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Abstract—Multi-instance learning (MIL) is a useful tool for tackling labeling ambiguity in learning because it allows a bag of instances to

share one label. Bagmapping transforms a bag into a single instance in a new space via instance selection and has drawn significant attention

recently. To date,most existingwork is based on the original space, using all instances inside each bag for bagmapping, and the selected

instances are not directly tied to anMIL objective. As a result, it is difficult to guarantee the distinguishing capacity of the selected instances in

the new bagmapping space. In this paper, we propose a discriminativemapping approach for multi-instance learning (MILDM) that aims to

identify the best instances to directly distinguish bags in the newmapping space. Accordingly, each instance bag can bemapped using the

selected instances to a new feature space, and hence any generic learning algorithm, such as an instance-based learning algorithm, can be

used to derive learningmodels for multi-instance classification. Experiments and comparisons on eight different types of real-world learning

tasks (including 14 data sets) demonstrate thatMILDMoutperforms the state-of-the-art bagmappingmulti-instance learning approaches.

Results also confirm thatMILDMachieves balanced performance between runtime efficiencyand classification effectiveness.

Index Terms—Multi-instance learning, instance selection, bag mapping, classification

Ç

1 INTRODUCTION

IN generic supervised learning, each training sample is an
instance associated with a class label (e.g., positive or neg-

ative), as shown in Fig. 1. By contrast, in multi-instance
learning (MIL), each training object is a bag that contains a
number of instances. A label is assigned to the bag, but not
to the individual instances, under the constraint that all the
instances in a negative bag are negative and at least one
instance in a positive bag should be positive. This is known
as the MIL assumption and is illustrated in Fig. 2.

Multi-instance learning was initially investigated by
Dietterich et al. [1] to capture the unstable characteristics and
complex behaviors that occur during drug activity prediction.
Because molecular activity can vary significantly or show
different behaviors in response to changing environments,
the feature values of a specific molecule can change when
observed in different experiments. An efficient way to acc-
ommodate such changing behaviors is to represent the
molecule as a bag of instanceswith each instance representing
one observed behavior of the molecule. If a molecule shows

positive/interested behavior in a particular experiment, the
bag is labeled as positive but, if no positive behavior is dem-
onstrated in any experiment, the bag is labeled as negative.
MIL’s performance in this unique setting suggested its effec-
tiveness for accommodating labeling ambiguity in other real-
world applications. For example, in content-based image
classification, each region of the image can be regarded as
an instance. An image can, therefore, be represented as a bag
containing a number of instances. If one region of the image
contains an object of interest (e.g., an animal), the image/bag
is labeled as positive [2], andMIL can be used to identify bags
containing objects of interest [3], [4]. Such an approach has
also been used for text categorization [5], sign language recog-
nition [6], saliency detection [7], graph mining [8], [9], [10],
web recommendation [11], and so on.

Existing MIL solutions [12], [13], [14], [15] can be roughly
divided into two categories: (a) updating a generic learning
algorithm to tackle label ambiguity problems, or (b) devel-
oping a learning paradigm specifically for multiple instance
learning. However, the performance of the above methods
deteriorates when there are a large number of instances in a
bag [3]. Using content-based image classification, again, as
an example, the total number of instances in a bag could be
extremely large if the image contains many regions. How-
ever, in reality, different regions/instances in a bag may
make different contributions to image classification and the
more informative the instances, the more information can
be provided to learning tasks. In this scenario, selecting the
most informative instances in each bag becomes a challeng-
ing problem for MIL [16].

One common approach is to convert multi-instance learn-
ing (bag learning) into a more traditional form of supervised
learning (single-instance learning). For example, one might
propagate the bag label to the instances inside the bag so that
a propositional classifier can be learned for bag classification
[17], [18]. However, transmitting the label of a positive bag
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would assign all the negative instances inside with incorrect
class labels. Alternatively, one instance could be used to rep-
resent each bag based on its statistic properties, known as
bag representation. In [19] three different types of summari-
zation approaches to bag representation were proposed—
arithmetic mean, geometric mean, and minimax. Wu et al.
[20] proposed a different method based on the distribution
of the negative bags and, in doing so, transformed all bags
into a set of instances in the same feature space, as shown in
Fig. 3. Although this type of single-instance representation
algorithm works reasonably well, it does discard most of the
instance information in each bag.

Bag mapping with instance selection is another proposed
approach, which represents each bag in a new feature space,
as shown in Fig. 4. Chen et al. [3] proposed an embedding
instance selection method that maps each bag into a new
feature space created from a hidden instance set, i.e., an
intermediate instance pool (IIP) constructed from a training
bag of instances. Following this IIP-based bag mapping
strategy, Fu et al. [16] proposed another bag mapping
method that selects a subset of instances for bag-level fea-
ture computation using the distribution of negative instan-
ces. The main difference between these two methods is the
construction of the IIP. The former approach chooses all the
training instances as the IIP, while the latter approach
selects a subset of the instance that is most likely to be posi-
tive from each positive bag according to the distribution of
the negative instances. Either way, a good instance selection
method may lead to better performance. According to the
above observation, Hong et al. [2] proposed selecting all the
instances from positive bags and the clustered instances in
negative bags as the IIP. The bag mapping methods that
rely on instance selection are able to prune the instance
space; however, it may be difficult to distinguish between
the instances in the new bag mapping space. Therefore,

designing efficient selection and instance pruning techni-
ques for discriminative bag mapping is important.

In this paper, we propose a direct discriminative mapping
approach for multi-instance learning (MILDM) that aims to
identify the instances that will make the bags maximally dis-
tinguishable in the new mapping space, as shown in Fig. 5.
Experiments and comparisons on eight different types of real-
world learning tasks (including drug activity prediction, con-
tent-based image classification, train bound challenge, muta-
genicity prediction, scientific publication retrieval, online
product evaluation, newsgroup categorization, and web
index recommendation) confirm the effectiveness of the pro-
posed design. The contributions of this paper are threefold.

� An instance evaluation criterion based on a given
bag is proposed as the instance pruning criterion.

� A discriminative bag mapping framework is pro-
posed for multi-instance learning.

� Eight various learning tasks (including 14 data sets)
are used to validate the generality of the MILDM.

The rest of the paper is organized as follows: in Section 2,
we review related work on instance selection-based MIL.
Section 3 outlines the proposed MILDM framework, fol-
lowed by experiments in Section 4. Section 5 discusses the
properties of the proposed MILDM, and we conclude the
paper in Section 6.

2 RELATED WORK

Multiple-instance learning is a variation of supervised learn-
ing [1]. Many real-world applications can be considered as
MIL problems, and a variety of MIL approaches [12], [13],
[14], [15], [21] exist to solve different MIL applications. Such
algorithms can be categorized into two major groups:
upgraded single-instance learners and specifically designed MIL
algorithms. The former learners are an adaption of existing sin-
gle-instance learning algorithms to support multi-instance
learning. Lazy learning citation-KNN and Bayesian-KNN
[22] extend the k-nearest neighbor algorithm (KNN) [23] to
multi-instance settings. Other approaches include: tree-based
multi-instance learning [24], multi-instance rule-based learn-
ing mi-DS algorithm [25], multi-instance kernel machine
MISMO [26], multi-instance logistic learning MILR [27],

Fig. 1. Traditional supervised learning: the labels (i.e.,þ or�) are available
for each instance (i.e., ball). The object for classification is an instance.

Fig. 2. Multi-instance learning: each bag (i.e., circle) consists of several
instances (i.e., balls) and labels (i.e., þ or �) are only available for bags.
The object for classification is an instance bag.

Fig. 3. Non-bag mapping approaches: Each bag is represented by an
instance or uses the mean value of all instances inside the bag in the
original feature space.

Fig. 4. Traditional bag mapping based on instance selection: Each bag is
represented by an instance in the new feature space via an intermediate
instance pool (IIP).

Fig. 5. Discriminative bag mapping: The informative instances are
selected as a discriminative instance pool to ensure that the bags in the
new mapping space can be easily distinguished.
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multi-instance ensemble learning MIBoost [28], and multi-
instance bag dissimilarity-based learning [29].

Specifically designed MIL algorithms use bag constraints
to reorganize the instances inside each bag into specific for-
mats for learning. Axis parallel hyper-rectangles, proposed
by Dietterich et al. [1], is an early approach of this type.
Diverse density (DD) [30] searches for a point in the feature
space by maximizing the diverse density function that
measures the co-occurrence of similar instances in different
positive bags. MIEMDD [31] is an improved multi-instance
DD approach that can convert a multi-instance framework
into a traditional single instance problem by employing the
EM strategy. MIOptimalBall [32] builds an optimal ball to
ensure that at least one instance in the positive bags is inside
the ball and all the negative instances are outside the ball.
Zhang et al. [33] proposed a novel multi-instance learning
framework from multiple information sources. Xiao et al.
[34] proposed a similarity-based classification framework
for multiple instance learning.

Amores [14] discussed vocabulary-based methods,
where a list of vocabulary stores information about all the
classes of instances in the training set, and this information
is used to first classify the instances in a new bag, then
perform the embedding of this bag. Vocabulary-based
approaches comprise four major groups: 1) histogram-based
methods use a function that maps each bag into a histogram
where each bin counts how many instances fall into a spe-
cific class of the vocabulary [13], [35], [36], [37]; 2) distance-
based methodsmap each bag into a vector space by providing
the lowest distance from a special class to any instance in
the bag [38], [39], [40], [41]. MILES [3] and MILIS [16] both
belong to this category; 3) attribute-based methods include a
mapping function that returns a vector which is a concate-
nation of the sub-vectors that summarize the attributes of
the instances that match a special class [42]; and 4) vocabular-
ies of bags-based methods form a vocabulary from the classes
of bags not the instances [43].

In reality, one potential problem that reduces the perfor-
mance of the above approaches is that learning usually has to
contend with a large number of instances for even moderate-
sized data sets [3]. In these cases, selecting the most informa-
tive instances to represent each bag becomes a challenging
problem [16]. A novel approach solving this issue is to use
the selected instances from the bags to convert the MIL prob-
lem into a standard single-instance learning task [3], [16],
[19], [20]. We call these methods “instance selection-based
MIL”, and they can be divided into two categories: non-bag
mapping approaches and bagmapping approaches.

2.1 Instance Selection-Based Non-Bag Mapping
The basic idea of non-bag mapping methods is to choose one
or multiple instances from each bag to represent the whole
bag. An intuitivemethod is to directly propagate the bag label
to all the instances inside the bag (i.e., using all instances to
represent the bag) [18]. Three other commonly used non-bag
mapping models include arithmetic mean, geometric mean
and max-min [19]. The first two models are based on the
assumption that each individual instance within a bag con-
tributes independently and equally to the bag label. The arith-
metic mean model simply calculates the arithmetic mean of
the instances for each bag, while the geometric mean model
calculates the geometric mean of the instances. This type of
simple non-bag mapping strategy was used in [44]. The max-
min model records both the minimum and maximum values

of each dimension for every bag [45]. A furthermethod, based
on the distribution of the negative bags, has also been pro-
posed as a non-bagmappingMILmethod [20]. After choosing
the representative instances from each bag, the MIL problem
is converted into a generic supervised learning problem so
that a conventional classifier can be applied to the new instan-
ces for learning. In reality, because most of the information
about the instances in a bag are discarded, non-bag mapping
methods tend to face the challenge of information loss and a
deterioration in classification performance.

2.2 Instance Selection-Based Bag Mapping
The fundamental idea of bag mapping approaches is to
choose a set of instance prototypes, i.e., an IIP, to map each
bag into a new feature space. Two representative methods
are MILES [3] and MILIS [16]. MILES does not define an
explicit mechanism for instance prototype selection because
the IIP is composed of all the instances in the training bags.
Once the IIP is formed, MILES maps each bag into a feature
space defined by the IIP using a bag-instance similarity mea-
sure. However, MILESmight potentially mapmulti-instance
learning into a high-dimensionality problem, because the
dimensions of the mapping feature space depend on the size
of IIP, i.e., the number of instances in training bags. To
address this issue, MILIS selects only one instance from each
positive bag to prune the instance space. The instance that is
most likely to be positive in each positive bag is selected for
the IIP, and this is determined by the likelihood of whether
an instance is positive using the distributions of all the
instances in negative bags. Once constructed, the IIP is used
to map each bag into a new bag-level feature space so that a
traditional classifier can be directly employed for further
learning. A further type of IIP construction that consists of all
the instances within all positive bags along with the cluster-
ing centers of instances in negative bags was proposed by
Hong et al. [2]. However, because IIP instance selection is not
directly tied to the underlying MIL learning problem, it is
difficult to guarantee that the selected instances will be dis-
tinguishable from each other in the new bagmapping space.

3 MIL WITH DISCRIMINATIVE BAG MAPPING

3.1 Preliminaries and Overall Framework
A bag Bi contains a number of instances, in which xi;j

denotes the jth instance in the ith bag. The class label of the
bag Bi is denoted by yi ¼ Y, with Y ¼ f�1;þ1g. The collec-
tion of all bag sets is denoted by B.

In the training procedure, all bags Bi are transformed
into Bf

i , a single instance in a new feature space, using
the discriminative instance pool (DIP), denoted as P.
Bf

i ¼ ½sðBi; x
f
1Þ; . . . ; sðBi; x

f
mÞ�, where sðBi; x

f
kÞ denotes the

similarity between bag Bi and the kth instance xfk as deter-
mined by the instance candidate xf

k 2 P. A transitional
supervised learning classifier, i.e., instance-based learning
algorithm IB1, is then trained on the instances in the new
feature space. In the testing phase, we first map each test
bag into a new instance based on the DIP obtained in the
training process. Then, the trained learning classifier is used
to predict the final class label. The most important part of
this process is finding the optimal DIP for bag mapping.

3.2 DIP Optimization
Given B with n bags, and an instance set X of size p col-
lected from all bags in B, our objective is to find a subset
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P � X using an instance selection matrix IP (a diagonal
matrix, diagðIPÞ ¼ dðPÞ), where dðPÞ is an indicator vector,
if xi 2 P, dðPÞi ¼ 1, or otherwise 0.

Accordingly, we define J ðPÞ as an instance evaluation
function to measure P as follows:

P� ¼ argmax
P�X
J ðPÞ s:t: jPj ¼ m; (1)

where j � j denotes the cardinality of the instance set, and m
is the number of instances to be selected from X (i.e., the
size of the DIP). The objective function in Eq. (1) states that
the instances selected for MIL P� should be maximally dis-
criminative in the new mapping space.

3.3 Discriminative Instance Pool Evaluation Criteria
To obtain the DIP with the discriminative power, we impose
a rule that the optimal DIP should have the following prop-
erties: (a) bag mapping must-link. Because each bag Bi is asso-
ciated with a class label (positive or negative), the selected
DIP should ensure that the bags Bf

i with the same label are
similar to each other in the mapping space; and (b) bag map-
ping cannot-link. Bags with different class labels in the map-
ping space should represent the disparity between them.
Accordingly, the DIP evaluation criteria can be measured as

J ðPÞ ¼ 1

2

X

i;j

KP
�
Bi;Bj

�
Qi;j; (2)

where KPðBi;BjÞ denotes the distance between two bags Bi

andBj in the newmapping space f based on theDIPP. Along
with matrix Q embedding the class label information, J ðPÞ
can represent level of discriminativeness in the mapping
space.More specifically,KPðBi;BjÞ can be formulated as

KPðBi;BjÞ ¼ kIPBfx
i � IPBfx

j k
2
; (3)

where B
fx
i , denoted in a similar way to Bf

i , uses all the
instances as the mapping instance pool. By defining the
label embedding matrix Q as

Qi;j ¼
�1=jAj; yiyj ¼ 1

1=jBj; yiyj ¼ �1;
�

(4)

where A ¼ fði; jÞjyiyj ¼ 1g denotes the bag mapping must-
link pairwise bag constraint sets and B ¼ fði; jÞjyiyj ¼ �1g
denotes the bag mapping cannot-link pairwise sets. We can
rewrite J ðPÞ in Eq. (1) as follows:

J ðPÞ ¼ 1

2

X

i;j

kIPBfx
i � IPBfx

j k
2
Qi;j

¼
X

i;j

ðBfx
i Þ>I>PIPBfx

i Qi;j �
X

i;j

ðBfx
i Þ>I>PIPBfx

j Qi;j

¼
X

i

ðBfx
i Þ>I>PIPBfx

i

X

j

Qi;j �
X

i;j

ðBfx
i Þ>I>PIPBfx

j Qi;j

¼
X

i

ðBfx
i Þ>I>PIPBfx

i Di;i �
X

i;j

ðBfx
i Þ>I>PIPBfx

j Qi;j

¼ trðI>PXfDX>f IPÞ � trðI>PXfQX>f IPÞ
¼ trðI>PXfðD�QÞX>f IPÞ
¼ trðI>PXfLX>f IPÞ
¼

X

x
f
k
2P

ff>k Lffk;

(5)

where trð�Þ denotes the matrix trace operator, Xf ¼
½Bfx

1 ; . . . ; Bfx
n � ¼ ½ff1; . . . ;ffp�> 2 fRgp�n, with n denoting the

size of bag. D, as a diagonal matrix, is generated from Q,
where Di;i ¼

P
j Qij. L is a Laplacian matrix generalized

from Q, denoted as L ¼ ½Li;j�n�n ¼ D�Q. By using function
fðxfk ; LÞ to denote ff>k Lffk, the original optimization problem
in Eq. (1) can be translated to maximize the sum of fðxf

k ; LÞ
with respect to optimal instance mapping set P as

max
P�X

X

x
f
k
2P

fðxf
k ; LÞ s:t: jPj ¼ m: (6)

To find the optimal instance set P that maximizes the crite-
rion defined in Eq. (1), we can calculate the score of each
instance (i.e., ff>k Lffk in X , then collect the top-m instances
as the final DIP.

Algorithm 1. DIP: Discriminative Instance Pool

Input:
Training bag data set B;
The instance set X collected from B;
The number of selected mapping instancem;

Output:
P ¼ fp1; . . . ; pmg: A set of mapping instances;

1: P ¼ ;; t ¼ 0;
2: Q Apply all bag labels in B to obtain the label

embedding matrix via Eq. (4).
3: L Apply Q to obtain the corresponding Laplacian

matrix.
4: for each instance xk in the X do
5: fðxk; LÞ  Apply Eq. (6) to measure the score.
6: if jPj 	 m or fðxk; LÞ > t, then
7: P  P S

xk;
8: if jPj 
 m, then
9: P  P=argminxk2Pfðxk; LÞ;
10: t ¼ minxk2Pfðxk; LÞ;
11: end for
12: return P;

Algorithm 1 sets out the proposed DIP exploration
approach. It starts with an empty instance set P ¼ ; and a
minimum score t ¼ 0 (line 1). The label embedding matrix
Q is calculated first, along with its corresponding Laplacian
matrix L (lines 2-3). Then, each instance xk 2 X is enumer-
ated, and its discriminative score fðxk; LÞ is calculated
based on matrix L, which embeds the label information. If
fðxk; LÞ is greater than the minimum discriminative score in
P as t, or the size of P is less than m (i.e., P is not full), xk is
selected as one of the items for P (lines 6-7). Otherwise, if P
overflows, the instance argminxk2Pfðxk; LÞwith the smallest
discriminative score is removed from P to maintain its size
(lines 8-9). Subsequently, the minimum discriminative score
t in P is updated (line 10). The loop continues until the final
optimal discriminative instance pool P is derived.

3.4 Bag Mapping via Discriminative Instance Pool
Once the DIP has been constructed using selected instances,
each bag needs to be mapped to a single instance in the new
space. Given a DIP P with m instances, Bi can be mapped
to a single instance Bf

i ¼ ½sðBi; x
f
1Þ; . . . ; sðBi; x

f
mÞ�, with

sðBi; x
f
kÞ denoting the similarity between the bag Bi and the

kth instance xf
k as

sðBi; x
f
kÞ ¼ max

xi;j2Bi

expð�kxi;j � xf
kk2=s2Þ; (7)
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where xi;j is the jth instance in the ith bag Bi, and s is
a predefined scaling factor. After each Bi 2 B is mapped to
Bf

i based on the optimal DIP, any kind of single-instance
learner (e.g., KNN) can be applied without constraint.

We design two types of discriminative bag mapping
approaches.

3.4.1 Global Discriminative Bag Mapping

This type of bag mapping methods calculate the score of
each instance in all bags and select the top-m instances as
the DIP.

� aMILGDM uses all the training bags to generate the
global DIP.

� pMILGDM only uses the positive bags.

3.4.2 Local Discriminative Bag Mapping

Local discriminative bag mapping approaches evaluate
every instance inside the bag and select one instance with
the highest discriminative score.

� aMILLDM selects the most discriminative instance
from each bag to obtain the local DIP.

� pMILLDM chooses the instance with the highest dis-
criminative score from each positive bag.

In short, the global MILDM, aMILGDM or pMILGDM,
measures the discriminative power of the instances across
the bags, while the local MILDM, aMILLDM or
pMILLDM, compares the discriminative scores inside
each individual bag. For global MILDM, the instances in
the DIP may come from the same bag, so only a few bags
might contribute to the learning procedure. By contrast,
when using the local MILDM, the instances in the DIP are
sourced from different bags. For simplicity, we also use
pMILDM to denote the bag mapping approach that only
evaluates positive bags (pMILLDM or pMILGDM), and
aMILDM to denote the approach that evaluates all bags
(aMILLDM or aMILGDM).

4 EXPERIMENTS

4.1 Experimental Settings
The DIP, once constructed, can be used to map a bag to an
instance by propagating the bag’s label to the newly
mapped instance. In this way, any supervised learning
approach could be applied to support MIL classification.
In our experiments, we use the instance-based learning
algorithm IB1. In keeping with [7], [29], [46], [47], we have
used the F -measure and area under ROC curve (AUC) as the
evaluation metrics to validate the effectiveness of the pro-
posed MILDM. The F -measure ¼ 2� P �R=ðP þRÞ com-
bines recall R and precision P . AUC performance is
calculated as E ¼ ½P0 � t0ðt0 þ 1Þ�=t0t1, where t0 and t1 are
the number of negative and positive instances, respectively.
P0 ¼

P
ri, with ri denoting the rank of the ith negative

instance in the ranked list. All reported results are obtained
through ten times 10-fold cross validation. The scaling
parameter s2 is set to 8 � 105, in keepingwith previousworks
[3], [18]. The m values for the instance selection-based bag
mapping approaches are derived as: the number of positive
bags for pMILGDM, pMILLDM, and pMILIS; the number of
all bags for aMILGDM, aMILLDM, and aMILIS; the number
of all instances for MILES; and the number of all instances in

positive bags plus the number of negative clusters for
MILFM (in [2], this cluster number is set as the number of
positive bags). All experiments are carried out on a Linux
cluster node with an Intel(R) Xeon(R) @3.33 GHZ CPU and
3GB fixedmemory.

4.2 Baseline Methods
We use the following instance selection-based MIL baseline
approaches from both non-bag mapping and bag mapping
perspectives for comparison.

4.2.1 Non-Bag Mapping Instance Selection

Approaches

In these approaches, a bag is directly represented by an
instance or multiple instances inside the bag in the original
feature space.

1. MILMR uses the mean of all instances inside each
bag as the bag representation [19], [48].

2. MILWA propagates the bag label to all the instances
inside the bag as the bag representation [17], [18].

3. MILIR uses the distribution of the negative bags to
select one instance to represent the bag [20].

4.2.2 Bag Mapping Instance Selection Approaches

In bag mapping approaches, each bag is mapped into a sin-
gle instance in the new feature space using an IIP con-
structed from the training bags.

4. MILES maps each bag into a feature space using all
the training instances for the IIP via a bag-instance
similarity measure [3].

5. pMILIS applies kernel density estimation (KDE) to
select one instance from each positive training bag
for the IIP, which is then used for further bag map-
ping [16].

6. aMILIS selects one instance from all the training bags
for the IIP (i.e., the most positive instance or the least
negative instance is selected from each positive bag
and negative bag, respectively), and the instance
selection strategy is the same as MILIS [16].

7. MILFM uses the all the instances in the positive bags
and the clustered instances in the negative bags for
the IIP [2].

4.3 Experimental Data Sets
Eight types of learning tasks across 14 data sets are used to
validate MILDM. Table 1 shows the statistics for each data
set. The original data sets for drug activity perdition, con-
tent-based image classification, newsgroup categorization,
and web index recommendation tasks can be found at
http://www.miproblems.org. The data sets for the train
bound challenge, and the mutagenicity prediction task are
available online at http://www.cs.waikato.ac.nz/~eibe/
multi_instance/. The scientific publication retrieval and
online product evaluation MIL data are available at http://
web.science.mq.edu.au/~jiawu/data/MIL/TKDE18.DATA.
zip. In the following, we briefly explain the domain knowl-
edge of each data set.

4.3.1 Drug Activity Prediction Data

The objective of drug activity prediction is to predict the
potency of the drug molecules on certain disease states. The
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data sets consist of descriptions of molecules. Each molecule
is represented as a bag. Low-energy shapes, or conforma-
tions of the molecule, are the instances in the bag, as shown
in Fig. 6. Because the bonds in molecules can rotate, each
molecule can exhibit many different shapes. The Musk data
sets (Musk1 and Musk2) [1] are the benchmark drug activity
prediction data used for MIL. In Musk2, all the low-energy
conformations of the molecules are used to generate the con-
formations. By contrast, the highly similar conformations are
discarded in Musk1. In both data sets, a feature vector is
explored for each conformation to illustrate its surface prop-
erties. During the learning procedure, amolecule is classified
as a musk only if at least one conformation inside has a
musky smell.Musk1 has 92 bags with a total of 476 instances.
Of the bags, 47 are positive and 45 are negative. Musk2 con-
tains 6,598 instances grouped into 102 bags, of which 39 are
positive and 63 are negative. The instances in both data sets
are described using a 166-dimensional feature vector.

4.3.2 Content-Based Image Classification Data

The content-based image classification MIL task determine
whether an image contains an object of interest, e.g., an
elephant or a tiger. This task is commonly used for MIL
performance evaluation [29], [49], [50]. Our data are col-
lected from the Corel data set [51]. All images in the set
have been pre-processed and segmented by the Blob-
world system [52]. Therefore, each image contains a set of
small regions, which are described in terms of their color,
texture, and shape characteristics (i.e., features). Each bag
represents one image, and if one or more regions (instan-
ces) inside a bag contain the object of interest, the bag is
labeled as positive, as shown in Fig. 7. In our experi-
ments, each data set (Elephant or Tiger) consists of 100
positive and 100 negative bags, with a total of 1,391 and
1,220 instances, respectively. Each instance is represented
by a 230-dimension feature vector.

4.3.3 Train Bound Challenge Data

The train bound challenge attempts to predict whether a
train is eastbound orwestbound. A train (bag) contains a var-
iable number of cars (instances) of different shapes carrying
different loads (features). Because a train’s direction is either
positive or negative under the MIL assumption, two train
bound MIL data sets [18], [19], [53] are used for evaluation.
The EastWest data uses 10 eastbound trains as the positive
bags, while the WestEast data uses 10 westbound trains as

positive bags. In other words, these two data sets have the
same learning problem, but the class labels are reversed.

4.3.4 Mutagenicity Prediction Data

The mutagenesis data sets [54] describe a relational issue
and have been widely used to explore inductive logic pro-
gramming (ILP) tasks [55]. Mutagenicity predictions for a
compound molecule are essentially predictions of carcino-
genesis and, as such, the ability to identify these molecules is
critical. Multiple instance learning frameworks have been
successfully used to tackle this problem. In particular, by
using the Proper toolbox [56], relational data can be repre-
sented as multiple instances in a bag by flattening the
corresponding structure into an individual table. A bag rep-
resents one compound molecule in the mutagenesis MIL
data sets, Atom and Bond, which contain all 1,618 atoms and
all 3,995 atom-bond tuples as their instances, respectively.
Each data set contains 125 positive and 63 negative bags.

4.3.5 Scientific Publication Retrieval Data

The DBLP data set consists of bibliographic data from the
field of computer science.1 Each record in DBLP, used in
this experiment, is a paper published in the fields of either
artificial intelligence (AI: IJCAI, AAAI, NIPS, UAI, COLT,
ACL, KR, ICML, ECML, and IJCNN) or computer vision
(CV: ICCV, CVPR, ECCV, ICPR, ICIP, ACM Multimedia,
and ICME). The data set forms an MIL learning task with
100 positive (AI) and 100 negative bags [9]. A “bag-of-
words” representation based on TFIDF [57] is used to con-
vert the abstract of a paper into an instance with 4,497 fea-
tures. Hence, each paper is a bag and each instance inside
the bag denotes either the paper’s abstract or the abstract of
a reference cited in the paper. A conceptual view of con-
structing a multi-instance bag is shown in Fig. 8. The objec-
tive is to predict whether a paper belongs to the field of AI

TABLE 1
Details of the Benchmark Data Sets

Data set Pos.bags Neg.bags Atts Insts Avg/bag Min/bag Max/bag

Musk1 47 45 166 476 5 2 40
Musk2 39 63 166 6,598 64 1 1,044
Elephant 100 100 230 1,391 6 2 13
Tiger 100 100 230 1,220 6 1 13
EastWest 10 10 24 213 10 4 16
WestEast 10 10 24 213 10 4 16
Atom 125 63 10 1,618 8 5 15
Bond 125 63 16 3,995 21 8 40
AICV 100 100 4,497 1,151 5 1 10
Food 200 200 1,517 2,097 5 1 10
News.rm 50 50 200 4,730 47 22 73
News.tpm 50 50 200 3,376 33 15 55
Web7 54 59 6,450 3,423 30 4 200
Web8 55 58 5,999 3,423 30 4 200

Fig. 6. Bag representation for the drug activity prediction task.

Fig. 7. Bag representation for the content-based image classification
task.

1. http://dblp.uni-trier.de/xml/
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or CV field using the abstract of each paper and the
abstracts of its references. It is worth noting that the nature
of AI and CV overlap in many aspects, such as machine
learning, optimization, and visual information retrieval,
which creates a challenging multi-instance learning task.

4.3.6 Online Product Evaluation Data

The online product evaluation task involves food reviews
using the Fine Foods data from the Stanford Network Data
Set Collection.2 The data consists of numerous food related
reviews from Amazon.com. Each review contains a prod-
uct ID, a reviewer ID, a product score on a scale of 1 to 5,
and detailed comments by the reviewer [58]. And each
food product may have received multiple reviews. A prod-
uct is considered interesting to other customers if one or
more of its core characteristics, such as durability or
affordability, has received an average review score 
 4
(very good). A score of < 4 across all reviews implies the
product is not favored by customers. Our goal is to use the
information in the review reports for online product evalu-
ation. We choose 400 food products (2,097 reviews/instan-
ces with 1,517 features), each of which has received
between 1 and 10 reviews, to form 200 positive bags (an
average score 
 4) and 200 negative bags (every score
< 4). An example of online product bag representation is
shown in Fig. 9.

4.3.7 Newsgroup Categorization Data

The data set we choose uses the corpuses of two news-
groups as a base (rec.motorcycles and talk.politics.mid-
east).3 Such types of data sets have been commonly used to
evaluate the role of multiple instance learning frameworks
[5], [29], [59]. In each news category, 3 percent of the posts
are randomly selected from a target newsgroup category
(e.g., rec.motorcycles) to generate the positive bags, along
with posts drawn uniformly from other newsgroup

categories. The articles are post-processed with stemming,
stop-word removal, and information-gain ranked feature
selection [60]. Then, the top 200 TFIDF [57] words are
selected as features to represent each post (instance). Ulti-
mately, each data set contains 100 bags with 50 being posi-
tive. The rec.motorcycles (shorten for News.rm) bag
consists of 4,730 instances, and the talk.politics.mideast
(shorten for News.tpm) bag contains 3,376 instances.

4.3.8 Web Index Recommendation Data

The web index recommendation task aims to recommend
interesting web index pages to a particular user based on
his or her preferences. Web pages from the Internet often
have rich information, which is represented as a title or a
brief summary with the details provided in linked pages. In
practice, users may only indicate their interest in a page and
not the specific content they prefer. For example, the techni-
cal web index page in Fig. 10 contains multiple concepts
(e.g., cell phones, scholarships, traveling, and Google), but
not all information on the page is likely to be of interest to
the user. Such an observation naturally raises a multi-
instance learning problem, where each web index page can
be regarded as a bag with the linked pages inside as the
instances. If one or more linked pages are of interest to the
user, the page is considered positive, otherwise negative.
The most frequent terms are explored as features to repre-
sent the instance/page.

4.4 Experimental Results
Tables 2-8 report the classification results in terms of F -mea-
sure and area under ROC curve with their standard devia-
tions for the drug activity prediction task on Musk1 and
Musk2, the content-based image classification task on Ele-
phant and Tiger, the train bound challenge task on EastWest
and WestEast, the mutagenicity prediction task on Atom

Fig. 8. Bag representation for the scientific publication retrieval task.

Fig. 9. Bag representation for the online product evaluation task.

Fig. 10. Bag representation for the web index recommendation task.

TABLE 2
Compared Results in Terms of F -Measure and AUC with Their

Standard Deviations for the Drug Activity Prediction Task

F -measure AUC

Musk1 Musk2 Musk1 Musk2

pMILGDM 0.857 � 0.111 0.753 � 0.105 0.859 � 0.106 0.800 � 0.108
aMILGDM 0.926 � 0.090 0.795 � 0.099 0.924 � 0.092 0.834 � 0.108
pMILLDM 0.935 � 0.096 0.853 � 0.085 0.935 � 0.101 0.879 � 0.110
aMILLDM 0.947 � 0.065 0.857 � 0.092 0.945 � 0.070 0.890 � 0.110
MILMR 0.854 � 0.100 0.644 � 0.103 0.835 � 0.108 0.697 � 0.109
MILWA 0.829 � 0.102 0.696 � 0.103 0.789 � 0.109 0.744 � 0.101
MILIR 0.748 � 0.102 0.675 � 0.104 0.703 � 0.105 0.732 � 0.103
MILES 0.863 � 0.100 0.756 � 0.102 0.846 � 0.103 0.801 � 0.103
pMILIS 0.805 � 0.106 0.800 � 0.109 0.817 � 0.103 0.835 � 0.106
aMILIS 0.826 � 0.103 0.769 � 0.103 0.826 � 0.104 0.813 � 0.102
MILFM 0.828 � 0.095 0.773 � 0.090 0.839 � 0.098 0.816 � 0.102

2. http://snap.stanford.edu/data/
3. http://people.csail.mit.edu/jrennie/20Newsgroups/
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and Bond, the scientific publication retrieval task on AICV,
the online product evaluation task on Food, the newsgroup
categorization on News.rm and News.tpm, and the web
index recommendation task on Web7 and Web8.

4.4.1 Comparisons with Non-Bag Mapping Instance

Selection MIL Approaches

Among all the non-bag mapping instance selection meth-
ods, MILWA shows the worst performance in most cases.
This is because MILWA assumes that all the instances in a
bag share the bag’s label. However, for a positive bag, at
least one instance inside is positive, i.e., not all its instances

must be positive. As a result, simply propagating the bag
label to all the instances inside deteriorates classification
performance. MILMR achieves a performance gain, mainly
because of the mean strategy implemented on the bags.
Nevertheless, for the drug activity prediction (e.g., Musk2
data) in Table 2, mutagenicity prediction (e.g., Bond data) in
Table 5, newsgroup categorization (e.g., News.t.p.m data)
in Table 7, and web index recommendation (e.g., Web8
data) in Table 8, the MILMR cannot achieve comparable
classification performance to MILIR. This is partly because
MILIR makes use of negative bag distribution. Overall, the
experiments show that, of the instance selection methods,
non-bag mapping methods do not perform as well as the
bag mapping methods.

TABLE 4
Compared Results in Terms of F -Measure and AUC with Their

Standard Deviations for the Train Bound Challenge Task

F-score AUC

EastWest WestEast EastWest WestEast

pMILGDM 0.857 � 0.109 0.842 � 0.109 0.850 � 0.106 0.850 � 0.106
aMILGDM 0.952 � 0.106 0.947 � 0.073 0.950 � 0.026 0.950 � 0.106
pMILLDM 0.800 � 0.103 0.588 � 0.107 0.800 � 0.079 0.650 � 0.108
aMILLDM 0.782 � 0.100 0.667 � 0.147 0.750 � 0.117 0.700 � 0.107
MILMR 0.667 � 0.101 0.632 � 0.115 0.650 � 0.101 0.650 � 0.132
MILWA 0.621 � 0.100 0.400 � 0.171 0.450 � 0.139 0.250 � 0.072
MILIR 0.500 � 0.102 0.353 � 0.126 0.500 � 0.131 0.450 � 0.144
MILES 0.600 � 0.102 0.600 � 0.130 0.600 � 0.115 0.600 � 0.115
pMILIS 0.696 � 0.106 0.632 � 0.126 0.650 � 0.128 0.650 � 0.149
aMILIS 0.526 � 0.104 0.571 � 0.134 0.550 � 0.133 0.550 � 0.145
MILFM 0.500 � 0.103 0.625 � 0.188 0.600 � 0.122 0.700 � 0.085

TABLE 3
Compared Results in Terms of F -Measure and AUC
with Their Standard Deviations for the Content-Based

Image Classification Task

F -measure AUC

Elephant Tiger Elephant Tiger

pMILGDM 0.857 � 0.066 0.770 � 0.089 0.865 � 0.074 0.770 � 0.067
aMILGDM 0.845 � 0.057 0.751 � 0.092 0.855 � 0.063 0.745 � 0.072
pMILLDM 0.828 � 0.070 0.730 � 0.074 0.840 � 0.082 0.760 � 0.080
aMILLDM 0.843 � 0.038 0.763 � 0.102 0.845 � 0.037 0.750 � 0.097
MILMR 0.774 � 0.104 0.714 � 0.102 0.755 � 0.091 0.700 � 0.103
MILWA 0.709 � 0.106 0.703 � 0.109 0.590 � 0.073 0.595 � 0.089
MILIR 0.741 � 0.101 0.609 � 0.096 0.710 � 0.098 0.615 � 0.088
MILES 0.769 � 0.089 0.720 � 0.089 0.775 � 0.089 0.720 � 0.090
pMILIS 0.796 � 0.102 0.589 � 0.099 0.810 � 0.099 0.665 � 0.092
aMILIS 0.788 � 0.101 0.737 � 0.092 0.785 � 0.098 0.750 � 0.102
MILFM 0.757 � 0.104 0.703 � 0.084 0.785 � 0.109 0.730 � 0.094

TABLE 5
Compared Results in Terms of F -Measure and AUC with Their

Standard Deviations for the Mutagenicity Prediction Task

F -measure AUC

Atom Bond Atom Bond

pMILGDM 0.891 � 0.114 0.856 � 0.102 0.861 � 0.086 0.785 � 0.104
aMILGDM 0.881 � 0.109 0.847 � 0.102 0.841 � 0.082 0.757 � 0.104
pMILLDM 0.881 � 0.086 0.859 � 0.111 0.812 � 0.060 0.773 � 0.103
aMILLDM 0.894 � 0.081 0.861 � 0.111 0.829 � 0.063 0.789 � 0.103
MILMR 0.825 � 0.111 0.797 � 0.103 0.733 � 0.115 0.720 � 0.103
MILWA 0.811 � 0.117 0.812 � 0.085 0.591 � 0.222 0.599 � 0.137
MILIR 0.820 � 0.108 0.821 � 0.093 0.749 � 0.112 0.745 � 0.101
MILES 0.879 � 0.119 0.847 � 0.095 0.801 � 0.103 0.757 � 0.102
pMILIS 0.829 � 0.116 0.824 � 0.101 0.761 � 0.117 0.747 � 0.103
aMILIS 0.827 � 0.114 0.821 � 0.100 0.765 � 0.114 0.742 � 0.105
MILFM 0.848 � 0.114 0.853 � 0.096 0.773 � 0.112 0.709 � 0.100

TABLE 6
Compared Results for the Scientific Publication Retrieval (AICV)

and Online Product Evaluation (Food) Tasks

F -measure AUC

AICV Food AICV Food

pMILGDM 0.764 � 0.107 0.565 � 0.101 0.720 � 0.097 0.613 � 0.087
aMILGDM 0.767 � 0.105 0.582 � 0.099 0.715 � 0.078 0.648 � 0.066
pMILLDM 0.806 � 0.027 0.455 � 0.037 0.820 � 0.053 0.623 � 0.049
aMILLDM 0.864 � 0.107 0.535 � 0.076 0.840 � 0.090 0.623 � 0.079
MILMR 0.436 � 0.022 0.450 � 0.069 0.565 � 0.046 0.580 � 0.075
MILWA 0.412 � 0.109 0.420 � 0.108 0.423 � 0.093 0.565 � 0.058
MILIR 0.445 � 0.099 0.450 � 0.087 0.555 � 0.079 0.580 � 0.081
MILES 0.667 � 0.103 0.497 � 0.052 0.655 � 0.100 0.560 � 0.035
pMILIS 0.699 � 0.106 0.377 � 0.079 0.725 � 0.102 0.567 � 0.060
aMILIS 0.760 � 0.097 0.492 � 0.064 0.765 � 0.090 0.555 � 0.079
MILFM 0.532 � 0.024 0.375 � 0.047 0.535 � 0.034 0.567 � 0.066

TABLE 7
Compared Results in Terms of F -Measure and AUC with Their
Standard Deviations for the Newsgroup Categorization Task

F -measure AUC

News.rm News.tpm News.rm News.tpm

pMILGDM 0.750 � 0.103 0.706 � 0.101 0.780 � 0.107 0.750 � 0.108
aMILGDM 0.767 � 0.115 0.733 � 0.101 0.800 � 0.101 0.760 � 0.108
pMILLDM 0.764 � 0.096 0.758 � 0.101 0.790 � 0.105 0.790 � 0.106
aMILLDM 0.651 � 0.113 0.713 � 0.097 0.700 � 0.105 0.750 � 0.107
MILMR 0.427 � 0.095 0.457 � 0.074 0.570 � 0.107 0.620 � 0.102
MILWA 0.447 � 0.098 0.490 � 0.091 0.505 � 0.102 0.505 � 0.101
MILIR 0.538 � 0.088 0.571 � 0.083 0.640 � 0.099 0.670 � 0.103
MILES 0.650 � 0.116 0.635 � 0.101 0.710 � 0.103 0.690 � 0.108
pMILIS 0.643 � 0.117 0.628 � 0.127 0.700 � 0.106 0.680 � 0.106
aMILIS 0.643 � 0.114 0.642 � 0.098 0.700 � 0.107 0.690 � 0.108
MILFM 0.651 � 0.101 0.659 � 0.106 0.700 � 0.101 0.710 � 0.103

TABLE 8
Compared Results in Terms of F -Measure and AUC with Their
Standard Deviations for the Web Index Recommendation Task

F -measure AUC

Web7 Web8 Web7 Web8

pMILGDM 0.667 � 0.109 0.660 � 0.106 0.704 � 0.105 0.680 � 0.101
aMILGDM 0.660 � 0.106 0.634 � 0.108 0.695 � 0.105 0.670 � 0.105
pMILLDM 0.689 � 0.069 0.703 � 0.095 0.752 � 0.103 0.756 � 0.107
aMILLDM 0.723 � 0.106 0.707 � 0.108 0.764 � 0.102 0.741 � 0.102
MILMR 0.661 � 0.102 0.647 � 0.102 0.595 � 0.107 0.564 � 0.091
MILWA 0.662 � 0.102 0.654 � 0.104 0.534 � 0.067 0.508 � 0.081
MILIR 0.649 � 0.097 0.468 � 0.101 0.570 � 0.087 0.629 � 0.082
MILES 0.595 � 0.101 0.571 � 0.103 0.602 � 0.108 0.600 � 0.105
pMILIS 0.518 � 0.086 0.512 � 0.105 0.627 � 0.066 0.639 � 0.100
aMILIS 0.667 � 0.102 0.661 � 0.102 0.665 � 0.103 0.656 � 0.109
MILFM 0.505 � 0.094 0.416 � 0.081 0.597 � 0.103 0.596 � 0.102
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4.4.2 Comparisons with Bag Mapping Instance

Selection MIL Approaches

Within the bag mapping instance selection methods, MILES
often outperforms MILFM, especially on the scientific publi-
cation retrieval task. As shown in Table 6, MILES achieves a
66.7 percent F -measure and a 65.5 percent AUC—much
higher than MILFM’s F -measure (53.2 percent) and AUC
(53.3 percent)—with similar observations for the other
learning tasks, like mutagenicity prediction (e.g., Atom) in
Table 5 and web index recommendation in Table 8. Such
superiority of MILES is mainly attributed to full use of the
instances for bag mapping. However, MILES cannot achieve
better classification performance than MILFM in some
cases, for instance, on the train bound challenge WestEast

data in Table 4. This suggests that not all instances contrib-
ute to the final classification performance. Although MILFM
uses the clusters in negative bags to overcome this issue, it
still uses all the instances in the positive bags without fur-
ther improvement. Accordingly, MILIS (pMILIS or aMILIS),
which uses an instance pruning strategy based on kernel
density estimation, performs better than the other two bag
mapping approaches, i.e., MILES with non-instance prun-
ing and MILFM with partial instance pruning.

4.4.3 Comparisons with Discriminative Bag Mapping

MIL Approaches

Compared to MIL methods with instance selection, the
four approaches based on discriminative bag mapping

Fig. 11. Bag mapping performance comparisons with different sizes of IIP or DIP for drug activity prediction: (a) Musk1 and (b) Musk2.

Fig. 12. Bag mapping performance comparisons with different sizes of IIP or DIP for content-based image classification: (a) Elephant and (b) Tiger.

Fig. 13. Bag mapping performance comparisons with different sizes of IIP or DIP for train bound challenge: (a) EastWest and (b)WestEast.

Fig. 14. Bag mapping performance comparisons with different sizes of IIP or DIP for mutagenicity prediction: (a) Atom and (b) Bond.
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demonstrate better performance on all data sets. For exam-
ple, the proposed local discriminative bag mapping
aMILLDM, which is based on all bags, achieves the highest
classification performance for drug activity prediction (e.g.,
Musk1) in Table 2, mutagenicity prediction (e.g., Bond) in
Table 5, and web index recommendation (e.g., Web7) in
Table 8. The proposed global discriminative bag mapping
aMILGDM based on all bags and pMILGDM based on only
positive bags achieve the highest classification performance
for content-based image classification in Table 3 and the
train bound challenge in Table 4. aMILGDM and
aMILLDM’s performance is comparable. In summary,
aMILDM (aMILGDM or aMILLDM), which constructs the
DIP using all bags, outperforms pMILDM (pMILGDM or
pMILLDM) using only positive bags, because more infor-
mation is used to construct the DIP.

4.4.4 Bag Mapping Performance Comparisons w.r.t.

Different Size of IIP or DIP

In terms of the transitional bag mapping MIL methods,
MILIS with different sizes of IIP (aMILIS with positive bags
or pMILIS with all bags) achieves a range of classification
performance results with both the global or local discrimi-
native bag mapping MIL methods. Figs. 11-17 report the
bag mapping classification performance with respect to dif-
ferent sizes of IIP or DIP. The number of instances used in

bag mapping is varied from one to the number of bags pro-
vided for each data on the eight different types of learning
tasks. As the number of instances increases, the classifica-
tion performance improves. That is because the new instan-
ces provide further information that is useful to the bag
mapping. When the instances in the IIP or DIP are not ade-
quate, the rising trend in performance is insignificant. The
train bound challenge data with only 20 bags is a good
example of this. MILES and MILFM achieve comparable
F -measure and AUC scores but are inferior to MILIS, which
uses only one instance from each bag for bag mapping (i.e.,
instance pruning). For instance, when the size of the IIP is
greater than 20, MILIS continuously outperforms MILES
and MILFM. However, all the three types of bag mapping
approaches, including the state-of-the-art MILFM, cannot
match the performance of the proposed discriminative bag
mapping method in either of its local (MILLDM) or global
(MILGDM) variants.

Fig. 18 reports the maximum and average classification
performance for the local and global DIP-based discrimina-
tive bag mapping MILDM compared to traditional IIP bag
mapping approaches. Figs. 18a.1 and 18a.2 show the max
and average F -measure for a range of IIP/DIP sizes.
Figs. 18b.1 and 18b.2 show the same in terms of AUC.
According to the results, our proposed MILLDM and
MILGDM show more improvement over the other three

Fig. 15. Bag mapping performance comparisons with different sizes of IIP or DIP for newsgroup categorization: (a) News.rm and (b) News.tpm.

Fig. 16. Bag mapping performance comparisons with different sizes of IIP or DIP for (a) scientific publication retrieval and (b) online product
evaluation.

Fig. 17. Bag mapping performance comparisons with different sizes of IIP or DIP for web index recommendation: (a) Web7 and (b) Web8.
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Fig. 18. Maximum and average classification performance (F -measure and AUC) for the local and global DIP-based discriminative bag mapping
methods (MILLDM and MILGDM) versus traditional IIP bag mapping approaches, MILES, MILIS, and MILFM, for eight different types of multiple
instance learning tasks across 14 MIL data sets.

TABLE 9
Pairwise t-Test Results for MILDM (Global MILGDM or Local MILLDM) versus General Bag Mapping MIL Methods on Eight Types of

Learning Tasks across 14 Data Sets

(a) t-test on F -measure

Data Sets A1-A2 A1-B A1-C A1-D A2-B A2-C A2-D

Musk1 6.43e-09 4.89e-07 2.75e-17 8.11e-07 1.56e-20 5.35e-27 4.33e-21
Musk2 6.91e-25 2.76e-07 1.80e-01 1.12e-05 8.28e-35 2.86e-19 1.36e-08
Elephant 1.07e-17 3.13e-44 2.54e-48 3.18e-53 1.25e-39 6.25e-41 3.59e-38
Tiger 8.18e-08 1.10e-35 4.87e-31 5.93e-41 4.78e-30 1.33e-35 1.16e-32
EastWest 4.18e-05 3.09e-09 1.25e-07 4.95e-10 5.14e-07 1.19e-05 2.80e-08
WestEast 9.63e-08 1.59e-11 1.25e-10 1.12e-12 3.60e-06 1.05e-08 6.46e-08
Atom 1.55e-02 4.88e-25 4.99e-66 1.24e-13 4.24e-23 4.11e-61 1.51e-13
Bond 3.65e-05 1.58e-26 3.66e-11 1.29e-15 1.07e-31 2.64e-18 4.27e-30
AICV 1.35e-24 1.11e-11 3.64e-20 1.51e-26 2.79e-27 8.59e-40 5.52e-43
Food 1.13e-01 8.87e-29 3.24e-22 9.64e-31 4.44e-28 9.38e-22 2.06e-28
News.rm 2.33e-10 4.69e-28 3.87e-29 4.11e-29 5.34e-22 1.29e-31 1.06e-21
News.tpm 3.67e-03 8.73e-27 1.34e-17 5.92e-28 1.25e-17 3.45e-25 5.57e-20
Web7 3.02e-04 4.68e-27 4.69e-23 3.70e-29 5.52e-32 2.75e-30 1.50e-31
Web8 9.83e-09 1.21e-31 3.94e-18 3.25e-29 1.02e-40 2.97e-22 9.61e-35

(b) t-test on AUC

Data Sets A1-A2 A1-B A1-C A1-D A2-B A2-C A2-D

Musk1 1.66e-07 2.27e-09 7.61e-15 1.44e-06 8.41e-23 6.46e-27 3.71e-19
Musk2 3.93e-25 6.44e-08 1.60e-01 6.42e-06 9.19e-35 3.07e-19 3.98e-09
Elephant 8.58e-17 1.35e-48 7.75e-54 5.51e-49 1.04e-42 2.39e-45 5.13e-36
Tiger 8.74e-02 4.40e-31 1.67e-24 8.27e-38 1.90e-42 1.56e-35 1.62e-37
EastWest 1.49e-06 6.55e-11 1.89e-09 1.88e-12 1.81e-07 2.67e-06 8.92e-09
WestEast 1.83e-06 5.84e-10 2.60e-10 1.59e-12 1.81e-07 1.05e-08 1.96e-08
Atom 1.70e-05 5.12e-36 9.87e-62 2.41e-22 1.34e-34 3.62e-61 7.35e-19
Bond 2.04e-05 1.49e-24 6.82e-12 2.75e-14 8.94e-30 4.44e-20 1.11e-29
AICV 1.87e-30 1.38e-01 9.08e-09 2.01e-10 6.56e-24 5.13e-38 4.26e-39
Food 8.07e-03 8.38e-28 4.98e-27 7.45e-27 3.24e-26 1.73e-33 1.55e-33
News.rm 6.51e-09 1.75e-26 4.22e-26 4.41e-30 3.13e-24 5.58e-28 1.45e-25
News.tpm 3.48e-03 8.79e-30 7.35e-16 8.39e-27 1.37e-21 1.26e-26 1.19e-22
Web7 5.73e-17 7.82e-27 2.20e-25 3.05e-26 8.41e-34 7.42e-37 5.42e-40
Web8 1.53e-17 5.06e-29 3.12e-16 6.98e-27 5.59e-38 2.06e-23 1.11e-31

A1 and A2 denote the proposed DIP-based global and local discriminative bag mapping MILGDM and MILLDM, respectively. B, C, and D denote IIP-based
MILES, MILIS, and MILFM, respectively.
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baselines, and a comparable result between the two. On aver-
age, MILDM is 5-25 percent more accurate for classification
performance in terms of F -measure than the traditional
IIP bag mapping methods (e.g., around 20 percent improve-
ments on the train bound challenge task and the online prod-
uct evaluation task, and 10 percent improvements on the
newsgroup categorization task and the web index recom-
mendation task as shown in Fig. 18a). Similar observations
can be found in terms of AUC classification performance in
Fig. 18b. This demonstrates that, by using the DIP evaluation
criteria, MILDM is able to find the most effective instances to
map the instance bags for classification.

4.4.5 Statistical Significance Comparisons

In reality, however, MILDM may not always achieve good
performance. For example, the global MILGDM does not
perform as well as MILFM when the size of the IIP/DIP
drops to between 20 and 24 (Figs. 11b.1 and 11b.2). To con-
firm that this observation has no effect on the superiority of
the discriminative bag mapping approaches, we conduct
t-test results on the MILDM in Table 9, and summarize a
two-tailed t-test between the MILDM and the traditional
bag mapping approaches, MILES, MILIS, and MILFM. All
the pairwise t-test values are calculated with a 95 percent
level of confidence (a ¼ 0:05). Each value in Table 9 is the
p-value for a pairwise t-test between two learning algo-
rithms. According to statistical theory, the proposed
MILDM has achieved a statistically significant improve-
ment compared to the other bag mapping methods if the
p-value is less than 0.05.

From the second column in each subtable (e.g., Table 9a),
the difference between MILLDM andMILGDM is statistically
significant with most of the p-values at less than 0.05. The
exceptions are their performance on the online product

evaluation task in terms of F -measure, and the content-based
image classification task (e.g., Tiger) in terms of AUC perfor-
mance where their performance is comparable. Compared to
the traditional bagmapping approaches,MILDMoutperforms
MILES,MILIS, and the state-of-the-artMILFS in all cases.

4.4.6 Time Complexity Analysis

The main components of the MILDM’s time complexity
include constructing the DIP and bag mapping. Construct-
ing the DIP for aMILDM costs Oðpn2Þ, where p represents
the number of instances in all bags. The bag mapping proce-
dure costs OðnpdÞ, where d denotes the dimensions of
the data. By contrast, pMILDM has a complexity of
Oðpþn2 þ nþpdÞ, with pþ denoting the number of instances in
the positive bags and nþ denoting the size of positive bags.
Table 10 summarizes the time complexities of the other bag
mapping approaches with instance selection. MILES uses all
the instances as the IIP for bagmappingwithOðp2dÞ computa-
tional complexity. pMILIS requires a kernel density estimation
based on the distribution of the negative instances to select one
instance from the positive bag for the IIP with Oðp�pþdÞ com-
plexity, where p� denotes the number of instances in the nega-
tive bags. Together with the bag mapping complexity
OðnþpdÞ, pMILIS’s total time complexity isOðp�pþdþ nþpdÞ.
Similarly, aMILIS costs Oðp�pdþ npdÞ. MILFM uses the
instances in positive bags and the clusters of negative instan-
ces, which costs Oðp�nþtþ pþdþ nþdÞ, where the t denotes
the number of iterations during the clustering, Oðp�nþtÞ rep-
resents the clustering process, and Oðpþdþ nþdÞ represents
the bagmapping.

4.4.7 Efficiency Comparisons

Table 11 reports the average CPU runtime performance of
the training phase on the eight different multi-instance

TABLE 10
Time Complexity: Bag Mapping Instance Selection Approaches

pMILDM aMILDM MILES pMILIS aMILIS MILFM

Oðpþn2 þ nþpdÞ Oðpn2 þ npdÞ Oðp2dÞ Oðp�pþdþ nþpdÞ Oðp�pdþ npdÞ Oðp�nþtþ pþdþ nþdÞ

TABLE 11
Average CPU Running Time for the Compared Algorithms in the Training Phase

on Eight MIL Learning Tasks (Measured in Milliseconds)

Musk2 Elephant EastWest Bond AICV Food News.rm Web7

# of Ins: 6,598
# of Att: 166

# of Ins: 1,391
# of Att: 230

# of Ins :213
# of Att: 24

# of Ins :3,995
# of Att:16

# of Ins :1,151
# of Att: 4,497

# of Ins :2,097
# of Att: 1,517

# of Ins :4,730
# of Att: 200

# of Ins :15,000
# of Att: 26

pMILGDM 3,241 1,015 72 1,171 8,424 11,080 6,540 99,467
aMILGDM 19,930 1,726 82 1,544 16,348 20,058 12,382 201,491
pMILLDM 3,302 1,016 71 1,142 8,433 11,236 6,474 99,459
aMILLDM 19,815 1,712 76 1,502 16,513 20,089 12,393 200,234
MILMR 314 534 92 175 43,621 13,291 359 71,175
MILWA 77,605 5,563 142 3,049 30,887 115,922 45,185 2,183,526
MILIR 13,988 714 87 414 8,775 9,547 5,117 93,861
MILES 17,169 1,838 148 2,752 12,411 17,405 10,488 186,948
pMILIS 2,441 613 95 501 4,442 5,140 2,775 48,910
aMILIS 14,185 936 114 633 8,522 9,465 5,322 98,410
MILFM 35,070 4,964 185 2,611 69,889 49,227 16,308 492,891
MISVM 121,326 19,070 278 24,613 110,461 215,016 21,225 7,271,408
MILR 80,693 15,686 108 1,542 5,513 125,503 2,530 2,629,114
MIEMDD 1,182,981 667,648 1,324 12,730 134,413 3,439,775 217,528 1,511,795
MIBoost 21,641 4,509 101 1,272 239,730 68,150 11,470 1,890,149
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learning tasks. Each data set, e.g., Food, represents a specific
MIL learning task, e.g., online product evaluation. When the
number of instances or attributes is small, as in the EastWest
data with 24 attributes or the Bond data with 16 attributes,
the runtime between the proposed pMILDMwith only posi-
tive bags and aMILDM with all bags is similar. However, as
the number of instances or attributes increases, pMILDM
achieves a much better runtime performance than aMILDM.
This is understandable given pMILDM uses fewer bags to
construct the DIP.

The runtime performance of non-bag mapping
approaches slightly outperforms the bag mapping
approaches. This is largely because the bag mapping proc-
essing requires extra learning time. However, the proposed
MILDM takes less runtime than the non-bag mapping with
a large amount of data. For example, pMILDM’s runtime on
scientific publication retrieval AICV data is around 8,000
milliseconds, whereas MILMR and MILWA takes four time
as long (about 32,000 milliseconds). Among all bag mapping
methods, the state-of-the-art MILFM has the worse runtime
performance, mainly attributed to the time-consuming clus-
tering procedures on the negative bags. Compared to the
traditional bag mapping approach MILIS, pMILDM
achieves comparable runtime performance. Furthermore,
pMILDM significantly outperforms MILES for runtime effi-
ciency, because MILES uses all the instances in the bags to
build an IIP for mapping. By contrast, pMILDM only selects
one instance from each positive bag to build the DIP. In
summary, the discriminative bag mapping MILDM
achieves a good balance between runtime efficiency and
classification effectiveness.

Table 12 reports the average CPU runtime performance
for the testing phase. After the DIP or IIP is constructed in
the training phase, the instance selection bag mapping
methods directly use the DIP or IIP for test data bag map-
ping. In this case, the instance selection-based methods with
the same sized DIP or IIP (e.g., pMILGDM, pMILLDM and
pMILIS) have the same testing time. In other words, among
the bag mapping instance selection-based algorithms, the

corresponding testing time depends on m (the size of DIP
or IIP). The larger them, the more testing time the algorithm
needs. For instance, MILES has the worse runtime perfor-
mance among the bag mapping methods because it uses all
the instances for mapping.

5 DISCUSSION

5.1 MILDM with Different Base Classifiers
To demonstrate that MILDM is effective for different
learning algorithms, four representative classifiers are
used for validation: k-nearest neighbors (IB1), naive
Bayes (NB), decision trees (J48), and support vector
machines (SMO). Table 13 reports the maximum AUC
achieved by these four versions of MILDM. The results
show that MILDM using IB1 achieves the highest perfor-
mance, the alternative base classifiers achieve more or
less comparable classification performance on all three
data sets. However, none of the alternatives produces
consistently better performance on the three data sets
than the MILDM with IB1.

5.2 Comparisons to MIL without Instance Selection
Our experiments show that MILDM achieves the best per-
formance of all the instance selection MIL methods. In
this section, we report the performance of MILDM com-
pared to four MIL algorithms—MISVM [49], MILR [27],
MIEMDD [31], and MIBoost [28] (Table 14). MISVM is an

TABLE 12
Average CPU Running Time for the Compared Algorithms in the Testing Phase

on Eight MIL Learning Tasks (Measured in Milliseconds)

Musk2 Elephant EastWest Bond AICV Food News.rm Web7

# of Ins: 6,598
# of Att: 166

# of Ins: 1,391
# of Att: 230

# of Ins :213
# of Att: 24

# of Ins :3,995
# of Att:16

# of Ins :1,151
# of Att: 4,497

# of Ins :2,097
# of Att: 1,517

# of Ins :4,730
# of Att: 200

# of Ins :15,000
# of Att: 26

pMILGDM
205 282 60 242 1,305 1,461 216 2,002pMILLDM

pMILIS

aMILGDM
358 394 80 295 1,730 2,868 321 3,713aMILLDM

aMILIS

MILMR 113 232 42 173 1,846 2,349 125 7,985
MILWA 3,605 482 75 486 1,961 4,287 812 31,547
MILIR 1,554 252 87 200 1,135 1,936 653 10,507
MILES 2,037 377 47 460 1,539 2,809 1,250 20,850
MILFM 852 189 29 345 792 1,568 657 10,925
MISVM 508 112 14 117 298 628 280 17,525
MILR 96 115 18 108 84 31 15 143
MIEMDD 86 79 72 75 141 117 84 300
MIBoost 129 148 15 128 2,314 511 262 17,463

TABLE 13
Performance Comparison (AUC) When Using Different
Supervised Learning Algorithms as the Base Classifiers

in MILDM

Elephant Bond AICV

MILDM+IB1 0.865 � 0.074 0.789 � 0.103 0.840 � 0.090
MILDM+NB 0.783 � 0.071 0.713 � 0.059 0.782 � 0.101
MILDM+SMO 0.820 � 0.094 0.754 � 0.082 0.806 � 0.032
MILDM+J48 0.814 � 0.115 0.764 � 0.135 0.775 � 0.108
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implementation of support vector machines [61] for MIL,
MILR is a logistics-based learning method, MIEMDD is
an improved diverse density approach, and MIBoost is
an algorithm inspired by AdaBoost. Although MISVM,
MILR, MIEMDD, and MIBoost achieve good performance,
they still cannot reach the best performance of the pro-
posed discriminative bag mapping MILDM. In addition,
the CPU runtime comparisons on training and test
phrases are respectively reported in Tables 11 and 12. The
results confirm that the proposed MILDM requires less
runtime than the MIL without instance selection on a
large amount of data.

5.3 Scalability of MILDM
We compare the proposed methods with the non-bag map-
ping instance selection approaches (MILMR, MILWA and
MILIR) and the bag mapping instance selection approaches
(MILES, pMILIS, aMILIS and MILFM) on the large-scale
“Speaker” data set which includes 430 bags with 583,600

instances. The numbers of instances per bag are 1,357. More
details are available in [62]. With this data, 70 percent of the
data is used for training with the remainder for testing.
Table 15 shows the F -measure and AUC classification per-
formance results. We can see that the proposed MILDM
approach still exhibits clear advantages in terms of these
two evaluation metrics.

6 CONCLUSION

This paper investigates an instance selection-based multi-
ple-instance bag mapping task, where each bag is mapped
to a new feature space using a small number of selected
instances from multi-instance bags. The mapped instances
can be directly used by generic learning algorithms to train
classifiers for solving multiple-instance learning tasks. Due
to multi-instance bag constraints, determining good instan-
ces for bag mapping is difficult. To this end, we proposed a
discriminative bag mapping approach that builds a discrim-
inative instance pool to ensure the bags in the new mapping

TABLE 14
Compared Results of MILDM (Global MILGDM or Local MILLDM) versus General MIL Methods

on Eight Types of Learning Tasks across 14 Data Sets

(a) F -measure

Data Sets MILDM MISVM MILR MIEMDD MIBoost

Musk1 0.947 � 0.065 0.716 � 0.192 0.742 � 0.215 0.855 � 0.143 0.839 � 0.132
Musk2 0.857 � 0.092 0.785 � 0.117 0.803 � 0.047 0.817 � 0.102 0.789 � 0.115
Elephant 0.857 � 0.066 0.794 � 0.086 0.749 � 0.151 0.728 � 0.090 0.743 � 0.142
Tiger 0.770 � 0.089 0.724 � 0.163 0.745 � 0.057 0.709 � 0.134 0.716 � 0.104
EastWest 0.952 � 0.106 0.714 � 0.122 0.667 � 0.477 0.794 � 0.085 0.726 � 0.038
WestEast 0.947 � 0.073 0.786 � 0.211 0.545 � 0.483 0.765 � 0.066 0.743 � 0.012
Atom 0.894 � 0.081 0.799 � 0.180 0.797 � 0.187 0.808 � 0.051 0.753 � 0.133
Bond 0.861 � 0.111 0.782 � 0.127 0.820 � 0.183 0.804 � 0.073 0.736 � 0.147
AICV 0.864 � 0.107 0.808 � 0.069 0.819 � 0.143 0.767 � 0.068 0.730 � 0.062
Food 0.582 � 0.099 0.545 � 0.063 0.544 � 0.108 0.562 � 0.101 0.561 � 0.075
News.rm 0.767 � 0.115 0.765 � 0.131 0.714 � 0.106 0.729 � 0.038 0.744 � 0.066
News.tpm 0.758 � 0.101 0.726 � 0.141 0.713 � 0.212 0.701 � 0.084 0.745 � 0.072
Web7 0.723 � 0.106 0.701 � 0.172 0.675 � 0.227 0.686 � 0.028 0.619 � 0.134
Web8 0.707 � 0.108 0.697 � 0.136 0.632 � 0.156 0.677 � 0.076 0.629 � 0.132

(b) AUC

Data Sets MILDM MISVM MILR MIEMDD MIBoost

Musk1 0.945 � 0.070 0.759 � 0.135 0.751 � 0.230 0.905 � 0.092 0.838 � 0.109
Musk2 0.890 � 0.110 0.730 � 0.142 0.862 � 0.080 0.846 � 0.071 0.859 � 0.100
Elephant 0.865 � 0.074 0.780 � 0.086 0.831 � 0.111 0.810 � 0.089 0.772 � 0.122
Tiger 0.770 � 0.067 0.740 � 0.123 0.750 � 0.062 0.727 � 0.041 0.721 � 0.114
EastWest 0.950 � 0.026 0.760 � 0.211 0.710 � 0.222 0.769 � 0.098 0.785 � 0.047
WestEast 0.950 � 0.106 0.754 � 0.258 0.400 � 0.116 0.749 � 0.048 0.751 � 0.012
Atom 0.861 � 0.086 0.772 � 0.145 0.776 � 0.121 0.759 � 0.062 0.858 � 0.095
Bond 0.789 � 0.103 0.751 � 0.089 0.818 � 0.073 0.727 � 0.033 0.750 � 0.085
AICV 0.840 � 0.090 0.785 � 0.123 0.806 � 0.079 0.794 � 0.098 0.809 � 0.100
Food 0.648 � 0.066 0.615 � 0.073 0.603 � 0.126 0.612 � 0.088 0.607 � 0.110
News.rm 0.800 � 0.101 0.770 � 0.125 0.709 � 0.087 0.730 � 0.071 0.710 � 0.009
News.tpm 0.790 � 0.106 0.710 � 0.110 0.732 � 0.154 0.752 � 0.086 0.726 � 0.063
Web7 0.764 � 0.102 0.692 � 0.173 0.699 � 0.169 0.660 � 0.026 0.733 � 0.149
Web8 0.756 � 0.107 0.686 � 0.097 0.619 � 0.125 0.610 � 0.107 0.726 � 0.103

MILDM shows the best performance achieved by the global MILGDM or local MILLDM.

TABLE 15
Compared Results on Large-Scale Speaker Data in Terms of F -Measure and AUC

pMILGDM aMILGDM pMILLDM aMILLDM MILMR MILWA MILIR MILES pMILIS aMILIS MILFM

F -measure 0.961 0.985 0.894 0.932 0.750 0.724 0.800 0.900 0.864 0.889 0.822
AUC 0.952 0.972 0.883 0.917 0.778 0.738 0.747 0.909 0.812 0.858 0.830
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space can be easily separated from each other. Experiments
and comparisons on eight types of real-world multiple-
instance learning tasks (including 14 data sets) demonstrate
a consistent performance gain. The proposed MILDM out-
performs the state-of-the-art MIL bag mapping approaches
in terms of F -measure and AUC. A CPU runtime perfor-
mance study further demonstrates that MILDM provides an
effective trade-off between runtime efficiency and classifica-
tion effectiveness.
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