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ABSTRACT

Human mobility prediction is of great importance for various appli-

cations such as smart transportation and personalized recommender

systems. Although many traditional pattern-based methods and

deep models (𝑒.𝑔., recurrent neural networks) based methods have

been developed for this task, they essentially do not well cope with

the sparsity and inaccuracy of trajectory data and the complicated

high-order nature of the sequential dependency, which are typi-

cal challenges in mobility prediction. To solve the problems, this

paper proposes a novel framework named Graph Convolutional

Dual-attentive Networks (GCDAN), which consists of two mod-

ules: spatio-temporal embedding and trajectory encoder-decoder. The

first module employs a bidirectional diffusion graph convolution

to preserve the spatial dependency in the location embedding. The

second module employs a dual-attentive mechanism based on a Se-

quence to Sequence architecture to effectively extract the long-range

sequential dependency within a trajectory and the correlation be-

tween different trajectories for predictions. Extensive experiments

on three real-world datasets show that GCDAN achieves significant

performance gain compared with state-of-the-art baselines.

CCS CONCEPTS

• Computer systems organization → Embedded systems; Re-

dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION

With the popularization of smart mobile devices [6], location-based

services become ubiquitous. Human mobility prediction is of great

importance in a wide spectrum of location-based application sce-

narios, ranging from intelligent transportation planning and sched-

uling to personalized recommendation. Therefore, how to make

full use of recorded historical trajectories to predict future location

has attracted significant research efforts.

Traditional studies on mobility prediction are mostly pattern-

based methods [24]. They adopt pattern discovery methods such

as matrix factorization [3, 16, 17, 34] to extract typical mobility

patterns existing in historical trajectories and thenmake predictions

accordingly. However, these methods generally suffer from the one-

sided nature of the popular patterns and fail to capture the fine-

grained sequential transition regularity. Therefore, some works

introduce Markov chain to construct the location transition matrix

[4, 19, 23, 26, 37]. However, the location independence assumption

of these methods prevents them from capturing the complicated

sequential information.

In recent years, some works attempt to leverage the powerful se-

quential modeling capacity of deep models such as recurrent neural

networks (RNNs) to capture the complicated location relationships

in trajectories [8, 10, 18, 20, 33]. Despite their promising perfor-

mance compared with traditional methods, they do not effectively

address the following two key challenges of the mobility prediction
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problem in essence. (1) Data sparsity and inaccuracy. The trajec-

tory data is sparse and may be unreliable in nature. In particular,

The location information is recorded only when users access the

location service, thus the recorded data is low-sampling in practice.

Besides, the coarse-grained locating method may not be able to

distinguish locations close in physical space, which means that the

recorded data is not reliable. (2) High-order trajectories. The

sequential dependency in trajectories is usually high-order. This is

due to the fact that the location to be predicted may exhibit close

dependency with a distant location instead of an adjacent location.

Also, the future locations depend on the user preference and habits.

Unfortunately, existing deep models for mobility prediction neglect

the high-order nature.

To solve the problems, in this paper, we propose a novel frame-

work termed asGraphConvolutionalDual-attentiveNetworks (GC-

DAN for short). GCDAN consists of two modules: spatio-temporal

embedding and trajectory encoder-decoder. In the first module, we

construct a location dependency graph based on historical trajec-

tories and design the bidirectional diffusion graph convolution to

capture the spatial dependency of locations in trajectories, which

could mitigate the effect of the sparsity and inaccuracy of the tra-

jectory data by neighbor location information aggregation. In the

second module, we employ a Sequence to Sequence architecture

to predict the human mobility by extracting valuable sequential

patterns of historical trajectories. Instead of using the RNN-based

methods, we design a dual-attentive mechanism, which includes the

intra-trajectory attention and inter-trajectory attention, to handle

the high-order nature of the trajectory data. The intra-trajectory

attention has the capacity tomodel the long-range sequential depen-

dency within a trajectory and the inter-trajectory attention further

captures the user preference by modeling the correlation between

different trajectories. Extensive experiments on different real-world

datasets show that GCDAN achieves significant performance gain

compared with the state-of-the-art baselines.

The main contributions can be summarized as follows:

• To the best of our knowledge, we are among the first to intro-

duce the graph convolution and dual-attentive mechanism to

handle the sparsity and inaccuracy of the trajectory data and

the high-order sequential nature in the problem of human

mobility prediction.

• We propose a novel framework GCDAN for mobility predic-

tion, which consists of two modules. The first module learns

dense representations for locations in trajectories by simul-

taneously preserving the spatial dependency and temporal

characteristics. On this basis, the second module further

employs a Sequence to Sequence architecture, which fully

considers the complicated sequential dependence and user

preference, to predict the next location under the guidance

of historical trajectories.

• We conduct extensive experiments on three real-world datasets

(including two commonly used datasets and one newly col-

lected datasets) to evaluate the effectiveness of the proposed

framework. The results show that GCDAN consistently out-

performs state-of-the-art baselines. Besides, we publicly pub-

lish the collected dataset as a new benchmark for themobility

prediction problem, which records user mobility trajectories

in one of the largest campus wireless networks.

2 PROBLEM FORMULATION

In this section, we formally formulate the problem of user mobility

prediction. Before that, we first define spatio-temporal point and

trajectory as follows:

DEFINITION 1 (Spatio-temporal Point) Let 𝐿 = {𝑙1, ..., 𝑙 |𝐿 | }
denote the set of location identifiers. A spatio-temporal point 𝑝
is defined as a tuple of location identifier 𝑙 ∈ 𝐿 and timestamp 𝑡 ,
𝑖 .𝑒 ., 𝑝 = (𝑙, 𝑡), which represents that a user arrived at location 𝑙 at
time 𝑡 .

DEFINITION 2 (Trajectory) Let 𝑈 = {𝑢1, ..., 𝑢 |𝑈 | } denote the

set of users. A trajectory for user 𝑢 ∈ 𝑈 is defined as a time-ordered

spatio-temporal point sequence 𝑇𝑢 = 𝑝1𝑢𝑝
2
𝑢 ...𝑝

𝑚
𝑢 , where 𝑝𝑖𝑢 repre-

sents the 𝑖𝑡ℎ spatio-temporal point in 𝑇𝑢 . The length of different

trajectories, 𝑖 .𝑒 ., 𝑚, is not necessarily the same for each user.

For a user 𝑢 ∈ 𝑈 , let 𝑆𝑢 = {𝑇 1
𝑢 ,𝑇

2
𝑢 , ...,𝑇

|𝑆𝑢 |
𝑢 } denote the set of

its historical trajectories, and let 𝑇𝑢 = 𝑝1𝑢𝑝
2
𝑢 ...𝑝

𝑛
𝑢 denote its current

trajectory. On this basis, we could formally define the the problem

of user mobility prediction as follows:

PROBLEM (Mobility Prediction) For an arbitrary user𝑢, given
the set of its historical trajectories 𝑆𝑢 and its current trajectory 𝑇𝑢 ,
the goal is to predict the next spatio-temporal point in the current

trajectory, 𝑖 .𝑒 ., 𝑝𝑛+1𝑢 .

Following the usual practice, we quantify the time interval of

adjacent spatio-temporal points in a trajectory into a fixed value,

which simplifies the problem to predict the next location identifica-

tion 𝑙 in the next time interval.

3 OUR SOLUTION

To solve the problem of user mobility prediction, we propose a novel

framework, namely Graph Convolutional Dual-attentiveNetworks

(GCDAN for short), whose overview is shown in Fig. 1. GCDAN

consists of two modules: (1) spatio-temporal embedding and (2)

trajectory encoder-decoder. The first module aims to embed spatio-

temporal points in trajectories into dense representations, which

simultaneously captures their spatial dependency and temporal

characteristics. The second module employs a Sequence to Sequence

architecture, which considers the sequential dependence within a

trajectory and the correlation between different trajectories. In the

following parts, we will introduce the design of GCDAN in detail.

3.1 Spatio-temporal Embedding Module

For predicting the next spatio-temporal point of a given trajectory,

the first step is to embed all spatio-temporal points in trajectories

into dense representations. Note that the human mobility patterns

are governed by multiple factors such as the location property and

time, therefore, we expect that the learned dense representations

should preserve the spatio-temporal semantic information for mod-

eling the complicated user transition states. To achieve the goal, a

natural idea is to separately learn the representations of locations

and timestamps, and then concatenate them to generate the final

representations.
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Figure 1: The overview of GCDAN. The spatial-temporal embedding module introduces the graph convolution and sparse

embedding to learn representations of spatial-temporal points. The trajectory encoder-decodermodule employs a dual-attentive

mechanism. The intra-trajectory attention layer models the sequential dependence within a trajectory and generates the

context representation for each spatial-temporal point. The inter-trajectory attention layer models the correlation between the

historical trajectories and current trajectory and generates the final prediction.

Timestamp Embedding: Due to the continuous property of

the real-value timestamp, it is impracticable to directly learn its

representation. Inspired by previous works [8], we align all times-

tamps into a fixed time interval. The time interval can be set to

one day or one week, which could generally reflect the mobility

periodicity. Then we discretize the fixed time interval into 𝜌 times-

lots. For each timestamp 𝑡 , we further map it into a corresponding

timeslot and express it as a one-hot vector 𝒗𝑡 with dimension 𝜌 .
Inspired by the word2vec [21] project, we convert 𝒗𝑡 into a low-

dimensional dense representation 𝒉𝑡 using a transformation matrix

𝚯𝑇 ∈ R𝑑1×𝜌 , where 𝑑1 is the dimension of 𝒉𝑡 , 𝑖 .𝑒 .,𝒉𝑡 = 𝚯𝑇 𝒗𝑡 . The
low-dimensional embedding can not only capture the precise tempo-

ral semantic information, but also avoid the curse of dimensionality

and improve the follow-up computation.

Location Embedding: In general, the timestamp can be re-

garded as the accurate information since it is often automatically

recorded by systems such as mobile devices. However, the location

information in trajectories is much less accurate. It is because that

the location information is generally recordedwhen users access the

location service, which leads to the sparsity of the trajectory data.

Furthermore, the locating method is often coarse-grained, some

locations close in physical space could be difficult to distinguish

accurately. To solve the problem, we introduce graph convolution

to capture the spatial dependency and mitigate the inaccuracy of

locations.

Let 𝐺 = (𝐿, 𝐸,𝑾 ) denote the directed weighted graph depicting

the location dependence in physical space, where 𝐿 represents the

location set defined in Section 2, 𝐸 ⊆ 𝐿 × 𝐿 represents the set of

directed edges and𝑾 ∈ R |𝐿 |× |𝐿 | represents the weighted adjacency

matrix. The construction of 𝐺 is based on the historical trajectory

data. For each spatio-temporal point pair (𝑙𝑖 , 𝑙 𝑗 ), we count the total
number of times (denoted as 𝑐𝑖 𝑗 ) it appears in historical trajectories.

We define: ⎧⎪⎪⎨⎪⎪⎩
𝑤𝑖 𝑗 =

𝑐𝑖 𝑗∑
𝑙𝑟 ∈𝐿

𝑐𝑖𝑟

𝑐𝑖 𝑗∑
𝑙𝑟 ∈𝐿

𝑐𝑖𝑟
> 1

|𝐿 | ,

𝑤𝑖 𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(1)

where 𝑤𝑖 𝑗 represents the weight of𝑾 . 𝑤𝑖 𝑗 > 0 means that there

exists a directed edge between 𝑙𝑖 and 𝑙 𝑗 (𝑖 .𝑒 ., 𝑒𝑖 𝑗 = 1). Let 𝑫𝑂 =
𝑑𝑖𝑎𝑔(𝑾1) and 𝑫𝐼 = 𝑑𝑖𝑎𝑔(𝑾T

1) denote the out-degree diagonal

matrix and in-degree diagonal matrix respectively, where 1 ∈ R |𝐿 |

represents the all one vector. Let 𝑽𝐿 denote the one-hot representa-

tions for all locations.We could further define the graph convolution

in the form of the bidirectional diffusion process, which is expressed

as follows:

𝑯𝐿 =
𝐾−1∑
𝑘=0

𝜎
(
(𝑫−1

𝑂 𝑾 )𝑘𝑽𝐿𝚯
0
𝑘 + (𝑫−1

𝐼 𝑾T)𝑘𝑽𝐿𝚯
1
𝑘

)
, (2)

where 𝑯𝐿 = (𝒉𝑙1 , ...,𝒉𝑙 |𝐿 | )
T is the dense representations for all lo-

cations, 𝐾 is the total diffusion steps, {𝚯0
𝑘
,𝚯1

𝑘 } are the filters to

be learnt in the 𝑘𝑡ℎ step, and 𝜎 is a non-linear activation func-

tion. The bidirectional diffusion graph convolution empowers the

location representations more flexibility to capture the spatial de-

pendency for locations in trajectories. In addition to the own in-

formation, the learned representations also contain information of

nearby locations, which could reduce small location errors men-

tioned above during the mobility prediction. In this problem, we em-

bed all locations into the 𝑑2-dimensional space, 𝑖 .𝑒 ., 𝑯𝐿 ∈ R |𝐿 |×𝑑2,

𝚯0
𝑘
∈ R |𝐿 |×𝑑2 and 𝚯1

𝑘 ∈ R |𝐿 |×𝑑2.

Global Embedding: For a spatio-temporal point 𝑝 = (𝑙, 𝑡), the
global embedding 𝒉𝑝 is obtained by concatenating its timestamp

embedding and location embedding, 𝑖 .𝑒 ., 𝒉𝑝 = 𝒉𝑡 ‖ 𝒉𝑙 , where ‖ is

the concatenation operation and 𝒉𝑝 ∈ R𝑑1+𝑑2.

Trajectory Position Coding: The trajectory is sensitive to

the location order. For two trajectories with the same location
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set but different location order, the embedding results should be

distinguishable. Inspired by thework [27], we introduce the position

coding mechanism, which could add information about position in

a sequence into the global embedding. Let 𝑇 = 𝑝1𝑝2 ...𝑝𝑚 denote

a trajectory. The global embedding of 𝑚 spatio-temporal points

in 𝑇 is expressed as 𝑯𝑇 = (𝒉𝑝1 , ...,𝒉𝑝𝑚 )T, where 𝒉𝑝𝑖 represents

the embedding of the 𝑖𝑡ℎ spatio-temporal point in 𝑇 . To further

introduce the information of position 𝑖 into 𝒉𝑝𝑖 , we construct a new
position vector 𝒑𝒐𝒔𝑖 with dimension (𝑑1 + 𝑑2) as follows:

𝒑𝒐𝒔𝑖 ( 𝑗) = cos

(
𝑖

𝐶
𝑗−( 𝑗%2)
𝑑1+𝑑2

−
( 𝑗%2)𝜋

2

)
; (3)

where 𝐶 is a constant that decides the function frequency for

position coding. The final embedding for 𝑝𝑖 in 𝑇 is expressed as

𝒉𝑝𝑖 = 𝒉𝑝𝑖 + 𝒑𝒐𝒔𝑖 , which serves as the input for the second module

of GCDAN.

3.2 Trajectory Encoder-decoder Module

Based on Section 3.1, we could obtain the global embedding of

spatio-temporal points for a given trajectory. Let 𝑆 = {𝑇 1,𝑇 2, ...,𝑇 |𝑆 | }

and 𝑇 = 𝑝1𝑝2 ...𝑝𝑛 denote the historical trajectory set and the

current trajectory of a user respectively. Their spatio-temporal

point representations can be correspondingly expressed as 𝑆𝐻 =
{𝑯𝑇 1 ,𝑯𝑇 2 , ...,𝑯𝑇 |𝑆 | } and 𝑯𝑇 . To predict the next spatio-temporal

point in 𝑇 , the trajectory encoder-decoder module employs a Se-

quence to Sequence architecture, which is implemented based on a

dual-attentive mechanism (including intra-trajectory attention and

inter-trajectory attention). The encoder effectively extracts the se-

quential information contained in historical trajectories using the

intra-trajectory attention as the guidance information for predic-

tion. Specifically, it takes 𝑆𝐻 as input and generates the context

representations for spatio-temporal points in each trajectory. The

decoder models the correlation between the current trajectory and

historical trajectories using inter-trajectory attention. It takes 𝑯𝑇
and the context representations obtained by the encoder as input

and generates the predicted location distribution vector. The de-

tailed design of the encoder and decoder follows.

Encoder: The sequential transition in a trajectory usually ex-

hibited with high-order nature, which means that the location may

not depend on the adjacent location, but on a distant location in

the trajectory sequence. Therefore, we design the intra-trajectory

attention layer in the encoder, which could better model the long-

distance dependence compared with the recurrent units such as

RNN and LSTM.

Given a history trajectory 𝑇 = 𝑝1𝑝2 ...𝑝𝑚 ∈ 𝑆 and the repre-

sentations of its spatio-temporal points 𝑯𝑇 = (𝒉𝑝1 , ...,𝒉𝑝𝑚 )T, for

each spatio-temporal point 𝑝𝑖 , the intra-trajectory attention layer

computes similarity between its representation 𝒉𝑝𝑖 and the repre-

sentations of all candidate spatio-temporal points in 𝑇 and further

generates its context representation 𝒄𝑝𝑖 by the sum of candidate rep-

resentations weighted by the similarity, which can be formulated

as follows:

𝑠𝑖𝑚𝑝 (𝒉𝑝𝑖 ,𝒉𝑝 𝑗 ) =
exp

(
𝑓 (𝒉𝑝𝑖 ,𝒉𝑝 𝑗 )

)
𝑚∑
𝑟=1

exp
(
𝑓 (𝒉𝑝𝑖 ,𝒉𝑝𝑟 )

) , (4)

𝒄𝑝𝑖 =
𝑚∑
𝑗=1

𝑠𝑖𝑚𝑝 (𝒉𝑝𝑖 ,𝒉𝑝 𝑗 )𝒉𝑝 𝑗 , (5)

where𝑚 is the length of the trajectory 𝑇 , 𝒉𝑝 𝑗 ∈ R𝑑1+𝑑2 is the 𝑗𝑡ℎ

representations of 𝑯𝑇 and 𝑓 (.) is the score function such as the dot

product function or the bilinear function.

To obtain sufficient expressive power, the intra-trajectory atten-

tion layer is followed by a fully connected layer and the two layers

form a basic unit of the encoder. In practice, the encoder is stacked

by multiple basic units.

Decoder: Given the current trajectory 𝑇 = 𝑝1𝑝2 ...𝑝𝑛 and the

representations of its spatio-temporal points 𝑯𝑇 = (𝒉𝑝1 , ...,𝒉𝑝𝑛 )T,
similar to the encoder, we first employ a intra-trajectory attention

layer to obtain the context vector of the spatio-temporal point 𝑝𝑛

in 𝑇 , which is denoted as �̃�𝑝𝑛 . For predicting the next location, we

expect to make full use of the guidance information of historical

trajectories. To achieve the goal, we design the inter-trajectory

attention layer, which computes the similarity between �̃�𝑝𝑛 and

the context representations of spatio-temporal points in historical

trajectories obtained in the encoder and generates the weighted

aggregated representation.

However, different historical trajectories for a user could show

diverse spatio-temporal behavior patterns. They may have different

effects when performing inter-trajectory attention on �̃�𝑝𝑛 , which is

usually ignored by previous works [8, 20] and could reflect the user

preference to some extent. Therefore, we further modify the inter-

trajectory attention layer to capture the correlation between the

current trajectory and different historical trajectories and pay more

attention on trajectories that are more related to the current trajec-

tory. Note that the length of different trajectories may be different.

We employ a readout function to obtain the vector representation

of a trajectory by aggregating the context representations of its

spatio-temporal points. Let 𝒙 be the representation for a trajectory

of a user, which can be expressed as follows:

𝒙 =
1

𝑚

𝑚∑
𝑗=1

𝒄𝑝 𝑗 , (6)

where 𝒄𝑝 𝑗 is the context representation of the 𝑗𝑡ℎ spatio-temporal

point in the trajectory. On this basic, the inter-trajectory attention

layer can be formulated as follows:

𝑠𝑖𝑚𝑡 (�̃�, 𝒙𝑖 ) =
exp

(
𝑓 (�̃�, 𝒙𝑖 )

)
|𝑆 |∑
𝑟=1

exp
(
𝑓 (�̃�, 𝒙𝑟 )

) , (7)

𝒗𝑝𝑛 =
|𝑆 |∑
𝑖=1

𝑠𝑖𝑚𝑡 (�̃�, 𝒙𝑖 )
𝑚∑
𝑗=1

𝑠𝑖𝑚𝑝 (̃𝒄𝑝𝑛 , 𝒄𝑝 𝑗 )𝒄𝑝 𝑗 , (8)

where 𝑆 is the historical trajectory set, 𝒙𝑖 is the representation

of the 𝑖𝑡ℎ historical trajectory, �̃� is the representation of the cur-

rent trajectory and 𝒗𝑝𝑛 represents the final output vector for the

current trajectory. In addition, we adopt the multi-head attention

mechanism [27, 28] to stabilize the learning process and capture the

dependency from more aspects. It first splits the context vectors

into multiple groups and respectively calculates the output vector

for each group using Eq (8). After that, the output vectors of all

groups are concatenated to generate the final output.
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Similar to the architecture of the encoder, the inter-trajectory

attention layer is followed by a fully connected layer. The intra-

trajectory attention layer, the inter-trajectory attention layer and

the fully connected layer form a basic unit of the decoder. In practice,

the decoder is a stack of multiple basic units. In this case, the

inter-trajectory attention in each unit is not only performed on the

context vector of 𝑝𝑛 , but also on context vectors of other spatio-

temporal points in 𝑇 and the output results will serve as the input

of the next unit.

Objective Function: The final output 𝒗𝑝𝑛 represents the context

information of the next location to be predicted. In general, the

problem of the mobility prediction can be regarded as a multi-

classification problem. Therefore, we further transform 𝒗𝑝𝑛 into

the probability distribution of all possible locations in 𝐿, which is

expressed as follows:

�̂� = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (�̂�𝒗𝑝𝑛 ), (9)

where �̂� ∈ R |𝐿 |×(𝑑1+𝑑2) is a trainable weight matrix. To train

the model, we could minimize the cross-entropy loss L𝑐 with the

following form:

L𝑐 = −
∑
𝑢∈𝑈

|𝐿 |∑
𝑖=1

𝒚𝑖𝑢 log �̂�𝒊
𝒖 , (10)

where 𝑈 is the user set, (𝒚1𝑢 ,𝒚
2
𝑢 , . . . ,𝒚

|𝐿 |
𝑢 ) denotes the one-hot

ground-truth distribution of the next location in the current tra-

jectory for user 𝑢 and (�̂�1𝑢 , �̂�
2
𝑢 , . . . , �̂�

|𝐿 |
𝑢 ) denotes the predicted dis-

tribution for user 𝑢 obtained by Eq. (9). To avoid overfitting, we

also impose 𝐿2 regularization on all parameters, which produces

the final objective function as follows:

L = L𝑐 + 𝛼L𝑟𝑒𝑔, (11)

where L𝑟𝑒𝑔 represents the sum of the L2-norm for all parameters

and 𝛼 is a balance hyperparameter.

3.3 Model Training and Optimization

The proposed framework GCDAN can be effectively trained in an

end-to-end manner. The pseudo-code is presented in Algorithm 1.

In the training phase, for each user, we split its trajectories (only

training data is involved) into two sets with the same size. One set

serves as the historical trajectories and the other set serves as the

current trajectories to be predicted. We adopt the stochastic gradient

descent to optimize the whole model.

In the training phase, we apply three training skills, namely

trajectory division, trajectory padding and trajectory reuse. We will

respectively introduce them as follows:

Trajectory Division: As mentioned in Section 2, we divide the

spatio-temporal point sequence of a user into multiple trajecto-

ries based on the time interval of two adjacent spatio-temporal

points, which could bring two benefits. (1) The division method

allows the inter-trajectory attention mechanism proposed in Sec-

tion 3.2 to capture the contribution of different subsequences to

mobility prediction. (2) Let 𝑁 denote the number of divided trajec-

tories. Let 𝑥 denote the average length, which is generally a small

value. The division method reduces the number of calculations of

intra-trajectory attention in the encoder from O(𝑁 2𝑥2) to O(𝑁𝑥2),
which greatly improves the computing efficiency.

Procedure 1 GCDAN

Input: User set𝑈 , trajectory set 𝐴𝑢 for each user 𝑢 ∈ 𝑈 .

Output: All parameters of the trained model.

//prepare the training data

1: Initialize the training data set D = ∅;

2: for 𝑢 ∈ 𝑈 do

3: Split𝐴𝑢 into two sets with the same size, namely a historical

trajectory set 𝑆𝑢 and a current trajectory set 𝐶𝑢 ;
4: Add (𝑆𝑢 ,𝐶𝑢 ) into D;

5: end for

6: Construct the directed weighted graph𝐺 based on the historical

trajectory sets for all users using Eq. (1);

//model training

7: Initialize all parameters for GCDAN;

8: while L does not converge do

9: for (𝑆𝑢 ,𝐶𝑢 ) ∈ D do

10: Calculate 𝒉𝑝 for each spatio-temporal point of all trajec-

tories in 𝑆𝑢 and 𝐶𝑢 ;
11: Calculate 𝒄𝑝 for each spatio-temporal point of historical

trajectories in 𝑆𝑢 and �̃�𝑝𝑛 for the last spatio-temporal point

of each current trajectory in 𝐶𝑢 using Eq. (5);

12: Calculate 𝒙 for each historical trajectory in 𝑆𝑢 and �̃� for

each current trajectory in 𝐶𝑢 using Eq. (6);

13: Calculate 𝒗𝑝𝑛 for each current trajectory using Eq. (8);

14: Calculate the objective function using Eq. (11);

15: Update all parameters by stochastic gradient descent;

16: end for

17: end while

Trajectory Padding: The length of different divided trajectories

is not necessarily the same, which makes learning the context rep-

resentations of spatio-temporal points in all historical trajectories

inefficient. To solve the problem, we design the skill of trajectory

padding, which could make the length of all trajectories consis-

tent with the longest trajectory by adding virtual spatio-temporal

points, so that all context representations could be obtained through

efficient matrix operations. To eliminate their effect when perform-

ing the attention operation, we introduce a mask vector 𝑴 , which

indicates the positions of the virtual spatio-temporal points. Specif-

ically, assume that the length of the longest trajectory is �̂�. For

a trajectory with the length 𝑚, we need to add (�̂� −𝑚) virtual

spatio-temporal points, which means that the first𝑚 dimensions of

its mask vector are 1 and the last (�̂� −𝑚) dimensions are 0. Then

we could rewrite Eq. (4) as follows:

𝑠𝑖𝑚𝑝 (𝒉𝑝𝑖 ,𝒉𝑝 𝑗 ) =
𝑀 ( 𝑗) exp

(
𝑓 (𝒉𝑝𝑖 ,𝒉𝑝 𝑗 )

)
𝑚∑
𝑟=1

𝑀 (𝑟 ) exp
(
𝑓 (𝒉𝑝𝑖 ,𝒉𝑝𝑟 )

) , (12)

where𝑀 ( 𝑗) represents the value of the 𝑗𝑡ℎ dimension of𝑀 . By this

way, the virtual spatio-temporal points will make no contribution

when calculating the attention value.

Trajectory Reuse: To further strengthen the training process,

we could reuse current trajectories to be predicted for more super-

vised information. For a given current trajectory 𝑇 = 𝑝1𝑝2 ...𝑝𝑛 ,
instead of only predicting the spatio-temporal point 𝑝𝑛+1, we ex-
pect to generate another 𝑛− 1 trajectories {𝑇 𝑖 = 𝑝1𝑝2 ...𝑝𝑖 }𝑖=1,..,𝑛−1,
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and predict 𝑝𝑖+1 for each 𝑇 𝑖 . Note that although the full trajectory

sequence information is known, when predicting 𝑝𝑖+1 for 𝑇 𝑖 , we

should not use the future information, 𝑖 .𝑒 ., spatio-temporal points

after 𝑝𝑖+1. Therefore, we adopt the trajectory mask skill again to

ensure that each spatio-temporal point in𝑇 only has the knowledge

of the spatio-temporal point sequence before it when performing

intra-trajectory attention in the decoder.

3.4 Complexity Analysis

In this section, we analyze the complexity of GCDAN. Our frame-

work can be divided into 2 components in series, namely spatio-

temporal embedding module and trajectory encoder-decoder mod-

ule. The spatio-temporal embedding module mainly consists of a

timestamp embedding function and a location embedding function.

The computational complexity of the timestamp embedding func-

tion is O(𝑑1𝜌), where 𝜌 represents the number of timeslots and 𝑑1
is the dimension of the low-dimensional dense representation after

the embedding operation. The location embedding function is a

graph convolution function, whose computational complexity is

O(|𝐸 |), where |𝐸 | represents the number of edges in the constructed

graph. As for the trajectory encoder-decoder module, the compu-

tational complexity of the attention function is O
(
�̂�2 (𝑑1 + 𝑑2)

)
,

where �̂� represents the trajectory length after trajectory padding.

Given the number of trajectories for user 𝑢 (𝑖 .𝑒 ., |𝑆𝑢 |), the overall

computational complexity is O
(
|𝑆𝑢 |�̂�

2 (𝑑1 + 𝑑2)
)
.

4 EVALUATION

In this section, we empirically evaluate the performance of the

proposed GCDAN framework.

4.1 Experiment Setup

4.1.1 Datasets. In this paper, we conduct comprehensive experi-

ments on three real-world datasets: (1) Gowalla [5], (2) Foursquare

[32] and (3)WiFi-Trace. The first two are commonly used datasets in

previous works [8, 20]. They record the user check-in information,

which consists of user ID, timestamp and GPS location. Inspired

by previous work[29], we collect the third dataset records wireless

association information in the large-scale wireless network of T

universit. For protecting the user privacy, all sensitive informa-

tion (𝑒.𝑔., device MAC address) is anonymized. User identifiable

information cannot be traced back. For better reproducibility of

experimental results in this paper, after obtaining the consent of

network administrators in T university, we publicly publish the

WiFi-Trace dataset as a new benchmark for the mobility modeling

problem 1.

For each dataset, we first extract a sequence of spatio-temporal

points for each user. Then we divide the sequence into different tra-

jectories if the time interval between two adjacent spatio-temporal

points exceeds a predefined threshold as mentioned in Section 2.

The threshold settings vary in different datasets. For Gowalla and

Foursquare, the threshold is set to 24 hours, while for WiFi-Trace,

the threshold is set to 1 hour. Table 1 shows the detailed statistics

1The published WiFi-Trace dataset and our reproducible code are available at
https://github.com/GCDAN/GCDAN.

Table 1: Dataset statistics.

Dataset Gowalla Foursquare WiFi-Trace

Time duration 1 year 1 year 2 week

Users 857 886 3642

#(Record) 129679 82575 1011049

#(Trajectory) 8568 7974 41937

#(Location) 20006 10497 251

for each dataset. In our experiments, we select the first 75% of tra-

jectories for each user as the training data and the rest 25% as the

testing data. In addition, 10% of the training data is used as the

validation data.

4.1.2 Baselines. To demonstrate the superiority of GCDAN, we

compare it with five state-of-the-art baselines.

MC [9]: Markov Chain is a traditional but widely used approach

for sequential prediction. It regards locations as states and builds a

transition matrix between these states to make prediction.

FPMC [23]: Factorize Personal Markov Chain combines Markov

chain with matrix factorization to capture both sequential patterns

and user preferences for mobility prediction.

LSTM [25]: Long Short-Term Memory network is a recurrent

neural network. It is designed to capture the long-term sequential

influence, and it can be applied to mobility prediction.

ST-RNN [18]: Spatial Temporal Recurrent Neural Network ex-

tends RNN to model the local temporal and spatial contexts in

trajectories for mobility prediction.

DeepMove [8]: DeepMove designs a multi-modal embedding

recurrent network together with a historical attention model to

capture both spatial and temporal dependency.

4.1.3 Performance Metrics and Parameter Settings. In our experi-

ments, we adopt the top-k accuracy (Acc@k) to evaluate the perfor-

mance of GCDAN and baselines. Acc@k represents the proportion

of the ground truth that lies in the top-k highest possible locations

in our prediction, which can be formulated as follows:

𝐴𝑐𝑐@𝑘 =
|{𝑠 |𝑠 ∈ 𝑃, 𝑙 (𝑠) ∈ 𝑇𝑜𝑝_𝑘 (𝑠)}|

|𝑃 |
(13)

where |𝑃 | is the number of all predictions, 𝑙 (𝑠) is the ground truth

of a prediction 𝑠 , and 𝑇𝑜𝑝_𝑘 (𝑠) represents the top-k most likely

locations in prediction 𝑠 . In this paper, we adopt Acc@1, Acc@5

and Acc@10 to evaluate the performance. In our experiments, we

train each model for 20 times and report the average results for the

three performance metrics.

For all baselines, we adopt the optimal parameter settings re-

ported in corresponding papers. For our proposed GCDAN frame-

work, all hyperparameters are tuned on the validation set to achieve

the optimal performance. For the spatio-temporal embedding mod-

ule, the dimension 𝑑1 for timestamp embedding and the dimension

𝑑2 for location embedding are set to 32 and 512 respectively. The

total diffusion steps 𝐾 is set to 2. The activation function in Eq. (2)

is ReLU. For the trajectory encoder-decoder module, the number of

stacking units of the encoder and decoder is set to 3. The number of

heads of the multi-head mechanism is set to 4. We set the balance

hyperparameter 𝛼 in Eq. (11) to 1e-5 and adopt Adam [14] with the

learning rate of 5e-4 to optimize the model until converging.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

197



Table 2: Performance comparison between GCDAN and state-

of-the-art baselines on Gowalla.

Metrics MC FPMC LSTM ST-RNN DeepMove GCDAN

Acc@1 0.1188 0.1204 0.1252 0.1279 0.1338 0.1377

Acc@5 0.2056 0.2066 0.2453 0.2568 0.2731 0.3086

Acc@10 0.2306 0.2307 0.2907 0.3112 0.3299 0.3780

Table 3: Performance comparison between GCDAN and state-

of-the-art baselines on Foursquare.

Metrics MC FPMC LSTM ST-RNN DeepMove GCDAN

Acc@1 0.0818 0.0835 0.0912 0.1057 0.1245 0.1613

Acc@5 0.1753 0.1762 0.1824 0.2368 0.2790 0.3417

Acc@10 0.2252 0.2257 0.2120 0.2787 0.3360 0.4093

Table 4: Performance comparison between GCDAN and state-

of-the-art baselines on WiFi-Trace.

Metrics MC FPMC LSTM ST-RNN DeepMove GCDAN

Acc@1 0.1612 0.3231 0.5685 0.5702 0.5729 0.5912

Acc@5 0.3173 0.5169 0.7821 0.7918 0.8030 0.8064

Acc@10 0.3882 0.6843 0.8473 0.8523 0.8707 0.8726

4.2 Performance Analysis

In this section, we compare the performance of GCDAN and base-

lines on three real-world datasets. The experimental results are

respectively shown in Table 2, Table 3 and Table 4. We highlight

the best performance in bold. We can see that traditional methods

(𝑖 .𝑒 ., MC and FPMC) perform poorly on all three datasets. While in

contrast, deep models (𝑖 .𝑒 ., LSTM, ST-RNN and DeepMove) achieve

better performance, as they benefit from their more powerful se-

quential modeling capabilities. In particular, DeepMove introduces

delicately designed attention mechanisms to capture complex se-

quential regularity, which further improves the performance. How-

ever, the trajectory data is generally sparse and may be unreliable,

which would inevitably affect the accuracy of sequential modeling

for these deep models. Meanwhile, these deep models also can-

not well capture the user preference and habits, which limits their

performance.

Compared with baselines, we observe that GCDAN achieves

higher performance on all datasets in terms of all metrics. It is

worth mentioning that on Foursquare, compared to DeepMove (the

best baseline), GCDAN yields nearly 30% improvement in terms

of Acc@1 and more than 20% improvement in terms of Acc@5

and Acc@10. The significant improvement mainly benefits from

two aspects. First, the graph convolution mitigates the effect of

the sparsity and inaccuracy of the trajectory data. Second, the

dual-attentive mechanism empowers GCDAN stronger capacity to

model the high-order sequential nature. Besides, we observe that

the performance improvement of Acc@5 and Acc@10 on WiFi-

Trace is not as significant as that on Foursquare and Gowalla. It

is because that the sequential regularity and mobility patterns for

the trajectory data on campus is relatively easier to capture than

user check-in data. In addition, the data collection method for WiFi-

Trace determines that the trajectory data is more complete and is

with less noise. This is helpful for the learning of all deep models.

Table 5: Ablation Study.

Gowalla Foursquare WiFi-Trace

GCDAN-base 0.1311 0.1580 0.5768

GCDAN-tc 0.1340 0.1607 0.5815

GCDAN-gc 0.1336 0.1597 0.5895

GCDAN-full 0.1377 0.1613 0.5912

The above experimental results demonstrate the effectiveness and

superiority of GCDAN.

4.3 Parameter Sensitivity Analysis

In this section, we conduct experiments on all three datasets to

study the effect of 4 main hyperparameters on the performance

(Acc@1) of GCDAN.

Location Embedding Dimension: Fig. 2(a) presents the sensi-

tivity analysis 𝑤.𝑟 .𝑡 . the location embedding dimension 𝑑2. We

observe that the performance degrades significantly when the em-

bedding dimension is lower than 256. As the dimension increases,

the performance becomes stable. It is because that each head needs

a certain dimension of representation to perform attention oper-

ation when adopting the multi-head attention mechanism. In our

experiments, to obtain sufficient representation capacity and avoid

the risk of overfitting, we set the location embedding dimension 𝑑2
to 512.

Number of Basic Units in Encoder and Decoder: Fig. 2(b)

presents the effect of the number of basic units in encoder and

decoder on performance. We observe that the performance de-

grades when the number is very small (<3) and stays stable when

the number grows. Considering that the convergence rate will de-

crease as the number grows, we set the hyperparameter to 3 in our

experiments.

Number of Heads: Fig. 2(c) presents the sensitivity analysis𝑤.𝑟 .𝑡 .
the number of heads in themulti-head attentionmechanism.We can

see that the performance could slightly reduce when the number

of heads is too large. Therefore, in our experiments, to capture

the sequential dependency from more aspects while avoiding the

performance limitation of the excessive number of heads, we set

the head number to 4.

Balance Hyperparameter 𝛼 : 𝛼 is the hyperparameter that bal-

ances the objective function L𝑐 and the 𝐿2 regularization term

L𝑟𝑒𝑔 in Eq. (11). Fig. 2(d) shows the trend of Acc@1 when 𝛼 takes

values under different orders of magnitude. We can see that the

performance reduces when 𝛼 is large. In our experiments, we set 𝛼
to 10−5 to achieve desirable performance.

4.4 Ablation Study

In GCDAN, we design the graph convolution in Eq. (2) to handle the

sparse and inaccurate trajectory data and introduce the trajectory

correlation into the inter-trajectory attention layer in Eq. (8) to cap-

ture the complex user perference. In this section, wemainly conduct

ablation study to demonstrate their effectiveness. First, we detach

both of them from GCDAN, which produces a basic model (denoted

as GCDAN-base) that only considers the intra-trajectory attention

and simplified inter-trajectory attention 2. Then we construct three

2It is constructed without considering the trajectory correlation.
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Figure 2: Results of parameter sensitivity𝑤.𝑟 .𝑡 . (a) the location embedding dimension, (b) the number of basic units in encoder

and decoder, (c) the number of heads of the multi-head attention mechanism and (d) the balance hyper-parameter 𝛼 in Eq. (11)

variants on the basis of GCDAN-base. The first one solely introduces

graph convolution (denoted as GCDAN-gc), the second one solely

introduces trajectory correlation (denoted as GCDAN-tc), and the

third one contains both of them (denoted as GCDAN-full). The ex-

perimental results on three datasets in terms of Acc@1 are shown in

Table 5. We can see that GCDAN-base achieves higher performance

compared with other deep models such as LSTM and ST-RNN (refer

to Table 2-Table 4), which demonstrates the dual-attentive mech-

anism has stronger sequential modeling capacity. Meanwhile, we

observe that for all datasets, GCDAN-gc and GCDAN-tc outper-

form GCDAN-base, which means that both graph convolution and

trajectory correlation are helpful for mobility prediction and have

positive effect to our framework. Besides, we find that GCDAN-full

performs best among all variants, which demonstrates that they

can work together to improve the prediction performance.

5 RELATEDWORK

Human mobility prediction: Early approaches are designed to

find mobility patterns in trajectories and then make prediction ac-

cordingly [11, 22, 35, 36]. Matrix factorization is widely applied

to this problem [3, 16, 17, 34]. Cheng 𝑒𝑡 𝑎𝑙 . [3] first fuse matrix

factorization with geographical and social influence for location

recommendation. Lian 𝑒𝑡 𝑎𝑙 . [17] take the spatial clustering in hu-

man mobility into consideration and exploit the weighted matrix

factorization method. However, these approaches generally fail

to capture fine-grained sequential and periodical characteristics

in human mobility. Due to the capacity to model sequential be-

haviors, Markov chain is also usually used for mobility prediction

[4, 19, 23, 26, 37]. For example, Mathew 𝑒𝑡 𝑎𝑙 . [19] present a hybrid
method that clusters location histories according to their charac-

teristics and then trains an Hidden Markov Model (HMM) for each

cluster to predict human mobility. Nevertheless, these model-based

approaches are difficult to model complex and high-order sequential

transition regularity in trajectories. With the rapid development

of deep learning, deep models, particularly RNNs are proved to

be outstanding in trajectory sequential modeling. Liu 𝑒𝑡 𝑎𝑙 . [18]
propose ST-RNN, which extends RNN to model temporal and spa-

tial features. Yao 𝑒𝑡 𝑎𝑙 . [33] present SERM, a RNN based model

that handles multiple features in human mobility. Feng 𝑒𝑡 𝑎𝑙 . [8]
propose an attentional recurrent network for mobility prediction.

Recently, CNNs are also adopted to model human mobility. Gao

𝑒𝑡 𝑎𝑙 . [10] use CNN to capture individual’s long-term moving pat-

terns and Miao 𝑒𝑡 𝑎𝑙 . [20] regard trajectories as images and propose

an attentive convolutional network model for trajectory predic-

tion. Despite their impressive performance, they cannot cope well

with the sparsity and inaccuracy of the trajectory information. In

addition, previous works do not consider the correlation between

different trajectories. In this paper, we propose a novel framework

GCDAN, which employs the graph convolution and dual-attentive

mechanism to overcome the above challenges.

Graph Neural Networks: GNNs generalize the convolution op-

eration from traditional data (𝑒.𝑔., images) to graph data, and they

could be categorized as spectral-based and spatial-based methods

[1, 30, 31, 38]. Bruna 𝑒𝑡 𝑎𝑙 . [2] propose the first generation spectral-

based GNN based on spectrum of the graph Laplacian. Defferrard

𝑒𝑡 𝑎𝑙 . [7] then adopt a K-order Chebyshev polynomial to approx-

imate the convolutional filter, which greatly decreases the com-

putational complexity. Kipf 𝑒𝑡 𝑎𝑙 . [15] further adopt a localized

first-order approximation to constrain the number of parameters

and overcome overfitting. Spatial-based GNNs aggregate neighbor

information in spatial domain [12, 13]. For example, Gilmer 𝑒𝑡 𝑎𝑙 .
[12] propose message passing neural networks (MPNNs) that gen-

eralize spatial-based methods with a message-passing mechanism.

Inspired by these works, in this paper, we design the bidirectional

diffusion graph convolution to handle the sparse and inaccurate

location information during the mobility prediction.

6 CONCLUSION

In this paper, we propose a novel framework GCDAN for human

mobility prediction. GCDAN employs graph convolution to pre-

serve the spatial dependency in location representations, which

could mitigate the sparsity and inaccuracy of the trajectory data.

Furthermore, it employs a dual-attentive mechanism to model the

long-range sequential dependency within a trajectory and the cor-

relation between different trajectories, which could handle the

high-order nature of the trajectory data. Extensive experiments on

three real-world datasets show that GCDAN significantly outper-

forms state-of-the-art baselines. As to the future works, we would

like to further introduce the relationships across users and group

behavior into the modeling of mobility prediction.
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