9 48.5±0.6
X, Y SLAPS [11] 73.4±0.3 72.6±0.6 74.4±0.6 56.6±0.1 96.6±0.4 96.6±0.2 94.4±0.7 50.4±0.7
A𝑘𝑛𝑛 GDC [23] 68.1±1.2 68.8±0.8 68.4±0.4 OOM 96.1±1.0 95.9±0.4 92.6±0.5 46.4±0.9
X SLAPS-2s [11] 72.1±0.4 69.4±1.4 71.1±0.5 54.2±0.2 96.2±2.1 95.9±1.2 93.6±0.8 47.7±0.7
X SUBLIME 73.0±0.6 73.1±0.3 73.8±0.6 55.5±0.1 98.2±1.6 97.2±0.2 94.3±0.4 49.2±0.6

Benefiting from the structure bootstrappingmechanism, SUBLIME
has nice properties that can address the aforementioned problems.
With the process of updating, the weights of some noise edges
gradually decrease in A𝑎 , which relieves their negative impact
on structure learning. Meanwhile, since the learning target A𝑎 is
changing during the training phase, it can always incorporate more
effective information to guide the learning of topology, and the
over-fitting problem is naturally resolved. More importantly, our
structure bootstrapping mechanism leverages the learned knowl-
edge to improve the learning target in turn, pushing the model to
discover increasingly optimal graph structure constantly. Besides,
the slow-moving average (with 𝜏 > 0.99) updating ensures the
stability of training.

4.5 Overall Framework
In this subsection, we first illustrate the training process of SUBLIME,
and then introduce the tricks to help apply it to large-scale graphs.
Model training. In our training process, we first initialize the pa-
rameters and anchor adjacency matrix A𝑎 . Then, in each iteration,
we perform forward propagation to compute the contrastive loss L,
and update all the parameters jointly via back propagation. After
back propagation, we update A𝑎 by bootstrapping structure mech-
anism every 𝑐 iterations. Finally, we acquire the learned topology
represented by S. As analyzed in Appendix C, the time complexity
of SUBLIME is O(𝑛2𝑑+𝑚𝑑1𝐿1+𝑛𝑑21𝐿1+𝑛𝑑

2
2𝐿2+𝑛𝑘). The algorithmic

description is provided in Appendix D.
Scalability extension. To extend the scalability of SUBLIME, the
key is to avoid O(𝑛2) space complexity and time complexity. To
this end, we adopt the following measures: (1) To avoid explosive
number of parameters, we use metric learning-based learners in-
stead of FGP learner. (2) For sparsification post-processing, we
consider a locality-sensitive approximation for kNN graph [11]. (3)
For graph contrastive learning, we compute the contrastive loss L
for a mini-batch of samples instead of all nodes. (4) To reduce the
space complexity of the bootstrapped structure, we perform the
update in Eq. (15) with a larger iteration interval 𝑐 (𝑐 ≥ 10).

5 EXPERIMENTS
In this section, we conduct empirical experiments to demonstrate
the effectiveness of the proposed framework SUBLIME. We aim to
answer five research questions as follows: RQ1: How effective is
SUBLIME for learning graph structure under unsupervised settings?
RQ2: How does the structure bootstrapping mechanism influence
the performance of SUBLIME? RQ3: How do key hyper-parameters
impact the performance of SUBLIME? RQ4: How robust is SUBLIME
to adversarial graph structures? and RQ5: What kind of graph
structure is learned by SUBLIME?

5.1 Experimental Setups
Downstream tasks for evaluation. We use node classification
and node clustering tasks to evaluate the quality of learned topology.
For node classification, We conduct experiments on both structure
inference/refinement scenarios, and use classification accuracy as
our metric. For node clustering, the experiments are conducted
on structure refinement scenario, and four metrics are employed,
including clustering accuracy (C-ACC), Normalized Mutual Infor-
mation (NMI), F1-score (F1) and Adjusted Rand Index (ARI).
Datasets. We evaluate SUBLIME on eight real-world benchmark
datasets, including four graph-structured datasets (i.e., Cora, Cite-
seer [34], Pubmed [27] and ogbn-arxiv [17]) and four non-graph
datasets (i.e., Wine, Cancer, Digits and 20news [1]). Details of
datasets are summarized in Appendix E.
Baselines. For node classification, we mainly compare SUBLIME
with two categories of methods, including three structure-fixed
GNN methods (i.e., GCN [22], GAT [40] and GraphSAGE (SAGE for
short) [15]), and six supervised GSL methods (i.e., LDS [12], GRCN
[53], Pro-GNN [20], GEN [45], IDGL [7] and SLAPS [11]). We also
consider GDC [23], a diffusion-based graph structure improvement
method, and SLAPS-2s, a variant of SLAPS [11] which only uses
denoising autoencoder to learn topology, as two baselines of un-
supervised GSL. In structure inference scenario, we further add
three conventional feature-based classifiers (Logistic Regression,
Linear SVM and MLP) for comparison. For node clustering task,
we consider baseline methods belonging to the following three
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Table 2: Node classification accuracy (percentage with stan-
dard deviation) in structure refinement scenario.
Available

Data for GSL Method Dataset
Cora Citeseer Pubmed ogbn-arxiv

- GCN 81.5 70.3 79.0 71.7±0.3
- GAT 83.0±0.7 72.5±0.7 79.0±0.3 OOM
- SAGE 77.4±1.0 67.0±1.0 76.6±0.8 71.5±0.3
X, Y, A LDS 83.9±0.6 74.8±0.3 OOM OOM
X, Y, A GRCN 84.0±0.2 73.0±0.3 78.9±0.2 OOM
X, Y, A Pro-GNN 82.1±0.4 71.3±0.4 OOM OOM
X, Y, A GEN 82.3±0.4 73.5±1.5 80.9±0.8 OOM
X, Y, A IDGL 84.0±0.5 73.1±0.7 83.0±0.2 72.0±0.3
A GDC 83.6±0.2 73.4±0.3 78.7±0.4 OOM
X, A SUBLIME 84.2±0.5 73.5±0.6 81.0±0.6 71.8±0.3

Table 3: Node clustering performance (4 metrics in percent-
age) in structure refinement scenario.

Method Cora Citeseer
C-ACC NMI F1 ARI C-ACC NMI F1 ARI

K-means 50.0 31.7 37.6 23.9 54.4 31.2 41.3 28.5
SC 39.8 29.7 33.2 17.4 30.8 9.0 25.7 8.2
GE 30.1 5.9 23.0 4.6 29.3 5.7 21.3 4.3
DW 52.9 38.4 43.5 29.1 39.0 13.1 30.5 13.7
DNGR 41.9 31.8 34.0 14.2 32.6 18.0 30.0 4.3
M-NMF 42.3 25.6 32.0 16.1 33.6 9.9 25.5 7.0
RMSC 46.6 32.0 34.7 20.3 51.6 30.8 40.4 26.6
TADW 53.6 36.6 40.1 24.0 52.9 32.0 43.6 28.6
VGAE 59.2 40.8 45.6 34.7 39.2 16.3 27.8 10.1
ARGA 64.0 44.9 61.9 35.2 57.3 35.0 54.6 34.1
MGAE 68.1 48.9 53.1 56.5 66.9 41.6 52.6 42.5
AGC 68.9 53.7 65.6 44.8 67.0 41.1 62.5 41.5
DAEGC 70.4 52.8 68.2 49.6 67.2 39.7 63.6 41.0
SUBLIME 71.3 54.2 63.5 50.3 68.5 44.1 63.2 43.9

categories: 1) feature-based clustering methods (i.e., K-means [16]
and Spectral Clustering (SC for short) [28]); 2) structure-based clus-
tering methods (i.e., GraphEncoder (GE for short) [38], DeepWalk
(DW for short) [33], DNGR [4] and M-NMF [46]); and 3) attributed
graph clustering methods (i.e., RMSC [49], TADW [51], VGAE [21],
ARGA [30], MGAE [43], AGC [55] and DAEGC [42]).

For other experimental details, including infrastructures and
hyper-parameter, interested readers can refer to Appendix F. Our
code is available at https://github.com/GRAND-Lab/SUBLIME.

5.2 Performance Comparison (RQ1)
Node classification in structure inference scenario. Table 1 re-
ports the classification accuracy of our method and other baselines
in structure inference scenario. For structure-fixed GNNs (i.e., GCN,
GAT and GraphSAGE) and GSL methods designed for structure
refinement scenarios (i.e., GRCN, Pro-GNN, GEN and GDC), we
use kNN graphs as their input graphs, where 𝑘 is tuned in the same
search space to our method.

As can be observed, without the guidance of labels, our proposed
SUBLIME outperforms all baselines on 3 out of 8 benchmarks and
achieves the runner-up results on the rest datasets. This competitive
performance benefits from the novel idea of guiding GSL with a self-
enhanced learning target by graph contrastive learning. Besides,
the result on ogbn-arxiv exhibits the scailbility of SUBLIME.

We make other observations as follows. Firstly, the performance
of structure-fixed GNNs (taking kNN graphs as input) is superior

Table 4: Test accuracy corresponding to different bootstrap-
ping decay rate 𝜏 in structure refinement scenario.

Dataset Bootstrapping decay rate 𝜏
1 0.99999 0.9999 0.999 0.99

Cora 82.1 83.2 84.2 82.4 70.9
Citeseer 71.9 72.6 73.5 73.4 72.6
Pubmed 80.1 80.3 81.0 80.8 80.5
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(b) Contrastive loss value w.r.t. epoch.

Figure 3: Curves of training process on Cora dataset.

to conventional feature-based classifiers on most datasets, which
shows the benefit of considering the underlying relationship among
samples. Secondly, GSL methods achieve better performance than
structure-fixed methods, indicating the significance of structure
optimization. Thirdly, compared to supervised GSL methods, the
unsupervised methods also achieve competitive results without the
supervision of labels, which shows their effectiveness.
Node classification in structure refinement scenario. Table
2 summarizes the classification performance of each method in
structure refinement scenario. We find that SUBLIME still shows
very promising results against not only the self-supervised but
also supervised methods, indicating that SUBLIME can leverage self-
supervision signal to improve the original graphs effectively.
Node clustering in structure refinement scenario. In Table 3,
we report the results of node clustering. Compared to baselines,
our performance improvement illustrates that optimizing graph
structures is indeed helpful to the clustering task. Meanwhile, the
implementation of SUBLIME for node clustering task suggests that
our learned topology can be applied to not only node classification
task but also a wide range of downstream tasks.

5.3 Ablation Study (RQ2)
In our structure bootstrapping mechanism, the bootstrapping decay
rate 𝜏 control the trade-off between updating anchor graph too
sharply (with smaller 𝜏 ) and too slowly (with larger 𝜏 ). When 𝜏 = 1,
anchor graph is never updated and remains as a constant structure.
To verify the effectiveness of the proposed mechanism, we adjust
the value of 𝜏 and the results are shown in Table 4. We also plot
the curves of accuracy and loss value w.r.t. training epoch with
different 𝜏 , which are shown in Fig. 3.

As shown in Table 4, without structure bootstrappingmechanism
(𝜏 = 1), the classification accuracy decreases by 1.5% on average,
indicating the mechanism helps improve the quality of learned
graphs. From Fig. 3(a), we further find an obvious drop after around
1500 iterations when 𝜏 = 1, demonstrating the lack of effective
guidance hurts the performance. When 𝜏 is within [0.999, 0.99999],
the accuracy can converge to a high value (as shown in Fig. 3(a)),

https://github.com/GRAND-Lab/SUBLIME
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Figure 4: Sensitivity of hyper-parameters 𝑝 (𝑥) and 𝑘 .

meaning that SUBLIME can learn a stable and informative structure
with the bootstrapping mechanism. However, the performance
declines with 𝜏 becoming smaller, especially on Cora dataset. We
conjecture that with sharp updating, the anchor graph tends to
be polluted by the learned graph obtained in the early training
stage, which fails to capture accurate connections. Another problem
caused by a too small 𝜏 is the unstable training, which can be seen
in Fig. 3(a) and 3(b).

5.4 Sensitivity Analysis (RQ3)
Using the structure inference case, we investigate the sensitivity of
critical hyper-parameters in SUBLIME, including the probabilities
𝑝 (𝑥) , 𝑝 (𝑎) for data augmentation and the number of neighbors 𝑘 in
kNN for sparsification and learner initialization. The discussion for
𝑝 (𝑥) and 𝑘 are provided below while the analysis for 𝑝 (𝑎) is given
in Appendix G.
Feature masking probability 𝑝 (𝑥) . Fig. 4(a) shows the perfor-
mance under different combinations of masking probabilities of
two views on Cora dataset. We observe that the value of 𝑝 (𝑥)𝑎 be-
tween 0.6 and 0.8 produces higher accuracy. Compared to 𝑝

(𝑥)
𝑎 ,

SUBLIME is less sensitive to the choice of 𝑝 (𝑥)
𝑙

, suggesting a good
performance when 𝑝

(𝑥)
𝑙
∈ [0, 0.7]. When 𝑝 (𝑥) is larger than 0.8,

the features will be heavily undermined, resulting worse results.
Number of neighbors 𝑘 . To investigate its sensitivity, we search
the number of neighbors 𝑘 in the range of {5, 10, · · · , 40} for three
datasets. As is demonstrated in Fig. 4(b), the best selection for each
dataset is different, i.e., 𝑘 = 30 for Cora, 𝑘 = 20 for Citeseer, and
𝑘 = 15 for Pubmed. A common phenomenon is that a too large
or too small 𝑘 results in poor performance. We conjecture that an
extremely small 𝑘 may limit the number of beneficial neighbors,
while an overlarge 𝑘 causes some noisy connections.

5.5 Robustness Analysis (RQ4)
To evaluate the robustness of SUBLIME against adversarial graphs,
we randomly remove edges from or add edges to the original graph
structure of Cora dataset and validate the performance on the cor-
rupted graphs. We change the ratios of modified edges from 0 to 0.9
to simulate different attack intensities. We compared our method to
GCN [22] and Pro-GNN [20], a supervised graph structure method
for graph adversarial defense. As we can see in Fig. 5, SUBLIME
consistently achieves better or comparable results in both settings.
When the edge deletion rates become larger, our method shows
more significant performance gains, indicating that SUBLIME has
stronger robustness against serious structural attacks.
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Figure 5: Test accuracy in the scenarios where graph struc-
tures are perturbed by edge deletion or addition.
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(c) Graph learned by SUBLIME.

Figure 6: Heatmaps of the subgraph adjacency matrices of
(a) the original graphwith self-loop, the graph learned by (b)
Pro-GNN and (c) SUBLIME on Cora dataset. A block in darker
color indicates a larger edge weight between two nodes.

5.6 Visualization (RQ5)
To investigate what kind of graph structure is learned by SUBLIME,
we select a subgraph fromCora dataset with nodes in two categories
and visualize the edge weights in original graph, graphs learned
by Pro-GNN and SUBLIME, respectively. The selected categories are
Case base (C) and Rule learning (R), each of which has 10 labeled
nodes (L) and 10 unlabeled nodes (U). Note that the labels of the la-
beled nodes are used to refine the graph structures in Pro-GNN, but
are not used to optimize topology in SUBLIME. As we can see in Fig.
6, numerous intra-class edges are learned by SUBLIME, while the
learned inter-class edges are far fewer than intra-class edges. In con-
trast, the original graph only provides scarce intra-class edges. We
conclude that SUBLIME can learn connections between two nodes
sharing similar semantic information, which improves the quality
of graph topology. Moreover, in Pro-GNN, there are more connec-
tions built across labeled nodes than unlabeled nodes, indicating
an edge distribution bias in the graph learned by such a supervised
method. Conversely, SUBLIME equally constructs edges across all
nodes belonging to the same class as each node can receive the
essential supervision from the contrastive objective.

6 CONCLUSION
In this paper, we make the first investigation on the problem of
unsupervised graph structure learning. To tackle this problem, we
design a novel method, SUBLIME, which is capable of leveraging
data itself to generate optimal graph structures. To learn graph
structures, our method uses contrastive learning to maximize the
agreement between the learned topology and a self-enhanced learn-
ing target. Extensive experiments demonstrate the superiority of
SUBLIME and rationality of the learned structures.
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A NOTATIONS
In this paper, we denote scalars with letters (e.g., 𝑘), column vectors
with boldface lowercase letters (e.g., x), matrices with boldface
uppercase letters (e.g., X), and sets with calligraphic fonts (e.g.,V).
The frequently used notations are listed in Table 5.

Table 5: Frequently used notations.

Notation Description
G = (A,X) The (original) graph.
𝑛,𝑚,𝑑 The number of nodes/edges/features.
A ∈ [0, 1]𝑛×𝑛 The (original) adjacency matrix.
X ∈ R𝑛×𝑑 The feature matrix.
G𝑙 = (S,X) The learned graph / Learner graph view.
S ∈ [0, 1]𝑛×𝑛 The learned adjacency matrix.
S̃ ∈ R𝑛×𝑛 The sketched adjacency matrix.
E ∈ R𝑛×𝑑 The embedding matrix.
G𝑎 = (A𝑎,X) Anchor graph view.
A𝑎 ∈ [0, 1]𝑛×𝑛 The anchor adjacency matrix.
G𝑙 ,G𝑎 The augmented learner/anchor view.
𝑑1, 𝑑2 The dimension of node representation/projection.
H𝑙 ,H𝑎 ∈ R𝑛×𝑑1 The representation matrix of learner/anchor view.
Z𝑙 ,Z𝑎 ∈ R𝑛×𝑑2 The projected representation matrix of learner/anchor view.
L The contrastive loss function.
𝑝𝜔 (·) The graph learner with parameter 𝜔 .
𝑞(·) The post-processor.
T𝑓𝑚 (·),T𝑒𝑑 (·) The feature masking/edge dropping augmentation.
𝑓𝜃 (·) The GNN-based encoder with parameter 𝜃 .
𝑔𝜑 (·) The MLP-based projector with parameter 𝜑 .
𝑘 The number of neighbors in kNN.
𝑝 (𝑥) , 𝑝 (𝑎) The masking/dropping probability for T𝑓𝑚 (·)/T𝑒𝑑 (·).
𝜏, 𝑐 The decay rate/interval for bootstrapping updating.
⊙ The Hadamard operation.
·⊺ The transposition operation.

B ANALYSIS OF GRAPH LEARNERS
In Table 6, We summarize the properties of the proposed graph
learners, including their memory, parameter and time complexity.
For metric learning-based graph learners, we consider the complex-
ities with locality-sensitive kNN sparsification post-processing [11]
where the neighbors are selected from a batch of nodes (batch size
= 𝑏1). We provide our analysis as follows:
• Since FGP learner can model each edge independently and
directly, it enjoys several advantages such as the flexibility
to model connections and low time complexity. However, its
O(𝑛2) space complexity makes it hard to be applied to the
modeling of large-scale graphs.
• Among all metric learning-based learners, attentive learner
has the lowest parameter and time complexity w.r.t. dimen-
sion 𝑑 . It is suitable for the situation with high feature di-
mension and low correlation between features.
• Compared to attentive learner, MLP and GNN learner require
larger space and time complexity to consider the correlation
between features and original topology.
• With the effective kNN sparsification, the memory and time
complexity are reduced fromO(𝑛2) toO(𝑛), which improves
the scalability of the metric learning-based learners.

Considering these properties, we allocate the suitable learner
for each dataset. Specifically, for small datasets whose node num-
bers are less than 3000 (e.g., Cora), we use FGP learners to model
them due to the flexibility and acceptable complexity. For larger
datasets with high-dimensional raw features (e.g., Citeseer), we

Table 6: Properties of graph learners.
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Algorithm 1: The training algorithm of SUBLIME
Input: Feature matrix X; Adjacency matrix A (optional);

Number of nearest neighbors 𝑘 ; Bootstrapping decay
rate and interval 𝜏 ,𝑐; Feature masking probability
𝑝
(𝑥)
𝑙

, 𝑝 (𝑥)𝑎 ; Edge dropping probability 𝑝 (𝑎) ;
Temperature 𝑡 ; Number of epochs 𝐸.

Output: Learned Adjacency Matrix S
1 Initialize parameters 𝜔 , 𝜃 , 𝜑 ;
2 if A is provided then
3 Initialize the anchor adjacency matrix by: Aa ← A;
4 else
5 Initialize the anchor adjacency matrix by: Aa ← I;
6 end
7 for 𝑒 = 1, 2, · · · , 𝐸 do
8 Calculate S̃ with graph learner 𝑝𝜔 by Eq. (1) or (2);
9 Calculate S with post-processor 𝑞(S̃) by Eq. (6) - Eq. (8);

10 Establish two graph views by G𝑙 = (S,X), G𝑎 = (A𝑎,X);
11 Obtain augmented graph views G𝑙 , G𝑎 by Eq. (9) - Eq.

(11) with probability 𝑝 (𝑥)
𝑙

, 𝑝 (𝑥)𝑎 ,𝑝 (𝑎) ;
12 Calculate node representations H𝑙 , H𝑎 with encoder 𝑓𝜃

by Eq. (12);
13 Calculate projections Z𝑙 , Z𝑎 with encoder 𝑔𝜙 by Eq. (13);
14 Calculate the contrastive loss L by Eq. (14) ;
15 Update parameters 𝜔 , 𝜃 , 𝜑 by applying gradient descent;
16 if e mod c = 0 then
17 Bootstrapping update Aa with decay 𝜏 by Eq. (15) ;
18 end
19 end

choose attentive learner considering its low parameter/time com-
plexity w.r.t. dimension 𝑑 . For large-scale datasets with relevantly
low feature dimensions (e.g., 20news), we adopt MLP learners to
capture the correlation between features. In graph refinement sce-
narios where original graphs are available, GNN learners can be
further considered to leverage the extra topology information.

C COMPLEXITY ANALYSIS
We analyze the time complexity of each component of SUBLIME.
For graph learner, the complexity has been described in Table 6.
The time complexity of post-processor is mainly contributed by
sparsification, which is O(𝑛𝑑𝑏1) for effective kNN and O(𝑛2𝑑) for
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Table 7: Statistics of datasets.

Dataset Nodes Edges Classes Features Label Rate
Cora 2,708 5,429 7 1,433 0.052
Citeseer 3,327 4,732 6 3,703 0.036
Pubmed 19,717 44,338 3 500 0.003
ogbn-arxiv 169,343 1,166,243 40 128 0.537
Wine 178 N/A 3 13 0.056
Cancer 569 N/A 2 30 0.018
Digits 1,797 N/A 10 64 0.028
20news 9,607 N/A 10 236 0.010

conventional kNN. In the contrastive learning module, the com-
plexities of feature masking and edge dropping are O(𝑑) and O(𝑚),
respectively. For the encoder and projector, the total complexity is
O(𝑚𝑑1𝐿1 + 𝑛𝑑21𝐿1 + 𝑛𝑑

2
2𝐿2). For contrastive loss computation, the

complexity is O(𝑛2) for its full-graph version, O(𝑛𝑏2) for the mini-
batch version, where 𝑏2 is the batch size of contrastive learning.

D ALGORITHM
The training algorithm of SUBLIME is summarized in Algorithm 1.

E DATASETS
In Table 7, we summarize the statistics of benchmark datasets. The
dataset splitting follows the previous works [7, 12]. Details of these
datasets are introduced as follows.

• Cora [34] is a citation networkwhere each node is a machine
learning paper belonging to 7 research topics and each edge
is a citation between papers.
• Citeseer [34] is a citation network containing 6 types of
machine learning papers: Agents, AI, DB, IR, ML, and HCI.
Nodes denote papers and edges denote citation relationships.
• Pubmed [27] is a citation network from the PubMed data-
base, where nodes are papers about three diabete types about
diabetes and edges are citations among them.
• ogbn-arxiv [17] is a citation network with Computer Sci-
ence arXiv papers. The features are the embeddings of words
in its title and abstract. The labels are 40 subject areas.
• Wine [1] is a non-graph dataset containing the results of a
chemical analysis of 178 wines derived from three different
cultivars. Features are the quantities of 13 constituents found.
• Cancer [1] is a binary classification dataset of diagnosis of
breast tissues (malignant/benign). The features are computed
from a digitized image of a breast mass.
• Digits [1] is a non-graph dataset containing handwritten
digits in 10 classes. Each sample is a 8 × 8 image of a digit.
• 20news [1] is a non-graph dataset comprising newsgroups
posts on 20 topics. Following [12], we select 10 topics with
9, 607 samples in our experiments.

F IMPLEMENTATION DETAILS
F.1 Computing Infrastructures
We implement SUBLIME using PyTorch 1.7.1 [31] and DGL 0.7.1
[44]. All experiments are conducted on a Linux server with an Intel
Xeon 4214R CPU and four Quadro RTX 6000 GPUs.
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Figure 7: Sensitivity analysis for 𝑝 (𝑎) .

F.2 Evaluation Details
Through node classification tasks, we evaluate the quality of the
learned structures by re-training a classifier with the learned struc-
ture as its constant input. Specifically, we use the learned adjacency
matrices to train GCN-based classification models, and record the
testing result with the highest validation accuracy. The averaged
accuracy over five rounds of running is used to assess the classifica-
tion performance. For ogbn-arxiv dataset, we utilize a three-layer
GCN with 256 hidden units as the evaluation model. For the rest
datasets, a two-layer GCN with 32 hidden units is employed.

For node clustering tasks, we evaluate the performance of our
method by measuring the quality of the learned representations.
Concretely, following the baseline methods [42, 55], we train our
framework for a fixed number of epochs and apply K-means algo-
rithm for 10 runs to group the learned representations. The rep-
resentations are generated by the contrastive learning encoder 𝑓𝜃
taking learned graph G𝑙 = (S,X) as its input without augmentation.

F.3 Hyper-parameter Specifications
We perform grid search to select hyper-parameters on the follow-
ing searching space: the dimension of representation and projec-
tion is searched in {16, 32, 64, 128, 256, 512}; 𝑘 on kNN is tuned
amongst {5, 10, 15, 20, 25, 30, 35, 40}; feature masking probability
𝑝 (𝑥) is tuned from 0.1 to 0.9; edge dropping probability 𝑝 (𝑎) is
searched in {0, 0.25, 0.5, 0.75}; the bootstrapping decay rate is cho-
sen from {0.99, 0.999, 0.9999, 0.99999, 1}; and the learning rate of
Adam optimizer is selected from {0.01, 0.001, 0.0001}. The tempera-
ture for contrastive loss is fixed to 0.2. The layer numbers of encoder
(𝐿1), projector (𝐿2), and embedding network (𝐿) are set to 2.

For our baselines, we reproduce the experiments using their
official open-source codes or borrow the reported results in their
papers. We carefully tune their hyper-parameters to achieve op-
timal performance. To compare fairly, we use the random seeds
{0, 1, 2, 3, 4} for all classification methods, and fix the seed to 0 for
clustering methods.

G PARAMETER SENSITIVITY OF 𝑝 (𝑎)

We vary the dropping rate 𝑝 (𝑎) from 0 to 0.95 on Cora, Citeseer
and Pubmed datasets, and the results are shown in Fig. 7. As we can
see, when 𝑝 (𝑎) is between 0.2 and 0.65, SUBLIME achieves better
performance. When the edge dropping rate is overlarge, the struc-
tures on both views will be deteriorated, causing a sharp drop of
performance.
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