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Multiple Structure-View Learning
for Graph Classification
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Abstract— Many applications involve objects containing
structure and rich content information, each describing different
feature aspects of the object. Graph learning and classification
is a common tool for handling such objects. To date, existing
graph classification has been limited to the single-graph setting
with each object being represented as one graph from a single
structure-view. This inherently limits its use to the classification of
complicated objects containing complex structures and uncertain
labels. In this paper, we advance graph classification to handle
multigraph learning for complicated objects from multiple struc-
ture views, where each object is represented as a bag containing
several graphs and the label is only available for each graph
bag but not individual graphs inside the bag. To learn such
graph classification models, we propose a multistructure-view
bag constrained learning (MSVBL) algorithm, which aims to
explore substructure features across multiple structure views
for learning. By enabling joint regularization across multiple
structure views and enforcing labeling constraints at the bag
and graph levels, MSVBL is able to discover the most effective
substructure features across all structure views. Experiments and
comparisons on real-world data sets validate and demonstrate
the superior performance of MSVBL in representing complicated
objects as multigraph for classification, e.g., MSVBL outperforms
the state-of-the-art multiview graph classification and multiview
multi-instance learning approaches.

Index Terms— Graph, graph classification, multiview learning,
subgraph mining.

I. INTRODUCTION

MANY real-world objects, such as chemical compounds
in biopharmacy and proteins in molecular biology [1],

images in Web pages [2], brain regions in brain networks [3],
and users in social networks [4], contain rich features and
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structure information. In many cases, these objects are repre-
sented by using features in the vector space, such as amino
acid sequences to represent a protein, bag-of-words to repre-
sent a document, and color histogram to represent an image.
In practice, simple feature-vector representations inherently
discard the structure information of the object, such as the
chemical bounds that regulate the attraction of atoms for
chemical compounds, the spatial correlations of regions inside
an image [5], and the contextual correlation of keywords
for a document [6]. Alternatively, a structural-representation
(e.g., graph) can be used to preserve the structure information.

When representing the structure of objects for learning,
existing methods often use graphs constructed from a single
feature view. For example, an image (i.e., an object) can be
represented as a single structure-view graph by using color
histogram as features, with each node denoting a small region
and adjacent regions being connected through an edge [2],
as shown in Fig. 1(a). Nevertheless, using graphs from an indi-
vidual structure-view may not adequately describe the object’s
content. For instance, color and texture have different visual
characteristics, and are both commonly utilized to describe
images. Therefore, using graphs constructed from multiple fea-
ture views can accurately represent the structure and the con-
tent of the object, and an example is shown in Fig. 2. The mul-
tiple structure-view settings can be generalized to many other
domains, such as brain network analysis, where a brain net-
work can be represented by graphs from different properties,
encoding correlations between the functional activities of brain
regions [3]. In this paper, we refer to graphs constructed from
multiple structure views as multistructure-view (MSV) graphs.

Real-world objects often have complicated character-
istics, depending on how they are assessed and char-
acterized. For example, an image may be labeled as
“leopard/tiger,” because it contains a leopard/tiger inside the
image. Arguably, not all regions of the image are relevant
to the object and background regions may not be directly
related to the label of the image, as shown in Fig. 1(b).
This representation and learning complication is known as
multi-instance learning [8]. The uniqueness of handling the
label ambiguity (i.e., the label information is not required for
each single instance) makes the multi-instance representation
applicable to plenty of real-world practical applications.

Most existing multi-instance studies focus on instances with
feature vectors. An alternative way to preserve the structure of
the object is to represent the object (e.g., an image) as a bag
of graphs, as shown in Fig. 1(c), with each graph representing
and preserving the structure information of a portion of the
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Fig. 1. Illustration of multigraph (i.e., graph-bag) representation derived from single-graph and multi-instance (i.e., instance-bag) representation.
(a) Single-graph representation. A graph is used to denote an image with each node corresponding to a small region of the image and adjacent regions
being connected by an edge [2], [5]. Single-graph representation can lose important local structure information, because image segmentation algorithms often
separate a meaningful semantic object into multiple subregions (e.g., body or head of an animal). (b) Instance-bag representation. An image is represented
as a bag of instances where each region inside the image corresponds to an instance represented in the vector space [7]. If a region contains an object
of interest (e.g., a leopard), the image is labeled as positive. For traditional instance-bag representation, region #2 is represented as a single instance by
using visual features. In other words, although region #2 contains multiple subregions (i.e., tree, grass, and leopard) with special structures and layout,
existing instance-bag representation approaches discard the structure information and only consider the visual features of the whole region for learning.
(c) Graph-bag representation. A more effective graph representation explicitly explores complex relationships among the data and uses effective data structures,
such as graphs, to represent data for learning. As shown in the rectangle between (b) and (c), region #2 in (b) and region #5 in (c) share a common structure
representing a meaningful object (e.g., the leopard). In this case, a region of a given image can be naturally represented as a graph in order to preserve and
represent local structure information inside the region. This representation is more accurate than simply treating the whole region as one single instance, and
it can be applied to other real-world applications (e.g., a biopharmaceutical activity test via a group/bag of molecules).

Fig. 2. MSV learning in which graphs are constructed from different structure
views (e.g., the color view and the texture view). Existing graph classification
research on images [2], [5] focuses on exploring common structures from
single feature view graphs (such as the color view) as features for graph
representation and learning. In some circumstances, no common structure
exists in color space between two given graphs (e.g., G1

1 and G1
2), as shown

in the first row. Instead, common structures may exist in other feature views
(i.e., the texture view). For example, subgraph gs is discovered from
graphs G2

1 and G2
2 constructed from the texture view of the same

objects.

object [9], [10]. If, for a region, the image contains any object-
of-interest (e.g., a leopard/tiger), the bag will be labeled as
positive. If no regions inside the image contain an object-
of-interest, the bag will be labeled as negative. This bag
constrained graph representation can also be applied to other
practical application fields, such as drug activity prediction
and scientific publication categorization. For the former, it is
time-consuming and expensive to label each individual mole-
cule (graph representation). In order to reduce prediction
costs, the molecular group could be utilized to investigate the
activities of a group (i.e., graph bag) of molecules. For the
latter application, each scientific paper can be represented as a
graph that considers the keyword correlations in the Abstract.
Therefore, a scientific paper and all references cited in the
paper form a graph bag.

The above-mentioned observations result in the novel
bag constrained multiple structure-view learning paradigms
described in Fig. 3, where the object is represented as a

Fig. 3. Proposed MSVBL aims to separate objects into different classes (left)
where the object is a bag of graphs constructed from multiple structure
views (right).

graph-bag consisting of graphs collected from multiple struc-
ture views. To build an effective learning model, the technical
challenge is twofold: 1) multiple structure-view representa-
tions: how to find effective substructure features for different
structure views and 2) graph-bag-based MSV learning: how to
integrate bag constraints, where the class label is only available
for a graph-bag, for further learning.

Intuitively, when objects are represented as a bag of MSV
graphs, a straightforward solution to enable learning is to prop-
agate the bag label to each graph inside the bag. In this case,
the learning issue is downgraded to an up-to-date multigraph-
view graph classification problem [11]. Unfortunately, due
to the bag constraint that not all graphs inside a positive
bag are positive, simple bag label propagation may cause
some negative graphs to be mislabeled and deteriorate the
learning accuracy. Alternatively, frequent subgraphs can first
be explored to represent MSV graphs in vector space, so that
the problem is downgraded to the latest multiview multi-
instance learning [12]. However, this is still suboptimal,
mainly, because simple frequent subgraph features do not have
sufficient discriminative ability for learning, unless subgraph
features are carefully explored and assessed across different
structure views.

To solve the above-mentioned challenges, we propose an
MSV bag constrained learning (MSVBL) algorithm, with
emphasis on cross structure-view substructure feature explo-
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Fig. 4. Traditional graph classification intends to separate objects into
different classes (left), where each object is represented as a single graph
from a single structure-view (right).

ration for accurate graph classification. A unique feature of
MSVBL is that it progressively selects the most discriminative
subgraph across different structure views under graph bag
constraints, so it not only achieves maximum margins between
labeled graph bags (positive versus negative), but also has
minimum loss on the graphs in negative bags. The key
contribution of this paper is threefold.

1) We formulate a new bag constrained graph classification
problem, in which the learning object is a bag of
graphs (i.e., graph-bag) with multiple structure views.

2) MSVBL integrates multiple structure-view substructure
exploration and learning into a unified framework. This
is inherently different from many common subgraph-
based graph mining methods, which treat subgraph
exploration and subsequent model learning as separate
processes.

3) An upper bound score for each substructure is derived
to effectively prune the substructure search space.

The rest of this paper is structured as follows. The related
works are reviewed in Section II. Preliminaries and the prob-
lem statement are addressed in Section III. Section IV outlines
the proposed MSV bag constrained graph learning frame-
work MSVBL, and is followed by experiments in Section V.
We conclude this paper in Section VI.

II. RELATED WORKS

Our problem is inspired by multi-instance learning on
graphs with multiple structure views. Thus, in this section,
we review works related to graph classification, multi-instance
learning, and multiview bag/graph learning.

A. Graph Classification

Learning from graphs is a challenging task, mainly because
graphs only have structured data (node and edge) but no
feature representation, as shown in Fig. 4. Therefore, tradi-
tional feature-based approaches [13] (e.g., Bayesian networks,
decision trees, and instance-based learning) cannot be directly
applied for learning. Motivated by the similarity strategy in
instance-based learning, a straightforward method is to directly
calculate the graph similarity in the structure space. To this
end, graph kernels [14], [15] have been proposed to make
use of graph properties (e.g., node degree distribution [16])
to calculate the similarity between graphs. These methods
share the same principle in their design: they enumerate graph
structures, in terms of paths or walks, and so on, and compare
the similarity between graphs using such structures. Because

Fig. 5. Traditional multi-instance classification intends to separate a bag of
instances into different classes (left), where the object for classification is a
bag containing multiple instances with each instance being represented as a
feature vector (right).

graph structures are potentially infinite, these methods often
cannot identify which substructures (i.e., parts of the object
graph) are mostly discriminative for distinguishing graphs
from different class labels (i.e., enabling discriminative graph
learning and classification).

Methods also exist to find good subgraphs that transfer the
graph structure learning problem into a traditional supervised
learning issue. In this case, majority learning approaches
(e.g., support vector machines) can be directly used for classi-
fication. Nevertheless, if we enumerate all the subgraph candi-
dates, the corresponding search space increases exponentially
with respect to the number of graphs. To solve this issue,
a commonly used subgraph estimation criterion (i.e., discov-
ering all frequent subgraphs) is proposed by Yan and Han [17].
Other subgraph excavation methods (e.g., FFSM [18] and
PSFS [19]) have also been proposed to find frequent subgraph
features for further learning.

The above-mentioned frequency-based methods are mainly
unsupervised, and do not utilize the label information. Super-
vised subgraph feature extraction methods have also been
proposed to find discriminative subgraph features for different
classes, such as LEAP [20], gPLS [21], COPK [22], and
GAIA [23]. Kong and Yu [1] proposed a gSSC method to
explore subgraphs (i.e., discriminative features) for semisu-
pervised graph classification. Kong et al. recently proposed
tackling graph learning issues (e.g., active graph classifica-
tion [24], uncertain graph [25], and multilabel graph classifi-
cation [26]) by employing the Hilbert–Schmidt independence
criterion (HSIC) [27]. There are also a number of complex
graph classification tasks, such as positive and unlabeled
graph classification [28], graph stream classification [29],
and multitask graph classification [30]. In addition, there
is another stream of work, which explores the subgraph
in multiplex networks [31], [32], which contain multiple
types or edges. Although multiplex networks do not address
the same multiple structure-view learning problems, they are
potentially useful to solve similar problems, such as the image
data set.

B. Multi-Instance Learning

Multi-instance learning was motivated by drug activity
learning [33] where if a molecule group is active, at least one
molecule is active. For inactive groups, all molecules inside
the group are inactive. Such observations led to a novel multi-
instance learning task, as shown in Fig. 5, in which the training
data are instance-bags, with the label only available for each
bag (but not for the instances inside the bag).
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To support multi-instance learning, most existing meth-
ods attempt to upgrade the traditional supervised learning
approaches. For example, Wang [34] proposed a lazy learning
k-nearest neighbor algorithm, citation-KNN. Other approaches
include tree-based multi-instance learning [35], multi-instance
rule-based learning mi-DS algorithm [36], multi-instance
kernel machines [7], and multi-instance-bag dissimilarity-
based learning [37], [38]. Researchers have also attempted to
adapt other popular single-instance learning algorithms to the
multi-instance setting, such as multi-instance neural networks
(e.g., BP-MIP [39] and RBF-MIP [40]) and MIBoost [41]
(a variation of AdaBoost [42]).

The above-mentioned methods mainly focus on upgrad-
ing traditional supervised learning approaches for the multi-
instance setting. On the other hand, transferring multi-instance
issues to a classical single-instance setting can also work
well. One simple and effective method is to transform the
original multi-instance data into a single-instance data format
by representing each bag as one instance, which is called
SimpleMI [43]. Alternatively, [44] and [45] proposed an
instance selection method using a feature mapping strategy
based on the selected instances from training bags. Some
algorithms are specially designed for multi-instance tasks,
and examples include: maximum margin [46], scalable multi-
instance learning based on the vector of locally aggregated
descriptors, and MIL based on the Fisher vector [47].

C. Multiview Bag/Graph Learning

Multiple feature view learning [48], [49] has recently drawn
much attention, and extensive research has shown that learn-
ing from multiple feature views is potentially more accurate
than relying on a single feature view. Most of the existing
feature-based learning approaches under multiple views are
constructed on general studies, in which the label is allo-
cated for a single instance with feature-vector representation.
Nevertheless, feature-based learning approaches are unable to
handle structure data and cannot be directly applied for the
instance-bag learning tasks, where the learning object is the
instance-bag and the label is only available for the instance-
bag but not for the individual instance.

To explore informative features across multiple views in
multi-instance learning, one intuitive solution is to first han-
dle the single-view informative features by separating the
views [50], and using concatenation methods [51] to com-
bine all the selected features to represent bags for further
classification. Nevertheless, this type of intuitive approach
is unable to globally excavate the most informative features
from different feature views to benefit the subsequent learn-
ing, mainly because they only locally explore and concate-
nates the features from each individual view. A contrasting
approach is to concatenate all the feature views as one com-
plete view, so that existing multiple instance feature learning
approaches can be directly employed on the concatenated view
(i.e., the whole feature space) for further learning [52]. One
recent method uses a cotraining-based approach to deal with
multi-instance data under different feature views [12].

The substructures features (i.e., subgraphs) mined from
single structure-view graphs cannot adequately describe the

learning object characteristics [53] in single structure view
classification, whereas excavating rich information from dif-
ferent structure views benefits graph learning performance,
mainly because an object may present various properties as for
different feature spaces. A key problem for multiple structure-
view feature-based learning is the view combination addressed
in our previous multigraph-view learning for single graph
classification [11]. One popular structure-view combination
approach is to concatenate all individual structure views into
a whole structure-view. The MSV learning task can then be
transferred to a single structure-view learning problem. Never-
theless, such a structure-view combination can incur overfitting
issues, especially when there are insufficient training graph
data sets. Another cotraining structure-view method, which
integrates all graph classifiers in each substructure-view to
carry out the final target object classification, is also very
common. In these structure-view combination approaches,
the object for learning is the individual graph, so these
approaches cannot be directly applied to a multigraph set-
ting in which the object to be classified is a graph bag
(i.e., a graph set). The classification object in existing multi-
instance learning techniques is in the feature-vector space,
so these methods cannot be used for graphs. This naturally
raises the requirement to design new methods to handle bags
that contain graphs under multiple structure views.

III. DEFINITIONS AND PROBLEM STATEMENT

This section first introduces important notations and defin-
itions, and then states our research problem.

Definition 1 (Connected Graph): A graph is represented as
G = (V, E,L, l), where V is a set of vertices V =
{v1, . . . , vnv }, E ⊆ V×V is a set of edges, and L is the set of
labels for the vertices and edges. l : V∪E → L is the function
assigning labels to the vertices and edges. A connected graph
is a graph in which there is a path between any pair of vertices.

Definition 2 (Subgraph/Substructure): Let G =
(V, E,L, l) and gi = (V ′, E ′,L′, l ′) be two graphs. gi

is a subgraph/substructure of G, i.e., gi ⊆ G, iff there
exists an injective function ϕ : V ′ → V s.t. (1)∀v ∈
V ′, l ′(v) = l(ϕ(v)); (2) ∀ (u, v) ∈ E ′, (ϕ(u), ϕ(v)) ∈ E and
l ′(u, v) = l(ϕ(u), ϕ(v)). If gi is a subgraph of G, then G is
a supergraph of gi .

Definition 3 (Structure-View): A structure-view is denoted
as a tuple (V, E,L, l), which represents the structure of an
object as a graph from a single structure-view, such as a
single relationship or a single feature. Similarly, MSV denotes
multiple types of tuples, which describe the structure variants
of an object from different structure views.

Definition 4 (Multistructure-View Graph-Bag): An MSV
graph-bag Bi = {B1

i , . . . , Bk
i , . . . , Bvi } consists of many

graph bags, where Bk
i denotes a single-structure-view graph

bag from the kth structure-view, and each Bk
i contains many

graphs Gk
j ∈ Bk

i constructed from the kth structure-view. The
class label of the graph bag Bi is represented by Yi ∈ Y , with
Y = {−1,+1}.

The set of all graph bags under all structure views is denoted
by B, with B− and B+ denoting all negative and all positive
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Fig. 6. Conceptual view of the proposed MSV learning for graph-bag clas-
sification (MSVBL). In each iteration, MSVBL selects an optimal subgraph
g∗ (step a). If the algorithm does not meet the stopping condition, g∗ will
be added to the subgraph set g (step d) or will otherwise terminate. During
the loop, MSVBL solves a linear programming to update the weights for
training graph-bags and graphs. The weights are continuously updated until
the optimal classifier is obtained.

graph bags, respectively. The aggregation of all graphs in
negative bags is denoted by G−. In addition, we use G j to
denote a graph generated from multiple structure views, with
superscript k denoting the kth structure-view.

Definition 5 (Subgraph Representation for Graph): Given a
subgraph set g = {g1, . . . , gm} discovered from graphs under
multiple structure views, where gs ∈ g could be mined from
any structure-view. Accordingly, each graph G j can be repre-

sented as a subgraph feature vector xG
j = [ f

G j
1 , . . . , f

G j
m ]	 ∈

{0, 1}m , where f
G j
s = 1, 1 ≤ s ≤ m, iff gs is a subgraph of

G j (i.e., ∃Gk
j ∈ G j ∧ gs ⊆ Gk

j ) and f
G j

s = 0 otherwise.
Definition 6 (Subgraph Representation for Graph-Bag):

For subgraph set g = {g1, . . . , gm} mentioned previously,
an MSV bag Bi can be represented by a feature vector
xB

i = [ f Bi
1 , . . . , f Bi

m ]	 ∈ {0, 1}m , where f Bi
s = 1, iff gs is

a subgraph of any graph G j in bag Bi (i.e., ∃G j ∈ Bk
i ∈

Bi ∧ gs ⊆ G j ) and f Bi
s = 0 otherwise.

Given a set of bags B = {B1, . . . ,Bk, . . .Bv} containing
labeled graph-bags from v structure views, the aim of MSV
learning for bag constrained graph classification is to build
a prediction model by exploring optimal subgraphs from the
training graph bag set B, and accurately predict the labels of
previously unseen MSV graph bags.

IV. MULTISTRUCTURE-VIEW BAG LEARNING

Our proposed MSV bag constrained graph classification
framework is shown in Fig. 6. It consists of three major steps.

1) Optimal Subgraph Exploration: In each iteration,
MSVBL explores a discriminative subgraph to improve
the discriminative capability of the graph feature set g.

2) Bag Margin Maximization: Based on the currently
selected subgraphs g, a linear programming is solved
to achieve maximum bag margin for graph bag
classification.

3) Updating Bag and Graph Weights: After the linear
programming has been solved, the weight values for the
training bags and graphs are updated until the algorithm
converges.

A. Maximum Bag Margin Formulation

In graph-bag constrained learning, bag labels are asymmet-
ric in the sense that every graph inside a negative graph-bag
has a negative label, whereas at least one graph is positive in
a positive graph-bag. Accordingly, we can aggregate the linear
constraints from two levels (bag- and graph-levels) as

min
w,ξ ,η

∑

k

mk∑

s

wk
s + C1

∑

i:Bi∈B
ξi + C2

∑

j :G j∈G−
η j

s.t. Yi

∑

k

mk∑

s=1

(
wB

s

)k
hgs

(
Bk

i

) ≥ 1− ξi , i = 1, . . . , |B|

∑

k

mk∑

s=1

(
wG

s

)k
hgs

(
Gk

j

) ≤ −1+ η j , j = 1, . . . , |G−|

wB ≥ 0; wG ≥ 0; ξ ≥ 0; η ≥ 0 (1)

where wk
s = (wB

s )
k + (wG

s )
k , ξi and η j are the evaluation of

the misclassification. C1 and C2 are misclassification tradeoff
hyperplane margin and errors, which are both set to 1 in our
experiment. Because bag labels are known, the weighted errors
are C1

∑
i:Bi∈B ξi . In addition, graphs in the negative bags are

known as negative. Therefore, the weighted errors at the graph
level are C2

∑
j :G j∈B− η j .

In (1), hgs (B
k
i ) is a weak subgraph classifier, which outputs

the class label of the bag Bk
i in the kth view based on

subgraph gs , and hgs (G
k
j ) is a weak subgraph classifier for

the graph Gk
j in the kth structure-view based on subgraph gs .

We can use a subgraph gs as a decision stump classifier for a
graph or bag in the kth structure-view as

{
hgs

(
Bk

i

) = (
ψB

s

)k(
2I

(
gs ⊆ Bk

i

)− 1
)

hgs

(
Gk

j

) = (
ψG

s

)k(2I
(
gs ⊆ Gk

j

)− 1
) (2)

where gs ⊆ Bk
i iff gs is a subgraph of any graph G in

bag Bk
i , i.e., ∃G ∈ Bk

i ∧ gs ⊆ G. (ψB
s )

k and (ψG
s )

k

(ψB
s , ψ

G
s ∈ � = {−1,+1}) are parameters controlling the

label of the classifiers, with I (·) being an indicator function.
(wB

s )
k and (wG

s )
k denote the weights of the bag and graph in

the kth structure-view, respectively. For a subgraph set with
size m = ∑

k mk , the prediction rule for a graph bag Bi is a
linear structure-view combination of the corresponding weak
classifiers as

H(Bi ) = sign

(
∑

k

mk∑

s=1

(
wB

s

)k
hgs

(
Bk

i

)
)
. (3)
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B. Linear Programming Optimization

To support multiple structure-view bag constrained graph
classifications, a set of subgraph features g = {g1, . . . ,
gs, . . . , gm} is required. One straightforward solution is an
exhaustive enumeration strategy, which enumerates all sub-
graphs to find the best ones for learning. Nevertheless,
the number of subgraph candidates increases exponentially,
and the huge amount of time consumed makes this type of
greedy subgraph search method impractical for real-world
learning tasks. This problem can be solved by a column
generation technique [54], which works on the Lagrangian
dual problem with respect to (1). Starting from an empty
subgraph feature set g, column generation iteratively adds
one subgraph gs to g which violates the constraint under
the dual learning problem. Each time the subgraph set g is
updated, column generation resolves the primal problem in (1)
by solving the restricted dual problem. This process keeps
running until convergence, which can be formulated as

max
γ ,μ

∑

i:Bi∈B
γi −

∑

j :G j∈G−
μ j

s.t. 0 ≤ γi ≤ C1, i = 1, . . . , |B|
0 ≤ μ j ≤ C2, j = 1, . . . , |G−|
∑

k

⎛

⎝
∑

i:Bi∈B
γi Yi hgs

(
Bk

i

)−
∑

j :G j∈G−
μ j hgs

(
Gk

j

)
⎞

⎠ ≤ 2v

(4)

where γi and μ j are Lagrange multipliers, with
∑

k 1 =
v. Note that the related dual problem has a small number
of variables, but many constraints. Among them, each con-
straint ζgs =

∑
k (

∑
i:Bi∈B γi Yi hgs (B

k
i ) −

∑
j :G j∈G− μ j hgs ]

(Gk
j )) ≤ 2v indicates a subgraph feature gs over all graph-bags

B, with the first and second terms of the left of constraint being
the gain on the labeled graph-bags and graphs in negative
bags, respectively. Intuitively, this constraint provides a metric
to access the bag constraint-based discriminative power of a
given subgraph gs .

C. Bag Constrained Criteria

In addition to favoring the subgraph in the feature set g
which has a high discriminative score, we also want to make
sure that the selected subgraph gs has the capability to identify
positive graphs in positive bags. The selected subgraph set
g = {g1, . . . , gm} � gs should ensure the following con-
straints.

1) Graph-Bag Must-Link: Because bag labels are known in
advance, the selected subgraph features for graph-bags
Bi and B j should ensure that graph-bags with the same
label are close to one another.

2) Graph-Bag Cannot-Link: The selected subgraphs should
ensure the disparity of graph bags with different class
labels by taking into account the data distributions inside
each graph-bag.

3) Graph Must-Link: In our graph-bag setting, every graph
inside the negative bags is negative, and thus, the

subgraph feature representation should encourage nega-
tive graphs to be close to one another.

4) Graph Separability: The corresponding genuine labels
for graphs in positive graph bags are unavailable. To this
end, we adopt the assumption of principal component
analysis, i.e., exploring the component with the largest
possible variance, to preserve the diversity in positive
bags.

Based on the above-mentioned discussion, the subgraph
feature estimation 	(g) can be formulated as follows:

	g = 	B
g + 	G

g =
1

2

∑
Yi ,Y j

K B
g (Bi , B j )Q

B
i, j

+ 1

2

∑
Gi ,G j

K G
g (Gi ,G j )Q

G
i, j (5)

where 	B
g denotes the similarity between two graph-bags

via bag level criteria 1) and 2), with 	G
g representing the

graph level criteria 3) and 4). QB
ij = {−1/|A|,YiY j = 1;

1/|B|,YiY j = −1}, with A = ∑
Yi Y j=−1 1, and B =∑

Yi Y j=1 1 representing the total bag pairwise constraints.

QG
ij = {−1/|C|,∀Gi ,G j ∈ B−; 1/|D|,∀Gi ,G j ∈ B+},

with C =∑
Gi ,G j∈B− 1 and D =∑

Gi ,G j∈B+ 1 denote graph

pairwise constraints. K B
g (Bi , B j ) and K G

g (Gi ,G j ) denote the
distance between two bags or graphs in the feature vector
space under the explored subgraph set g using an L2 norm
measure.

Accordingly, for bag level 	B
g , we have

	B
g =

1

2

∑
Yi ,Y j

∥∥xB
i − xB

j

∥∥2
QB

i, j

=
∑

Yi ,Y j

(
xB

i

)	xB
i QB

i, j −
∑

Yi ,Y j

(
xB

i

)	xB
j QB

i, j

=
∑

Yi

(
xB

i

)	xB
i

∑
Y j

QB
i, j −

∑
Yi ,Y j

(
xB

i

)	xB
j QB

i, j

=
∑

Yi

(
xB

i

)	xB
i DB

i,i −
∑

Yi ,Y j

(
xB

i

)	xB
j QB

i, j

= tr
(XB DBX	B

)− tr
(XB QBX	B

)

= tr
(XB

(
DB − QB

)X	B
) = tr

(XB L BX	B
)

=
∑

gs∈g

(
f B
s

)	
L B f B

s (6)

where tr(·) denotes the matrix trace operator, XB =
[xB

1 , . . . , xB
p ] = [ f B

1 , . . . , f B
m ]	 ∈ {0, 1}m×p , with p denoting

the size of bags. f B
s (1 ≤ s ≤ m, gs ∈ g) is regarded as a

vector indicator of subgraph gs , with respect to all graph bags,
i.e., f B

s = [ f B1
s , . . . , f

Bp
s ]	, where f Bi

s = 1, 1 ≤ i ≤ p iff
∃G ∈ Bk

i ∈ Bi ∧ gs ⊆ G and f Bi
s = 0 otherwise. DB , as a

diagonal matrix, is generated from QB , where DB
i,i =

∑
j QB

i j .
L B is a Laplacian matrix, denoted by L B = [L B

i, j ]p×p =
DB − QB . Similarly, the graph level 	G

g in (5) can also be
derived as a matrix format, which joins with graph level 	B

g
to rewrite (5) as

	g =
∑

gs∈g

((
f B
s

)	
L B f B

s +
(

f G
s

)	
LG f G

s

) =
∑

gs∈g

f 	s L fs (7)

where

fs =
[

f B
s

f G
s

]
, L =

[
L B 0
0 LG

]
(8)
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where fs is a vector indicator of subgraph gs with respect to
the data combined with bags and graphs. In this case, each
subgraph gs will have an independent discrimination criterion
	gs = f	s L fs , because 	g =∑

gs∈g 	gs .
Definition 7 (mgScore): Given a graph-bag set B contain-

ing multiple structure-view graphs, the informative score for
a subgraph gs can be measured by

£gs =
∑

k

⎛

⎝
∑

Bi∈B
γi Yi hgs

(
Bk

i

)−
∑

G j∈G−
μ j hgs

(
Gk

j

)
⎞

⎠+ f	s L fs .

(9)

To construct the MSV bag constraining model, the most
informative subgraph feature considering each training bag
weight and graph weight in negative bags across all struc-
ture views needs to be explored for bag constrained graph
classification.

D. Optimal Subgraph Exploration

To discover subgraphs for validation, an intuitive solution
for exploring an informative subgraph set is to employ an
exhaustive enumeration strategy, which needs to enumerate
all subgraphs and uses their mgScore values for ranking.
Nevertheless, the number of subgraph candidates increases
exponentially with respect to the size of the search space (i.e.,
the graph set collected from each structure-view). The huge
time consumption makes this type of greedy subgraph search
method infeasible for real-world learning tasks. Instead,
we apply gSpan [17], which is an efficient subgraph mining
approach based on the depth-first search (DFS) strategy, to find
the subgraph feature candidates. The core concept of gSpan
is that it establishes a lexicographic order to encode each
graph, through which all frequent subgraphs are discovered
efficiently. In MSV scenarios, we derive an upper bound for
mgScore to prune the DFS-code tree (i.e., reduce the search
space) as follows:

Theorem 1 (mgScore Upper Bound): Given two subgraphs
gs , g′s ∈ g, where g′s is a supergraph of gs (i.e., gs is a subgraph
of g′s with g′s ⊇ gs). The mgScore of g′s , £g′s is bounded by
£̂gs , i.e., £g′s ≤ £̂gs , with £̂gs being defined as

£̂gs = max
(
ζ−gs
, ζ+gs

)+ f	s L̂ fs (10)

where, L̂ is conducted by L̂i, j = max(0, Li, j ), and

ζ−gs
= 2

∑

k

⎛

⎜⎝
∑

i:Yi=−1,gs∈Bk
i

γi +
∑

j :gs∈Gk
j

μ j

⎞

⎟⎠+ v
∑

i:Bi∈B
γi Yi

(11)

ζ+gs
= 2

∑

k

∑

i:Yi=+1,gs∈Bk
i

γi − v
⎛

⎝
∑

i:Bi∈B
γi Yi −

∑

j :G j∈G−
μ j

⎞

⎠.

(12)

For any subgraph g′s ⊇ gs , £g′s ≤ £̂gs (i.e., the mgScore of
subgraph g′s , £g′s is bounded by £̂gs ). The proof is detailed in

Algorithm 1 Informative Subgraph Exploration
Input:

B = {B1, . . . ,Bk, . . . ,Bv}: A multi-structure-view bag set
with v structure-views;
γ = {γ1, . . . , γ|B|}: A bag weight set;
μ = {μ1, . . . , μ|G−|}: A negative graph weight set;
min_sup: The threshold of the frequent subgraph;

Output:
g∗: The most discriminative subgraph;

1: g∗ = ∅;
2: G = {G1, . . . ,Gk, . . . ,Gv } ← Aggregate all graphs in B;
3: for all structure-views Gk, k = 1, . . . , v in G do
4: while Recursively visit the DFS Code Tree in gSpan do
5: gk

s ← current visited subgraph in DFS Code Tree;
6: if f req(gk

s ) < min_sup, then
7: return;
8: Compute the mgScore £gk

s
for subgraph gk

s using
Eq. (10);

9: if £gk
s
≥ £g∗ or g∗ == ∅, then

10: g∗ ← gk
s ;

11: if £̂gk
s
≥ £g∗ , then

12: Depth-first search the subtree rooted from node gk
s ;

13: end while
14: end for
15: return g∗;

the following three components: 1) ζgs ≤ ζ−gs
in Appendix A;

2) ζgs ≤ ζ+gs
in Appendix B; and 3) 	g′s ≤ f	s L̂ fs in

Appendix C. In this case, the max(£−gs
, £+gs

)+ f	s L̂ fs will be
selected as the upper bound. When a subgraph gs is generated,
all its supergraphs are upper bounded by £̂gs . Therefore, this
theorem will help to reduce the search space efficiently.

The above-mentioned upper bound can be used to prune
the DFS code search tree in gSpan via the branch-and-bound
pruning strategy; the complete subgraph feature exploration
approach is listed in Algorithm 1. The algorithm enumerates
subgraph features by searching the whole DFS code tree
for each structure-view. If a current subgraph gk

s in the kth
view is infrequent, both gk

s and its related subtree need to
be discarded (lines 6 and 7). If not, the mgScore of gk

s
(i.e., £gk

s
) will be calculated (line 8). If £gk

s
is greater than

the current optimal mgScore £g∗ or the optimal subgraph £g∗
is empty (i.e., in the first iteration), £gk

s
will be regarded as

the current optimal item £g∗ (lines 9 and 10). Subsequently,
the upper bound pruning module will check whether £̂gk

s
is

less than £g∗ ; if so, this means that the mgScore value of
any supergraph gk

s
′

of gk
s (i.e., gk

s
′ ⊇ gk

s ) will not be greater
than £g∗ . Thus, the subtree rooted from gk

s is safely pruned.
If £̂gk

s
is indeed greater than the mgScore of g∗, the search

process will sequentially visit nodes from the subtree of gk
s

(lines 11 and 12).

E. MSVBL

The complete procedures of the proposed MSVBL frame-
work MSVBL are listed in Algorithm 2, which iteratively
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Algorithm 2 MSVBL
Input:

B = {B1, . . . ,Bk, . . . ,Bv}: A multi-structure-view graph
bag set;
min_sup: The threshold of the frequent subgraph;
m: the maximum number of iteration;

Output:
The target label Yc of a test multi-structure-view bag Bc;
// Training Phase:

1: g← ∅;
2: t ← 0;
3: while t ≤ m do
4: g∗ ← Apply B and min_sup to obtain the most infor-

mative subgraph; // Alogirthm 1
5: if ζg∗/2v ≤ 1+ ε then
6: break;
7: g← g ∪ g∗;
8: Solve Eq. (1) based on g to get wB and wG , and the

Lagrange multipliers of Eq. (4) γ and μ;
9: t ← t + 1;

10: end while
// Testing Phase:

11: Yc ← sign
(∑

k
∑

gs∈g

(
wB

s

)k
hgs

(
Bk

c

))
.

12: return Yc.

extracts informative subgraphs across different structure views
to expand the candidate subgraph set g, by using mgScore.
After m iterations, MSVBL will boost the generated m weak
classifiers for final prediction.

MSVBL starts from an empty subgraph set g = ∅ (line 1),
and iteratively chooses the most informative subgraph feature
g∗ in each round (line 4) according to Algorithm 1. If the
current optimal subgraph no longer violates the constraint,
the iteration process terminates (lines 5 and 6). Because the
difference between the optimal values in the last few iterations
is relatively small, a threshold ε is used to relax the stopping
condition (i.e., we set ε = 0.05 in our experiments). After
that MSVBL solves the linear programming problem by using
the current optimal subgraph set g to recalculate two groups
of weight values: 1) wB and wG : the weights for bag-level
and graph-level weak subgraph decision stumps, respectively
and 2) γ and μ: the weights of training bags and graphs in
negative bags for optimal subgraph feature exploration in the
next iteration, which can be calculated from the Lagrange mul-
tipliers in the primal issue (line 8). If the learning framework
converges or the maximum number of iterations is achieved,
the training phase of MSVBL is terminated. During the testing
phase, the label Yc of a test bag Bc is determined by the final
classifier sign(

∑
k

∑
gs∈g(w

B
s )

khgs (B
k
c )).

V. EXPERIMENTS

A. Benchmark Graph Bag Data Sets

1) Scientific Publication Multistructure-View Graph Bags: The
information from the Abstract content and the paper citation
relationship naturally form two structure views. Each scien-
tific paper is converted into an Abstract content view graph

Fig. 7. Graph representation of the Abstract in a paper entitled “Static
Analysis in Datalog Extensions.” Each node (i.e., a circle) denotes a keyword
in the Abstract. The weight values between nodes indicate the correlations
between keywords. By using a threshold (e.g., 0.005), an Abstract can be
converted into an unweighted graph.

by utilizing the contextual correlations (edges in graphs) of
keywords (nodes in graphs) in the Abstract. Using linked
keyword relationships (e.g., cooccurrence of keywords in
different sentences) to form a graph representation for each
paper (as shown in Fig. 7 to be explained later) has shown bet-
ter performance than simple bag-of-words representation [6],
because one or multiple independent keywords/attributes is
insufficient to describe the content of a paper. For a paper
citation relationship view graph, each graph node represents
a paper ID with edges representing the citation relationships
among papers (detailed in [29]). With graphs built from the
paper and the references cited in the paper, a paper can be
represented as a graph bag containing multiple graphs in two
structure views (i.e., Abstract view versus citation relationship
view). For example, assume paper A cites papers A1, A2,
and A3, and the label of A is “Positive.” For each view, we will
first generate one graph from A, A1, A2, and A3, respectively.
After that we put all four graphs in one bag, and label the bag
as “Positive.” Thus, each paper corresponds to a graph bag
with two structure views (Abstract content view versus paper
citation relationship view).

The Digital Bibliography and Library Project (DBLP) data
set1 consists of bibliography in computer science, with each
record containing information, such as Abstract, authors, year,
venue, title, and references. We select papers published in Arti-
ficial Intelligence (AI: IJCAI, AAAI, NIPS, UAI, COLT, ACL,
KR, ICML, ECML, and IJCNN) as positive bags, and Data-
base (DB: SIGMOD, PODS, VLDB, ICDE, CIKM, DASFAA,
ICDT, and SSD) as negative bags to form an MSV learning
task. The objective is to predict whether a scientific publication
is part of the artificial intelligence (positive) or database
(negative) field by using the graph representations with the
above structure views. The two research fields overlap in many
aspects, e.g., data mining, information retrieval, and pattern
recognition, which help create a challenging MSV learning
task.

In the Abstract structure-view, an element fuzzy cognitive
map (E-FCM) [55] is utilized for each abstract to explore
keywords as nodes, and correlations between keywords are

1http://dblp.uni-trier.de/xml/
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used to form the edges of each graph, as shown in Fig. 7.
The same graph representation for scientific publication can
be found in our previous work [51]. In the experiments,
we choose 600 papers in total (corresponding to 600 multiple
structure-view bags) to form positive (AI) bags (300 bags
with 1756 graphs) and negative (DB) bags (300 bags with
1738 graphs).

2) Content-Based Image Multistructure-View Graph Bags: The
original images [56] collected from the “Corel” data set2 are
preprocessed using VLFeat segmentation.3 Each image is seg-
mented into multiple regions, with each region corresponding
to one graph. For an individual region simple linear iterative
clustering [57], a state-of-the-art superpixel-based method is
applied to obtain graph representation. Each node indicates one
superpixel and each edge denotes the adjacency relationship
between two superpixels.

Two types of feature [58], hue–saturation–value (HSV) in
the color space and local binary patterns (LBPs) in the texture
space, are naturally related to two structure views. HSV is
a common cylindrical-coordinate representation applied for
constructing a color model, and LBP is a well-known tex-
ture spectrum descriptor for capturing local texture features.
We first extract a three-channel HSV feature on each pixel
for the HSV representation. A 256-D codebook is constructed
via k-means clustering on the explored HSV cylindrical-
coordinate representations. Each pixel is transferred to a 1-D
code by calculating the distance between the pixel color and
the prior cluster centers. We then assign a 256-D histogram-
based vector to each superpixel (i.e., HSV-based superpixel
representation) using the code occurrence statistics. The uni-
form LBP is used to generate a 59-bin code on each pixel,
which is assigned to 1 bin based on the local texture pat-
tern. A 59-D histogram representation can be constructed
to encode the statistics of each superpixel. Similar graph
representation can be found in our previous work [59]. In this
image related experimental data set, the superclass “Cats”
has three subclasses “Tiger,” “Lion,” and “Leopard,” which
are used as positive images (300 bags with 2679 graphs).
In addition, 300 images of other animals are randomly selected
as negative bags, including 2668 segments (i.e., graphs) in
negative bags.

B. Experimental Settings

All experimental results and comparisons are reported on
10 times tenfold cross-validation. Unless specified otherwise,
we set the minimum support threshold min_sup = 3% for
scientific publication data (Section V-A1) and min_sup = 2%
for content-based image data (Section V-A2). All experiments
are conducted on a Linux cluster 16 processors [Interl(R)
Xeon(R) at 3.47-GHz CPU] and 128-GB memory size.

C. Baseline Methods

To the best of our knowledge, this is the first work to
consider the multiple structure-view bag constrained graph

2https://sites.google.com/site/dctresearch/Home/content-based-image-
retrieval

3http://www.vlfeat.org/

classification problems. The contribution of this paper is
to design an effective graph classification framework under
multiple structure views to advance the fundamental graph
classification technique, not a new algorithm in a special
domain (e.g., image or text, or other domains in which the
proposed framework can be applied) to compare with other
type of technique, e.g., deep learning and extreme learning
machines. As a result, all baseline methods belong to the graph
classification family.

To comparatively study the performance of the proposed
MSVBL method, we first use two types of baseline (bag
level and graph level) for single structure-view evaluation,
and then implement three different structure-view combination
strategies for comparison studies. Bag-level approaches first
discover informative subgraphs at bag level to represent graphs
in the bag set (i.e., transferring a graph-bag set to an instance-
bag set) for classification. By contrast, graph-level approaches
propagate graph bag labels to all graphs in the bag, through
which the informative subgraphs can be explored to repre-
sent bag-of-graphs to bag-of-instances in the feature vector
space.

1) Subgraph Evaluation Criterion: To explore informative
subgraphs for comparison purposes, we implement the follow-
ing four different types of subgraph feature evaluation criteria.

a) Frequency-based approach: For the purpose of select-
ing subgraph features from graphs, the Top-k [60] approach
adopts the frequency criteria to select the highest frequent
subgraphs as features. In the graph-bag setting, the bag-level
frequency is measured with respect to bags (i.e., the occurrence
of the subgraph is counted as 1 if a subgraph is contained in
one or more graphs inside a bag, or 0 otherwise). By con-
trast, the graph-level frequency setting directly calculates the
frequency with respect to graphs.

b) Information theory-based approach: Information
gain (IG), which is used in selecting feature nodes for decision
tree construction, is commonly used for subgraph estimation
in graph classification [24], [29]. When dealing with graph
bags, bag-level IG tries to select subgraphs with the highest
IG based on subgraph feature representation for graph bags,
as given in Definition 6. Graph-level IG calculates the IG score
on graphs based on Definition 5.

c) Discrimination-based approach: A novel discrimina-
tive subgraph selection criterion, gSSC [1], has demonstrated
strong performance in tackling graph structure data. The basic
idea is to select informative subgraphs such that graphs with
different labels in the subgraph feature space are distinct
from each other. Accordingly, the bag- and graph-level gSSC
apply the gSSC discriminative measures to bags (graph-bags
with bag labels) and graphs (graph objects and the labels via
inheriting the bag labels), respectively.

d) Dependence-based approach: The HSIC, which mea-
sures the dependence between two variables in a specially
designed kernel space, has recently been proposed to maximize
the dependence between subgraphs for graph objects. This
state-of-the-art subgraph dependence evaluation criterion has
been successfully employed in many graph learning tasks, such
as traditional graph classification [24], uncertain graphs [25],
and multilabel graphs [26]. The bag-level gHSIC adopts the
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HSIC criterion to explore subgraphs using the proposed bag
representation for learning, and graph-level gHSIC simply
works on graphs by propagating the bag label to graphs inside
each bag.

2) Multistructure-View Combination: For comparison
purposes, the following three structure-view combination
strategies across different structure views are also implemented
for learning.

a) Local MSV: Similar to the view combination in [51],
the local structure-view combination strategy adopts a concate-
nation mechanism to obtain MSV subgraphs from different
structure views. The above-mentioned subgraph evaluation
criterion (e.g., gSSC or gHSIC) is used for each single
structure view to select mk subgraph features, which will be
concatenated as final subgraphs to represent graphs as feature
vectors. A multi-instance learner (e.g., MIBoost [41]) will then
be used for classification.

b) Global MSV: The global view combination strategy
concatenates heterogeneous feature spaces into one homoge-
neous feature space. Single-view feature selection methods
are applied to the concatenated features for learning [52].
Because there is no feature space in the graph domain, this
baseline approach first concatenates all the frequent subgraph
features discovered from all structure views (i.e., constructing
the entire subgraph feature space), and then utilizes the Top-k,
IG, gSSC, or gHSIC evaluation criteria to directly explore the
m subgraphs from all structure views for graph classification.

c) Ensemble MSV: We also compare our proposed
method MSVBL with a state-of-the-art multi-instance-view
combination strategy [12]. A number of informative sub-
graphs are excavated for each single structure view via Top-k,
IG, gSSC, or gHSIC evaluation criteria. By representing
each graph as an instance in the feature vector space, this
structure-view combination baseline trains a multi-instance
classifier (e.g., MIBoost [41]) by treating each view indepen-
dently and integrates classifiers across all structure views for
prediction.

To sum up, we first carry out comparisons in our experiment
via the above-mentioned three structure-view combination
strategies based on the graph- or bag-level subgraph evaluation
criterion.

3) Latest Graph Classification Advances: By directly prop-
agating bag labels to graphs inside each bag, the problem
in this paper can be transferred to the state-of-the-art graph
learning task with multiple structure views (MSVGL [11]),
which will also be used as a type of baseline (detailed in
Section V-D3). We also implement a bMSVBL approach
(i.e., MSVBL without using the graph level constraint) as
a baseline to explore the efficiency of the unified two
level (bag- and graph-level) framework. A baseline dMSVBL
approach [53], which does not consider the bag constrained
criteria, is also implemented to demonstrate the distinct per-
formance of the proposed MSVBL (detailed in Section V-D4).
An unbounded MSVBL (uMSVBL) approach with no pruning
module as described in Section V-D is implemented to evaluate
the efficiency of the pruning strategy used in MSVBL (detailed
in Section V-D7).

Fig. 8. Bag-level comparisons on DBLP graph bag data set with different
structure-view combination approaches. (a) Local MSV. (b) Global MSV.
(c) Ensemble MSV.

Fig. 9. Bag-level comparisons on image graph bag data set with different
structure-view combination approaches. (a) Local MSV. (b) Global MSV.
(c) Ensemble MSV.

D. Experimental Results

1) Comparison With Bag-Level Evaluation Criteria: Figs. 8
and 9 report the results of the diverse bag-level subgraph
feature estimation criteria (i.e., TopK, IG, gSSC, or gHSIC)
under the proposed three multiple structure-view combination
strategies on DBLP and Image bag constrained graph data sets,
respectively. It can be seen that MSVBL consistently performs
better than baseline approaches when the number of selected
subgraph features is 20 or more. When the number of selected
subgraph features is less than 10, the performance of all
algorithms is comparable, mainly because a small number
of subgraph stumps (i.e., weak classifiers) leads to inferior
classification accuracy in early iterations.

Although the generally worst-performing MSV-TopK
obtains slightly better performance when the number of
subgraph candidates is sufficiently large (e.g., ≥80) under
the ensemble structure-view combination strategy, as shown
in Fig. 8(c), its subgraph evaluation measure relies on fre-
quency and is not suitable for graph-bag learning with multiple
structure views. This is mainly because their frequent sub-
graphs are not selected toward the distinction of complicated
objects in positive and negative graph bags.

Most of the time, the information theory-based MSV-IG
and discrimination-based MSV-gSSC subgraph evaluations
are comparable, as shown in Figs. 8(a) and 9(a)–(c).
However, gSSC-based approach significantly outperforms
IG-based MSVBL on the DBLP graph data, as shown
in Fig. 8(b) and (c), which can be attributed to the dis-
criminative criterion used in MSV-gSSC. Of the baselines,
HSIC-based MSV-gHSIC shows the best performance, except
in comparison with MSV-IG under the global structure-view
combination strategy on the DBLP graph-bag data in Fig. 8(b).
Although MSV-gHSIC obtains high accuracy during the last
few iterations, as shown in Figs. 8(c) and 9(c), this baseline
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TABLE I

BAG-LEVEL t -TEST RESULTS. A, B, C, AND D DENOTE MSVBL, LOCAL
MSV, GLOBAL MSV, AND ENSEMBLE MSV, RESPECTIVELY

Fig. 10. Graph-level comparisons on DBLP bag constrained graph data
set with different structure-view combination approaches. (a) Local MSV.
(b) Global MSV. (c) Ensemble MSV.

Fig. 11. Graph-level comparisons on image bag constrained graph data
set with different structure-view combination approaches. (a) Local MSV.
(b) Global MSV. (c) Ensemble MSV.

still cannot outperform the best achievement of the proposed
MSVBL.

To further demonstrate that MSVBL is indeed statistically
superior to the bag-level MSV baselines, we report the pair-
wise t-test (with confidence level α = 0.05) to validate the
statistical significance in Table I, where each entry (value)
denotes the p-value for a t-test between two algorithms, and
a p-value less than α = 0.05 indicates that the difference
is statistically significant. The results in Table I on both bag
constrained graph data sets confirm that MSVBL statistically
outperforms local, global, and ensemble MSV in all cases.

2) Comparison With Graph-Level Evaluation Criteria:
The results in each subfigure of Figs. 10 and 11 report the
comparison with graph-level evaluation criteria under a special
structure-view combination strategy. As expected, all graph-
level subgraph evaluation criteria under any structure-view
combination strategy are inferior to the proposed MSVBL,
which should contribute to the dual bag- and graph-level
mechanisms. In Table II, we report the pairwise t-test with
confidence level α = 0.05 to demonstrate the statistical perfor-
mance of the proposed MSVBL. The p-values (less than 0.05)
in each entry assert that MSVBL statistically and significantly
outperforms graph-level MSV-based learning methods MSV-
TopK, MSV-IG, MSV-gSSC, and MSV-gHSIC under all three
structure-view combination strategies.

TABLE II

GRAPH-LEVEL t -TEST RESULTS. A, B, C, AND D DENOTE MSVBL,
LOCAL MSV, GLOBAL MSV, AND ENSEMBLE

MSV, RESPECTIVELY

Fig. 12. Average results on DBLP graph bag data set with different structure-
view combination approaches at bag and graph levels. (a) Local MSV.
(b) Global MSV. (c) Ensemble MSV.

Fig. 13. Average results on image graph bag data set with different structure-
view combination approaches at bag and graph levels. (a) Local MSV.
(b) Global MSV. (c) Ensemble MSV.

When the number of subgraph features is sufficiently
large (e.g., more than 90), all baselines achieve similar per-
formance. The information theory-based approach MSV-IG
performs better than the approach at bag level, which is
inferior to other discriminative approaches in Section V-D1.
For instance, MSV-IG achieves better performance than dis-
criminative MSV-gSSC on the image graph bag data set,
as shown in Fig. 11(a)–(c). Moreover, MSV-IG is superior
to the best bag-level baseline MSV-gHSIC under the local
MSV strategy on the image graph bag data set [Fig. 11(a)],
and the global structure-view combination strategy on both
data sets [Figs. 10(b) and 11(b)]. This is possibly because
the graphs at graph level may provide more information than
bags. The graph-level methods directly propagate bag labels to
graphs inside each bag. This can lead to a situation in which
some graphs in the positive graph-bags may have incorrect
labels, which results in performance degradation for graph-
level MSV-gSSC and MSV-gHSIC (both need to utilize the
label information).

For the purpose of comparing the same subgraph evalua-
tion criteria under different estimation levels, we report the
average accuracy in Figs. 12 and 13, where each subfigure
[e.g., Fig. 13(a)] corresponds to a specific structure-view
combination strategy (e.g., local strategy), summarizing
both graph- and bag-level subgraph evaluation criteria.
In most cases, the subgraph evaluation criteria at bag-level are
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TABLE III

BEST ACCURACY RESULT OF MSVBL VERSUS DIFFERENT BAG- OR GRAPH-LEVEL SUBGRAPH EVALUATION CRITERIA
UNDER DIFFERENT STRUCTURE-VIEW COMBINATION STRATEGIES, OVER ITERATIONS (SUBGRAPHS)

VARYING FROM 1 TO 100 ON DBLP BAG CONSTRAINED GRAPH DATA

TABLE IV

BEST ACCURACY RESULT OF MSVBL VERSUS DIFFERENT BAG- OR GRAPH-LEVEL SUBGRAPH EVALUATION CRITERIA

UNDER DIFFERENT STRUCTURE-VIEW COMBINATION STRATEGIES, OVER ITERATIONS (SUBGRAPHS)
VARYING FROM 1 TO 100 ON IMAGE BAG CONSTRAINED GRAPH DATA

approximately 5% more accurate on both the DBLP and Image
graph bag data sets. The only exception in Fig. 12(c) is that
the graph-level TopK and IG approaches, under the ensemble
structure-view combination strategy, perform 2% better than
the related bag-level versions. By comparing the best accuracy
over 100 iterations or subgraphs in Tables III and IV, we find
that the bag-level subgraph evaluation criterion shows more
improvement over graph-level baselines.

3) Internal Performance Analysis in MSVBL: The above-
mentioned comparison results with the bag- and graph-level
baselines have demonstrated the superiority of the proposed
MSVBL. Indeed, because MSVBL includes two relatively
independent components: 1) dual bag- and graph-level mech-
anism and 2) discriminative subgraph candidate generation,
we want to carry out an internal performance study to better
understand the actual role of each component. To investigate
the efficiency of the dual level (unified bag- and graph-
level) framework used in MSVBL, we implement an MSVBL
version without using the graph level constraint, namely,
bMSVBL. In consideration of the discriminative subgraph
search used in MSVBL, another type of baseline dMSVBL
approach that does not utilize the bag constrained discrimina-
tive score for subgraph candidate generation is also imple-
mented to further demonstrate the distinct performance of
MSVBL.

The detailed experimental results are reported
in Fig. 14(a) and (b) for both the DBLP and Image
graph bag data sets. dMSVBL is inferior to MSVBL when

Fig. 14. Experimental results for MSVBL on (a) DBLP and (b) image graph
bag data set.

the subgraphs are relatively adequate (i.e., ≥40). On the other
hand, MSVBL constantly outperforms bMSVBL without
using the graph-level constraint. The results also show that
when the number of subgraphs is less than 40, dMSVBL
without bag constrained discriminative subgraph selection
achieves comparable performance to the proposed MSVBL,
which indicates that effective discriminative subgraph features
cannot be identified with an insufficient number of subgraphs.
This observation is consistent with the bag constrained
subgraph quality analysis in Section V-D4.

In addition, graph-level approaches directly propagate bag
labels to graphs. This transfers the problem to an up-to-date
graph learning task with multiple structure views [11], where
the learning approach MSVGL is also used for comparison
with the proposed MSVBL. MSVGL first explores an optimal
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TABLE V

PAIRWISE t -TEST RESULTS. A DENOTES THE PROPOSED MSVBL, AND
B, C, AND D DENOTE dMSVBL, bMSVBL, AND

MSVGL, RESPECTIVELY

Fig. 15. Bag constrained subgraph quality on image graph bag data set.

set of subgraphs as features to transfer MSV graphs into
feature-vectors, with an AdaBoost [42] classifier being trained
for final prediction. The results in Fig. 14(a) and (b) show
that, in spite of the acceptable performance MSVGL obtains,
it cannot reach the best performance achieved by MSVBL.

In Table V, we report the pairwise t-test with confidence
level α = 0.05. The p-values (less than 0.05) in each entry
confirm that MSVBL statistically significantly outperforms
bMSVBL, dMSVBL, and the state-of-the-art MSVGL.

4) Bag Constrained Subgraph Quality Analysis: To validate
the quality of the selected subgraph set, and check whether
the informative subgraphs chosen by the proposed MSVBL
can identify genuinely positive patterns, we report the results
of the Image graph bag data in Fig. 15. In this figure, the
x-axis denotes selected subgraph size. The y-axis denotes the
precision of positive patterns, calculated by selecting the “most
positive graph” for each positive bag (i.e., the graph has the
farthest distance from those graphs in negative bags based
on the subgraph feature graph representation (Definition 5).
At the beginning of the subgraph generation, both MSVBL and
dMSVBL have discriminative score criteria, so cannot obtain
an accurate positive graph prediction, mainly because a small
quantity of the subgraph set has very limited discriminative
power. As the size of the subgraph set grows, MSVBL continu-
ously increases and outperforms dMSVBL, which is attributed
to the bag constrained discrimination used for subgraph mining
in the proposed MSVBL approach.

5) Sensitivity to Noisy Graph Bag Data: To validate that the
proposed MSVBL is indeed robust and effective in handling
noise in the bag constrained graph data, we investigate the
noise sensitivity of MSVBL and baseline methods, including
dMSVBL, bMSVBL, and MSVGL (the state-of-the-art graph
learning task with multiple structure views) on both DBLP
and Image graph bag sets. Following similar settings as those

Fig. 16. Comparisons on noisy graph bag set with respect to different noise
levels (s values) on (a) DBLP and (b) image graph bag data set.

in [61] and [62], we manually inject noise into the graph bag
sets by randomly flipping the class labels (i.e., changing a
positive graph bag to negative, and vice versa) of s% graph
bags in the training data. As a result, the training set has 2*s%
graph bags with noisy labels (called noisy graph bags).

The results in Fig. 16 show that the proposed MSVBL is
more robust than dMSVBL, bMSVBL, and MSVGL. This
validates that combining cross structure-view subgraph feature
exploration and learning indeed help MSVBL to effectively
handle bag constrained graph data with noise. The increase
in noise levels results in a deterioration in accuracy for all
algorithms. This is because noise complicates the decision
boundaries and makes it difficult for the learner to sepa-
rate positive and negative classes. In contrast to MSVBL,
MSVGL seems to be the most sensitive to labeling noise and
suffers the most performance loss; this is because MSVGL
only considers the graph level and directly propagates bag
labels to graphs inside each bag. A mislabeled noisy graph
bag will generate several noisy graphs, which significantly
deteriorates the quality of the hyperplanes learned from the
data.

6) Time Complexity Analysis: All the methods used in this
paper have two major components: 1) subgraph mining and 2)
classifier building. The baseline approaches MSV-TopK and
MSV-IG under all three structure-view combination strate-
gies (i.e., local, global, and ensemble MSV) take O(gSpan) =
O(l(q)) for subgraph mining, where q is the number of
graphs, with l being the function based on the total number
of vertices and edges. In contrast, MSV-gSSC, MSV-gHSIC,
and the state-of-the-art MSVGL baseline approaches have
the complexity of O(l(q) + q2), where O(q2) reflects the
informative subgraph evaluation. All the MSV-based baseline
approaches use MIBoost as the classifier, where decision
dump is used as the weak learner. The computational cost
is O(mq), where m is the maximum number of iterations.
To sum up, the overall complexity of MSV-TopK and MSV-IG
is O(l(q)+ mq). MSV-gSSC, MSV-gHSIC. and the state-of-
the-art MSVGL will cost O(l(q)+ q2 + mq).

The time complexity of subgraph mining in the proposed
MSVBL will take O(l̄(q)) � O(l(q)), because the pro-
posed pruning strategy in Section IV-D significantly reduces
the subgraph search time. MSVBL uses a linear program-
ming for classification with O(m(p + q−)), where p is
the number of bags and q− is the number of graphs in
negative bags. Therefore, the corresponding overall complexity
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Fig. 17. Average CPU runtime comparison between MSVBL versus
uMSVBL, dMSVBL, bMSVBL, and MSVGL with respect to different
min_sup values on (a) DBLP and (b) image graph bag data set.

is O(l̄(q)+ m(p + q−)), O(l̄(q))� O(l(q)).
7) Efficiency of the Pruning Strategy: For the purpose of

evaluating the efficiency of the pruning module of MSVBL
as described in Section IV-D, we implement a uMSVBL
approach with no pruning module and compare its runtime
performance with MSVBL, from which we can demonstrate
the efficiency of the pruning module. In our implementation,
uMSVBL first exploits gSpan to mine a frequent subgraph set,
and then finds the optimal subgraph features by applying the
same criteria as MSVBL. We also report the runtime perfor-
mance for the MSV-based baselines and the state-of-the-art
MSVGL. Because the MSV-TopK and MSV-IG have similar
runtime performance, we use only one line MSV-TopK/IG
to represent them. The same case can be found in
MSV-gSSC/gHSIC.

The results in Fig. 17 show that increasing min_sup
values results in the decrease in runtime of unbounded
uMSVBL, MSV-TopK/IG, MSV-gSSC/gHSIC, and MSVGL,
mainly because a larger min_sup value reduces the number
of subgraph candidates for validation. By using a pruning
strategy (i.e., the constraints including threshold min_sup
and upper bound £̂gs = max(ζ−gs

, ζ+gs
) + f	s L̂ fs as shown

in Algorithm 1), MSVBL’s runtime performance is relatively
stable with respect to different min_sup values. This obser-
vation demonstrates the superiority on runtime performance
over the unbounded version, especially when min_sup is small.
Of all the MSV-based methods, MSV-gSSC/gHSIC consumes
more time than MSV-TopK/IG, because the calculation of
the discriminative subgraph criteria (gSSC/gHSIC) is more
complicated than IG or TopK. Overall, MSVGL is the most
time-consuming, because it requires extra time to ensure
minimum redundancy.

VI. CONCLUSION AND FUTURE WORK

This paper investigated a novel bag constrained graph
classification task under multiple structure views, where the
object for classification is a graph bag whose class label is only
available at the bag level (but not available for graphs inside
each bag). We argued that many real-world objects contain
structure information from different structure views, and MSV
bag constrained graph representation provides an effective way
to preserve structure and complicated features of the object for
learning. To build a learning model for MSV bag constrained

graph classification, we iteratively select the most discrimina-
tive subgraphs, across different structure views, to minimize
loss on a learning objective function. By joint regularization
across multiple structure views, and enforcing labeling con-
straints at bag and graph levels MSVBL is able to discover
the most effective subgraph features across all structure views
to directly optimize learning. The key contribution of this
paper, compared with existing works, is threefold: 1) a new
MSV bag constrained graph classification problem formulation
to advance the fundamental graph classification task; 2) a
cross structure-view search space pruning strategy; and 3) a
combined cross structure-view subgraph feature exploration
and learning method.

We believe that the proposed multiple structure-view-
based graph classification opens a new opportunity to expand
existing multi-instance learning and multiview learning to
increasingly popular graph applications. Although all tech-
niques proposed in this paper are based on using frequent
subgraphs to represent different structure views, the principle
of combining graph- and bag-level constraints can be extended
to many other types of approach, such as graph kernel and
graph matching [63] techniques.

REFERENCES

[1] X. Kong and P. S. Yu, “Semi-supervised feature selection for graph
classification,” in Proc. KDD, Jul. 2010, pp. 793–802.

[2] Z. Harchaoui and F. Bach, “Image classification with segmentation graph
kernels,” in Proc. CVPR, Jun. 2007, pp. 1–8.

[3] X. Kong and P. S. Yu, “Brain network analysis: A data mining per-
spective,” SIGKDD Explorations Newslett., vol. 15, no. 2, pp. 30–38,
Dec. 2014.

[4] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A survey,”
ACM Comput. Surveys, vol. 47, no. 1, Jul. 2014, Art. no. 10.

[5] A. Quek, Z. Wang, J. Zhang, and D. Feng, “Structural image clas-
sification with graph neural networks,” in Proc. DICTA, Dec. 2011,
pp. 416–421.

[6] R. Angelova and G. Weikum, “Graph-based text classification: Learn
from your neighbors,” in Proc. SIGIR, Aug. 2006, pp. 485–492.

[7] Z. Fu, G. Lu, K. M. Ting, and D. Zhang, “Learning sparse kernel
classifiers for multi-instance classification,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 24, no. 9, pp. 1377–1389, Sep. 2013.

[8] Z. Zhou, “Multi-instance learning: A survey,” Nanjing Univ.,
Nanjing, China, Tech. Rep., 2004.

[9] J. Wu, X. Zhu, C. Zhang, and P. S. Yu, “Bag constrained structure pattern
mining for multi-graph classification,” IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 10, pp. 2382–2396, Oct. 2014.

[10] J. Wu, S. Pan, X. Zhu, and Z. Cai, “Boosting for multi-graph classifi-
cation,” IEEE Trans. Cybern., vol. 45, no. 3, pp. 416–429, Mar. 2015.

[11] J. Wu, Z. Hong, S. Pan, X. Zhu, Z. Cai, and C. Zhang, “Multi-graph-
view subgraph mining for graph classification,” Knowl. Inf. Syst., vol. 48,
no. 1, pp. 29–54, 2016.

[12] M. Mayo and E. Frank, “Experiments with multi-view multi-instance
learning for supervised image classification,” in Proc. IVCNZ, Dec. 2011,
pp. 363–369.

[13] X. Wu et al., “Top 10 algorithms in data mining,” Knowl. Inf. Syst.,
vol. 14, no. 1, pp. 1–37, 2008.

[14] R.-H. Li, J. X. Yu, X. Huang, and H. Cheng, “Random-walk domination
in large graphs,” in Proc. ICDE, Apr. 2014, pp. 736–747.

[15] Y. Wang, W. Zhang, L. Wu, X. Lin, and X. Zhao, “Unsupervised
metric fusion over multiview data by graph random walk-based cross-
view diffusion,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 1,
pp. 57–70, Jan. 2017.

[16] K.-M. Lee, B. Min, and K. Goh, “Towards real-world complexity:
An introduction to multiplex networks,” Eur. Phys. J. B, vol. 88, no. 2,
p. 48, Feb. 2015.

[17] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,”
in Proc. ICDM, Dec. 2002, pp. 721–724.



3250 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 29, NO. 7, JULY 2018

[18] J. Huan, W. Wang, and J. Prins, “Efficient mining of frequent sub-
graphs in the presence of isomorphism,” in Proc. ICDM, Nov. 2003,
pp. 549–552.

[19] H. Fei and J. Huan, “Structure feature selection for graph classification,”
in Proc. CIKM, Oct. 2008, pp. 991–1000.

[20] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph
patterns by leap search,” in Proc. SIGMOD, Jun. 2008, pp. 433–444.

[21] H. Saigo, N. Krämer, and K. Tsuda, “Partial least squares regression for
graph mining,” in Proc. KDD, Aug. 2008, pp. 578–586.

[22] M. Thoma et al., “Near-optimal supervised feature selection among
frequent subgraphs,” in Proc. SDM, Apr. 2009, pp. 1076–1087.

[23] Y. Zhu, J. X. Yu, H. Cheng, and L. Qin, “Graph classification:
A diversified discriminative feature selection approach,” in Proc. CIKM,
Nov. 2012, pp. 205–214.

[24] X. Kong, W. Fan, and P. S. Yu, “Dual active feature and sample selection
for graph classification,” in Proc. KDD, Aug. 2011, pp. 654–662.

[25] X. Kong, A. B. Ragin, X. Wang, and P. S. Yu, “Discriminative feature
selection for uncertain graph classification,” in Proc. SDM, May 2013,
pp. 82–93.

[26] X. Kong and P. S. Yu, “gMLC: A multi-label feature selection framework
for graph classification,” Knowl. Inf. Syst., vol. 31, no. 2, pp. 281–305,
2012.

[27] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring
statistical dependence with Hilbert–Schmidt norms,” in Proc. ALT,
Oct. 2005, pp. 63–77.

[28] Y. Zhao, X. Kong, and P. S. Yu, “Positive and unlabeled learning for
graph classification,” in Proc. ICDM, Dec. 2011, pp. 962–971.

[29] S. Pan, J. Wu, X. Zhu, and C. Zhang, “Graph ensemble boosting for
imbalanced noisy graph stream classification,” IEEE Trans. Cybern.,
vol. 45, no. 5, pp. 954–968, May 2015.

[30] S. Pan, J. Wu, X. Zhu, G. Long, and C. Zhang, “Task sensitive feature
exploration and learning for multitask graph classification,” IEEE Trans.
Cybern., vol. 47, no. 3, pp. 744–758, Mar. 2017.

[31] N. Pržulj, “Biological network comparison using graphlet degree distri-
bution,” Bioinformatics, vol. 23, no. 2, pp. e177–e183, 2007.

[32] R. N. Lichtenwalter and N. V. Chawla, “Vertex collocation profiles:
Theory, computation, and results,” SpringerPlus, vol. 3, no. 1, p. 116,
2014.

[33] T. G. Dietterich, R. T. Lathrop, and T. Lozano-Pérez, “Solving the
multiple instance problem with axis-parallel rectangles,” Artif. Intell.,
vol. 89, nos. 1–2, pp. 31–71, 1997.

[34] J. Wang, “Solving multiple-instance problem: A lazy learning approach,”
in Proc. ICML, 2000, pp. 1119–1125.

[35] L. Bjerring and E. Frank, “Beyond Trees: Adopting MITI to learn rules
and ensemble classifiers for multi-instance data,” in Proc. AI, Dec. 2011,
pp. 41–50.

[36] D. T. Nguyen, C. D. Nguyen, R. Hargraves, L. A. Kurgan, and K. J. Cios,
“mi-DS: Multiple-instance learning algorithm,” IEEE Trans. Cybern.,
vol. 43, no. 1, pp. 143–154, Feb. 2013.

[37] V. Cheplygina, D. M. J. Tax, and M. Loog, “Multiple instance learning
with bag dissimilarities,” Pattern Recognit., vol. 48, no. 1, pp. 264–275,
2015.

[38] V. Cheplygina, D. M. J. Tax, and M. Loog, “Dissimilarity-based ensem-
bles for multiple instance learning,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 27, no. 6, pp. 1379–1391, Jun. 2015.

[39] M.-L. Zhang and Z.-H. Zhou, “Improve multi-instance neural networks
through feature selection,” Neural Process. Lett., vol. 19, no. 1, pp. 1–10,
2004.

[40] M.-L. Zhang and Z.-H. Zhou, “Adapting RBF neural networks to multi-
instance learning,” Neural Process. Lett., vol. 23, no. 1, pp. 1–26, 2006.

[41] X. Xu and E. Frank, “Logistic regression and boosting for labeled bags
of instances,” in Proc. PAKDD, May 2004, pp. 272–281.

[42] M. Telgarsky, “A primal-dual convergence analysis of boosting,”
J. Mach. Learn. Res., vol. 13, no. 1, pp. 561–606, Mar. 2012.

[43] X. Xu, “Statistical learning in multiple instance problems,”
Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato, Hamilton,
New Zealand, 2003.

[44] Y. Chen, J. Bi, and J. Z. Wang, “MILES: Multiple-instance learning via
embedded instance selection,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 12, pp. 1931–1947, Dec. 2006.

[45] Z. Fu, A. Robles-Kelly, and J. Zhou, “MILIS: Multiple instance learning
with instance selection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 5, pp. 958–977, May 2010.

[46] D. Zhang, F. Wang, L. Si, and T. Li, “Maximum margin multiple instance
clustering with applications to image and text clustering,” IEEE Trans.
Neural Netw., vol. 22, no. 5, pp. 739–751, May 2011.

[47] X.-S. Wei, J. Wu, and Z.-H. Zhou, “Scalable algorithms for multi-
instance learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 4,
pp. 975–987, Apr. 2016.

[48] B. Xie, Y. Mu, D. Tao, and K. Huang, “m-SNE: Multiview stochastic
neighbor embedding,” IEEE Trans. Syst. Man, Cybern. B, Cybern.,
vol. 41, no. 4, pp. 1088–1096, Aug. 2011.

[49] J. Yu, D. Liu, D. Tao, and H. S. Seah, “On combining multiple features
for cartoon character retrieval and clip synthesis,” IEEE Trans. Syst.
Man, Cybern. B, Cybern., vol. 42, no. 5, pp. 1413–1427, Oct. 2012.

[50] R. Gan and J. Yin, “Feature selection in multi-instance learning,” Neural
Comput. Appl., vol. 23, no. 3, pp. 907–912, 2013.

[51] J. Wu, X. Zhu, C. Zhang, and Z. Cai, “Multi-instance multi-graph dual
embedding learning,” in Proc. ICDM, Dec. 2013, pp. 827–836.

[52] J. Tang, X. Hu, H. Gao, and H. Liu, “Unsupervised feature selection for
multi-view data in social media,” in Proc. SDM, May 2013, pp. 270–278.

[53] J. Wu, S. Pan, X. Zhu, Z. Cai, and C. Zhang, “Multi-graph-view
learning for complicated object classification,” in Proc. IJCAI, Jun. 2015,
pp. 3953–3959.

[54] S. G. Nash and A. Sofer, Linear and Nonlinear Programming.
New York, NY, USA: McGraw-Hill, 1996.

[55] X. Luo, Z. Xu, J. Yu, and X. Chen, “Building association link network
for semantic link on Web resources,” IEEE Trans. Autom. Sci. Eng.,
vol. 8, no. 3, pp. 482–494, Jul. 2011.

[56] J. Li and J. Z. Wang, “Real-time computerized annotation of pictures,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 985–1002,
Jun. 2008.

[57] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2274–2282,
Nov. 2012.

[58] Z. Hong, C. Wang, X. Mei, D. Prokhorov, and D. Tao, “Tracking using
multilevel quantizations,” in Proc. ECCV, Sep. 2014, pp. 155–171.

[59] J. Wu, S. Pan, X. Zhu, C. Zhang, and X. Wu, “Positive and unlabeled
multi-graph learning,” IEEE Trans. Cybern., vol. 47, no. 4, pp. 818–829,
Apr. 2017.

[60] C. Jiang, F. Coenen, and M. Zito, “A survey of frequent subgraph mining
algorithms,” Knowl. Eng. Rev., vol. 28, no. 1, pp. 75–105, Mar. 2013.

[61] Y. Xiao, B. Liu, L. Cao, J. Yin, and X. Wu, “SMILE: A similarity-based
approach for multiple instance learning,” in Proc. ICDM, Dec. 2010,
pp. 589–598.

[62] W.-J. Li and D.-Y. Yeung, “MILD: Multiple-instance learning via
disambiguation,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 1,
pp. 76–89, Jan. 2010.

[63] M. Kivelä and M. A. Porter. (Jun. 2015). “Isomorphisms in multilayer
networks.” [Online]. Available: https://arxiv.org/abs/1506.00508

Jia Wu (M’16) received the Ph.D. degree in com-
puter science from the University of Technology
Sydney, Ultimo, NSW, Australia.

He is currently a Lecturer with the Department
of Computing, Faculty of Science and Engineering,
Macquarie University, Sydney. Prior to that, he was
with the Centre for Artificial Intelligence, Univer-
sity of Technology Sydney. His current research
interests include data mining and machine learning.
Since 2009, he has authored or co-authored over
60 refereed journal and conference papers, such as

the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, the
IEEE TRANSACTIONS ON CYBERNETICS, Pattern Recognition, the Inter-
national Joint Conference on Artificial Intelligence, AAAI Conference on
Artificial Intelligence, International Conference on Data Engineering, the
International Conference on Data Mining, SIAM International Conference on
Data Mining, and the Conference on Information and Knowledge Manage-
ment, in these areas.



WU et al.: MULTIPLE STRUCTURE-VIEW LEARNING FOR GRAPH CLASSIFICATION 3251

Shirui Pan (M’16) received the Ph.D. degree in
computer science from the University of Technology
Sydney (UTS), Ultimo, NSW, Australia.

He is currently a Research Associate with the
Centre for Artificial Intelligence, UTS. His current
research interests include data mining and machine
learning. To date, he has authored or co-authored
over 20 research papers in top-tier journals and
conferences, including the IEEE TRANSACTIONS

ON KNOWLEDGE AND DATA ENGINEERING, the
IEEE TRANSACTIONS ON CYBERNETICS, Pattern

Recognition, the International Joint Conference on Artificial Intelligence,
ICDE, the International Conference on Data Mining, and SDM.

Xingquan Zhu (SM’12) received the Ph.D. degree
in computer science from Fudan University, Shang-
hai, China.

He is currently an Associate Professor with the
Department of Computer and Electrical Engineering
and Computer Science, Florida Atlantic University,
Boca Raton, FL, USA, and a Distinguished Visit-
ing Professor (Eastern Scholar) with the Shanghai
Institutions of Higher Learning, Shanghai, China.
His current research interests include data mining,
machine learning, and multimedia systems. Since

2000, he has authored or co-authored over 200 refereed journal and conference
papers in these areas, including two Best Paper Awards and one Best Student
Paper Award.

Dr. Zhu was an Associate Editor of the IEEE TRANSACTIONS ON KNOWL-
EDGE AND DATA ENGINEERING from 2008 to 2012. Since 2014, he has
been an Associate Editor of the IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING.

Chengqi Zhang (SM’95) received the Ph.D. degree
from The University of Queensland, Brisbane, QLD,
Australia, in 1991, and the D.Sc. degree (Higher
Doctorate) from Deakin University, Geelong, VIC,
Australia, in 2002.

Since 2001, he has been a Professor of Information
Technology with the University of Technology Syd-
ney (UTS), Ultimo, NSW, Australia, where he has
been the Director of the UTS Priority Investment
Research Centre for Quantum Computation and
Intelligent Systems since 2008. His current research

interests include data mining and its applications.
Dr. Zhang is a fellow of the Australian Computer Society. He is a General

Co-Chair of KDD 2015, Sydney, and the Local Arrangements Chair of IJCAI-
2017, Melbourne. He has served as an Associate Editor for three international
journals, including the IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING from 2005 to 2008.

Philip S. Yu (F’93) has spent most of his career with
IBM, Yorktown Heights, NY, USA, where he was
a Manager of the Software Tools and Techniques
Group, Watson Research Center. He is currently a
Distinguished Professor in computer science with
the University of Illinois at Chicago, Chicago, IL,
USA, where he also holds the Wexler Chair in
information technology. He has authored or co-
authored over 1,000 papers in refereed journals and
conferences. He holds or has applied for more
than 250 U.S. patents. His current research interests

include big data, data mining, data stream, database, and privacy.
Dr. Yu was a member of the IEEE Data Engineering Steering Committee.

He is a fellow of the ACM. He has received several IBM honors, including two
IBM Outstanding Innovation Awards, an Outstanding Technical Achievement
Award, two Research Division Awards, and the 94th plateau of Invention
Achievement Awards. He was the Editor-in-Chief of the IEEE TRANSAC-
TIONS ON KNOWLEDGE AND DATA ENGINEERING from 2001 to 2004.
He is the Editor-in-Chief of the ACM Transactions on Knowledge Discovery
from Data. He is on the Steering Committee of the IEEE Conference on
Data Mining and the ACM Conference on Information and Knowledge
Management.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


