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a b s t r a c t 

Time series classification has attracted much attention in the last two decades. However, in many real- 

world applications, the acquisition of sufficient amounts of labeled training data is costly, while unlabeled 

data is usually easily to be obtained. In this paper, we study the problem of learning discriminative fea- 

tures (segments) from both labeled and unlabeled time series data. The discriminative segments are often 

referred to as shapelets. We present a new Semi-Supervised Shapelets Learning (SSSL for short) model to 

efficiently learn shapelets by using both labeled and unlabeled time series data. Briefly, SSSL engages both 

labeled and unlabeled time series data in an integrated model that considers the least squares regression, 

the power of the pseudo-labels, shapelets regularization, and spectral analysis. The experimental results 

on real-world data demonstrate the superiority of our approach over existing methods. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Time series is a set of numerical sequences with chronological

rder. Since time series is dynamic data and indicates the change

ule of a phenomenon, it is significant to analyze time series to

nd the rules [1,2] . Time series analysis has been paid close at-

ention due to the exponential growth of time-stamped data, such

s economics and finance where we are continually exposed to

aily stock market quotations, the research of natural phenom-

na based on natural gas network, power flow analysis for cen-

ralized PV plant, and intelligent fault diagnosis for electric ma-

hine. The main challenge for time series classification is to dis-

over explainable and discriminative features that can best classify

ime series [3,4] . To tackle the problem, a series of research work

as been proposed to explore discriminative features, referred to as

hapelets [5,6] , representing maximally discriminative segments of

ime series data. For example, Fig. 1 shows two sample shapelets

xtracted from the Coffee time series (available in UCR time-series

epository [7] ). Shapelets can capture inherent structures of time

eries, contributing to high prediction accuracy as explainable fea-

ures. Thus, extracting shapelets from time series has given rise to

ncreasing research interest during the last decade [8–11] . 
∗ Corresponding author. 
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For fast shapelet learning , a recent work [12] proposes a re-

ression model to extract shapelets. Compared with traditional ap-

roaches of shapelet discovery, the main merit of shapelet learning

rom time series is that it learns near-to-optimal shapelets directly,

void searching exhaustively among a pool of candidates extracted

rom time-series segments. Therefore, shapelet learning is fast to

ompute and scalable to large data sets. Moreover, shapelet learn-

ng is robust to noise [12] . 

However, current shapelet learning approaches assume the ex-

stence of large amounts of labeled training time series data. In

any real world applications, the labels of time series data are

ery expensive or difficult to obtain. Creating a large set of train-

ng data can be prohibitively expensive, time-consuming or even

nfeasible. For instance, human experts are only able to label a

mall portion of all available data. Thus, it is highly desired that

he abundant amounts of unlabeled time series can be effectively

tilized to select discriminative shapelets to improve the time se-

ies classification. 

Most of the existing semi-supervised learning methods for time

eries classification are kernel-based methods, such as time series

istance measurement [13] and probabilistic method [14] . Com-

ared to kernel-based time series methods, shapelet-based ap-

roaches can explicitly identify segments that contribute to the

lassification [15–17] . 

In this paper, we aim to leverage both labeled and un-

abeled time series data to build an effective semi-supervised

hapelet learning model. The proposed optimization function treats

https://doi.org/10.1016/j.patcog.2018.12.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2018.12.026&domain=pdf
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Fig. 1. An illustration of two learnt shapelets S 1 and S 2 from the Coffee data set (available in UCR time-series repository [7] ). Shapelets are time series subsequences which 

are in some sense maximally representative of a class [12] . 
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unlabeled samples in supervised fashion by using pseudo-labels,

and then uses regularized least-square technique to learn both

shapelets and classification boundaries. Meanwhile, spectral anal-

ysis is integrated in the function to preserve local structure infor-

mation in the data. Moreover, a new regularization term is added

to avoid selecting similar or redundant shapelets. A coordinate de-

scent algorithm is then proposed to iteratively solve the classifica-

tion boundary, pseudo-labels and shapelets, respectively. 

The main contributions of our work are summarised as follows:

• To our knowledge, this is the first effort of shapelet learning

that leverages both labeled and unlabeled time series data. 
• A new semi-supervised shapelet learning (SSSL) model is de-

vised that integrates least square minimization, spectral analy-

sis, scaled pseudo labels as well as shapelet similarity regular-

ization terms. 

We also evaluate our proposed algorithm on real-world data

sets and compare it with the state-of-the-art semi-supervised time

series classification approaches. The experimental results demon-

strate the effectiveness of the proposed model. 

The remainder of this paper is organized as follows.

Section 2 reviews traditional semi-supervised time series clas-

sification methods and feature extraction in time series data.

Section 3 provides the preliminaries and problem definition. We

introduce the proposed semi-supervised shapelet learning model

in Section 4 . Section 5 shows how to solve the proposed objective

function in the proposed SSSL algorithm. In Section 6 , we con-

duct the experiments on real-world data sets and compare the

proposed method with benchmark approaches. Finally, we draw a

conclusion and point out the future work in Section 7 . 

2. Related work 

In this section, we review existing research related to our work

in the following areas: time series classification, semi-supervised

feature learning, and semi-supervised time series classification. 

2.1. Time series classification 

Time series classification attracts increasing interest in data

mining because of its wide applications in different domains. For

example, in economics and finance, we are continually exposed to

daily stock market quotations [18] . Time series classification is also

used in analyzing medical data [19] , and moving trajectory analysis

[20] . 

To date, existing time series classification algorithms can be

generally categorized into two groups: distance-based methods,
nd feature-based methods. The former directly measures the sim-

larity between two time series (e.g., dynamic time warping (DTW)

21] ), while the later considers time series as feature vectors so

hat traditional feature-based classifier (e.g., SVM or logistic re-

ression) can be applied. Feature-based methods rely on extracting

r learning a set of feature vectors from each time series. There-

ore, the main challenge of time series classification is to find dis-

riminative features that best predict class labels. One direction

f feature-based methods is feature encoding [22–25] . The feature

ectors are firstly quantized into words, using a learned dictionary.

hen, each time series can be represented by a histogram of word

ccurrences. Finally, the extracted feature is fed into a classifier,

uch as SVM, for time series classification. Many feature encoding

pproaches are used for time series classification in the literature,

.g., bag-of-words [22,23,26] , sparse coding [24] , fisher vector [22] .

he Bag-of-Word (BoW) framework is inspired by the text mining

nd computer vision communities, and has been shown to be very

fficient. However, the major drawback of BoW is that the quan-

ization step is done by a fixed partitioning of the feature space,

esulting in a loss of information. 

To solve the challenge, a line of research has been undertaken

o extract discriminative features, which are often referred to as

hapelets [27] , from time series. Therefore, discovering shapelets

as become an important branch in time series analysis. Shapelets

re maximally discriminative features of time series which enjoy

he merits of high prediction capability and interpretability. The

asic idea of shapelets discovery is to consider all segments from

raining time series data and assess them regarding a scoring func-

ion to estimate how predictive they are with respect to the given

lass labels [28] . However, this type of shapelets selection could be

xtremely inefficient because time series usually have a large num-

er of candidate segments. Therefore, a recent work [29] proposes

 new time series shapelets learning approach. Instead of searching

hapelets from a candidate pool, they use regression learning to

earn shapelets from time series. This way, shapelets are detached

rom candidate segments and the learnt shapelets may differ from

ll the candidate segments. More importantly, shapelets learn-

ng is fast to compute, scalable to large data sets, and robust to

oise. 

Our previous work [30] proposes an efficient unsupervised

hapelets learning algorithm to classify unlabeled time series.

owever, this work only involves unlabeled time series and does

ot have function estimation on both labeled and unlabeled time

eries. In this paper, our approach is motivated by the fact that

abeled data is often costly to generate, whereas unlabeled data

s generally not. The challenge here mostly involves the technical

uestion of how to treat time series mixed in this fashion. 
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.2. Semi-supervised feature learning 

Learning from both labeled and unlabeled data is called semi-

upervised learning. There is a large body of research on semi-

upervised learning as labeled data is usually hard to get while

nlabeled data is readily available [31–33] . The most natural ap-

roach for semi-supervised learning is self-training [34,35] . In self-

raining, a classifier is first trained with a small number of labeled

ata. It is then used to classify the unlabeled data. By adding the

ost confidently classified objects into the labeled set, the classi-

er re-trains itself using the new labeled set. The procedure is re-

eated until adding newly labeled objects to the labeled set does

ot increase the accuracy of the classifier, or some other stopping

riteria is met. Generative models [36,37] are perhaps the old-

st semi-supervised learning method. It assumes a model is an

dentifiable mixture distribution (e.g., Gaussian mixture models).

ith large amounts of unlabeled data, the mixture components

an be identified. Then, ideally we only need one labeled example

er component to fully determine the mixture distribution. Graph-

ased semi-supervised methods [36,38,39] define a graph where

he nodes represent labeled and unlabeled examples in the data

et, and edges (may be weighted) reflect the similarity of exam-

les. 

.3. Semi-supervised classification on time series 

Several semi-supervised learning methods for time series clas-

ification have been proposed in the literature. Based on self-

raining method, Wei et al. [13] proposed a semi-supervised ap-

roach on one-nearest-neighbor with Euclidean distance classifier.

hen et al. [40] showed that Euclidean distance performed poorly

n many time series classification cases and proposed a DTW-D

pproach by using Dynamic Time Warping (DTW). They claimed

hat DTW-D could perform better on some special time series data

ets but not for all time series problems. Based on constrained hi-

rarchical clustering, Marussy et al. proposed a SUCCESS method

o cluster the whole set (including both labeled and unlabeled

ata) of time series by using single-linkage hierarchical agglomer-

tive clustering firstly. Then, the top-level clusters were labeled by

heir corresponding seeds [41] . Recently, Xu and Funaya presented

 graph-based semi-supervised time series classification approach

nd developed a probabilistic method for learning optimal graph

ombination to effectively capture the underlying structure of time

eries data [14] . 

Our work differs from the aforementioned works, as we intro-

uce shapelet learning to semi-supervised time series classifica-

ion, which automatically learns shapelets from both labeled and

nlabeled time series. In contrast, all of the above semi-supervised

pproaches for time series can be considered as kernel methods.

ecause time series are potentially infinite, kernel-based methods

ften cannot identify which segments of time series are mostly

iscriminative for distinguishing between time series data from

ifferent classes. 

. Preliminaries 

In this paper, we use lower-case bold-faced letters to repre-

ent vectors and upper-case bold-faced letters to represent matri-

es (e.g., A ). We use A (i, j) to denote the element locating at the

 th row and j -column of matrix A , and A (i, :) and A (: , j) denote

ectors of the i th row and j th column of the matrix respectively.

able 1 summarizes major notations used in the paper. 

Consider a set of n time series, T = { T 1 , T 2 , . . . , T n } , where

ach time series has q i ordered real-valued observations T i = <

 

i 
1 
, T i 

2 
, · · · , T i q i 

> and a class value c i . Consider a sliding window of

ength ρ , when the window slides along a time series, a set of
egments can be obtained. For time series T i ∈ T , we can generate

otally q − ρ + 1 segments by sliding the window. 

Shapelets are defined as the most discriminative time series

egments. Therefore, time series segments are shapelet candidates.

o represent each time series T i ∈ T , we use a vector S j to record

 i 
′ s feature values. This way, the time series data set T can be rep-

esented by a data matrix S = { S 1 , S 2 , · · · , S m 

} . 
Similar to the shapelets learning model [12] , we set the length

f shapelets to expand r different length scales starting at a mini-

um l min , i.e., { l min , 2 × l min , . . . , r × l min } . Each length scale i × l min 

ontains m i shapelets and m = 

∑ r 
i =1 m i . The shapelets therefore

ill be defined as S = { S 1 , S 2 , . . . , S m 

} , where S ∈ 

⋃ r 
i =1 R 

m i ×(i ×l min ) 

nd r × l min � q i . 

In our problem setting, there are two types of time series data:

abeled and unlabeled time series. We use subscript u and l of

ariable to represent unlabeled and labeled data respectively. For

xample, Y l denotes the class label matrix of labeled time se- 

ies while Y u denotes the pseudo-class label of unlabeled time se-

ies. Suppose these n u unlabeled time series are from c classes

nd denote Y u = [ y u 
1 
, . . . , y u n u 

] ∈ { 0 , 1 } c×n u , where y u 
i 

∈ { 0 , 1 } c×1 is

he pseudo-class label vector for unlabeled time series sample T i .

seudo-class label is a simple and an efficient method to do semi-

upervised learning. The proposed optimization function treats un-

abeled samples in supervised fashion by using pseudo-labels. To

btain this pseudo-labels, we first initialized the pseudo-labels

andomly, and then update them as an optimization parameter

n our objective function. The scaled pseudo-class label matrix

42,43] Z is defined as 

Z = [ z 1 , . . . , z n u ] = Y u ( Y 

T 
u Y u ) 

− 1 
2 (1) 

here z i is the scaled pseudo-class indicator of unlabeled time se-

ies T i . We thus have 

Z 

T Z = ( Y 

T 
u Y u ) 

− 1 
2 Y 

T 
u Y u ( Y 

T 
u Y u ) 

− 1 
2 = I c (2) 

here I c ∈ R 

c×c is an identity matrix. 

. Semi-supervised shapelets learning 

In this section, we first formulate the semi-supervised shapelets

earning model in Section 4.1 . After that, we propose the shapelet-

ransformed representation of time series in Section 4.2 , and then

e sequentially introduce the spectral analysis in Section 4.3 , least

quare minimization in Section 4.4 and shapelets similarity regu-

arization in Section 4.5 . 

.1. Semi-supervised shapelets learning model 

The semi-supervised shapelets learning model (SSSL) can be

ormulated by Eq. (3) . SSSL is a joint optimization problem with

espect to the classification boundary W , scaled Pseudo-class label

 and candidate shapelets S . 

min 

W , S , Z 

1 

2 

tr( Z L G ( S ) Z 

� ) + 

λ1 

2 

‖ H ( S ) ‖ 

2 
F + 

λ2 

2 

‖ W ‖ 

2 
F 

+ 

λ3 

2 

‖ W 

� X u ( S ) − Z ‖ 

2 
F + 

λ4 

2 

‖ W 

� X l ( S ) − Y l ‖ 

2 
F 

s.t. Z ∈ R 

c×n 
+ , Z 

T Z = I c 

(3) 

n the objective function, the first term is the spectral regulariza-

ion that preserves local structure information. The second term

s the shapelet similarity regularization term that prefers diverse

hapelets. The last three terms are the regularized least square

inimization with respect to unlabeled and labeled time series.

rom the objective function in Eq. (3) , the discriminative shapelets

an be learned from training data and used for test data classifi-

ation. The objective function Eq. (3) returns classification bound-

ry W and shapelets S . Thus, we can compute the shapelet-

ransformed matrix X ( S ) for test time series. Then, the probability
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Table 1 

Symbols and notations. 

Symbols Descriptions 

A (i,j) the element locating at the i th row and j -column of matrix A 

A (i, :) vectors of the i th row of the matrix 

A (: , j) vectors of the j th column of the matrix 

T time series 

T i j the j th value in time series T i 
m , n the number of shapelets, the number of time series 

q j the length of time series T j 
l i the length of shapelet S i 
q̄ the total number of segments with length l i of time series T j 
S the set of shapelets 

Y l the class label matrix of labeled time series 

Y u the pseudo-class label of unlabeled time series 

W the weight matrix of each shapelet 

Z , I pseudo-class label, an identity matrix 

G the similarity matrix of time series based on the shapelet-transformed representation matrix X ( S ) 

L G Laplacian matrix 

H ( S ) the similarity matrix between each two shapelets 
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of belonging to each class for the test time series can be predict

based on the calculated X ( S ) , i.e.: W 

T X ( S ). We use the class that

has the highest probability as the predicted label. 

The parameter S represents the selected shapelet features from

both labeled and unlabeled time series. Parameter Z represents

scaled pseudo-class label, and parameter W is classification bound-

ary that can classify time series based on the learned shapelets.

For example, we first initialize the pseudo-labels Z and shapelets

S with a certain length. The pseudo-labels and shapelets can be

updated by minimizing the objective function in Eq. (3) . Then, we

can calculate the shapelet-transformed matrix X ( Section 4.2 ) to

discover the most discriminative shapelet patterns. H(S) is to en-

sure the selected shapelets are diversity. After that, the parameter

W is updated based on least square minimization to classify differ-

ent categories of time series. 

Because matrices L G , H , X u and X l in Eq. (3) depend on the

shapelets S , we explicitly write these matrices as variables with

respect to shapelets S , i.e., L G ( S ) , H ( S ) , X u ( S ) and X l ( S ) . 

Before we explain the SSSL in detail, we firstly introduce the

shapelet-transformed representation of time series, which trans-

fer time series from original space to a shapelet-based space [44] .

Then, we introduce the spectral analysis, least square minimization

and shapelets similarity regularization respectively. 

4.2. Shapelet-transformed representation 

Prior to classification, transforming a time series classification

problem into an alternative data space can provide a significant

improvement than performing classification directly. Lines et al.

[44] proposed a shapelet transform that generates a new classifica-

tion data set independently of the classifier, which can downsize a

long time series into a short feature vector in the shapelets feature

space. 

Given a set of n time series T = { T 1 , T 2 , · · · , T n } and a set of

shapelet S = { S 1 , S 2 , · · · , S m 

} , the distance between the i th shapelet

S i and the j th time series T j is denoted as the minimum distance

X ( i, j ) among the distances between the shapelet S i and each time

series T j [44] . Hence, we use X ( S ) ∈ R 

m ×n to denote the shapelet-

transformed matrix, where each element X ( i, j ) can be calculated

in Eq. (4) , 

X ( i, j ) = min 

g=1 , ··· , ̄q 
1 

l i 

l i ∑ 

h =1 

( T 

j 

g+ h −1 
− S i h ) 

2 (4)

where q j is the length of time series T j and l i is the length of

shapelet S i , and q̄ = q j − l i + 1 denotes the total number of seg-

ments with length l i of time series T j . X u denotes the shapelet-
ransformed matrix of unlabeled time series, while X l denotes the

hapelet-transformed matrix of labeled time series. 

Minimum distances to shapelets can be character-

zed as a transformation of the time series data T ∈ R 

q ×n 

 q = max { q 1 , · · · , q n } ) into a new representation X ( S ) ∈ R 

m ×n .

s m < q , such a transformation reduces the original time series

imension space. 

To compute the derivative of the objective function in Eq. (3) ,

ach term in Eq. (3) should be differentiable. However, the distance

unction in Eq. (4) is not continuous and, thus, non-differential.

 differentiable approximation to the minimum function is intro-

uced in [12] , which approximates the distance function by using

he Soft Minimum function as in Eq. (5) , 

X ( i, j ) ≈
∑ q̄ 

q =1 
d i, j,q · e αd i, j,q 

∑ q̄ 
q =1 

e αd i, j,q 

(5)

here parameter α controls the precision of the function and

he soft minimum approaches the true minimum when α → −∞ ,

nd d i, j,q = 

1 
l i 

∑ l i 
h =1 

( T j 
q + h −1 

− S i h ) 
2 . Based on the observation in [12] ,

= −100 is small enough to make the soft minimum yield exactly

he same results as the true minimum. Thus, we kept this value

xed throughout all our experiments. 

.3. Spectral analysis 

Spectral analysis has been widely used in feature learning on

nlabeled data [45,46] . The main idea of the spectral analysis is

hat samples (time series) that are close to each other are likely

o share the same class label. For two similar unlabeled series T i 
nd T j , their pseudo-class labels (i.e., Z (: , i ) and Z (: , j) ) are needed

o be same, Therefore, we can formulate a spectral regularization

erm as follows, 

1 

2 

n ∑ 

i =1 

b ∑ 

j=1 

G ( i, j ) ‖ Z (: , i ) − Z (: , j) ‖ 

2 
2 

= 

1 

2 

c ∑ 

k =1 

n ∑ 

i =1 

b ∑ 

j=1 

G ( i, j )( Z (k, i ) − Z (k, j)) 2 

= 

c ∑ 

k =1 

Z (k, :)( D G − G ) Z (k, :) 

= tr( Z L G Z ) 

(6)

here L G = D G − G is the Laplacian matrix. D G is a diagonal matrix

ith its elements defined as D G (i, i ) = 

∑ n 
j=1 G ( i, j ) . G ∈ R 

n ×n is the
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imilarity matrix of time series based on the shapelet-transformed

epresentation matrix X ( S ) , then G is calculated by Eq. (7) 

G ( i, j ) = e −
‖ X u (: ,i ) −X u (: , j) ‖ 2 

σ2 (7) 

here σ is the parameter of the RBF kernel. 

.4. Least square minimization 

We aim to minimize the least square error based on the labeled

ime series X l , Y l and the unlabeled ones X u , Z . We use W ∈ R 

m ×c 

o represent the unified classification boundary for both labeled

nd unlabeled time series. Therefore, we minimize the least square

rrors of the predicted and the labels, and a regularization term is

urther added. The specific function is shown in Eq. (8) , 

min 

W 

‖ W 

� X l − Y l ‖ 

2 
F + ‖ W 

� X u − Z ‖ 

2 
F + ‖ W ‖ 

2 
F (8) 

By combining with shapelet-transformed representation, spec-

ral analysis, shapelet similarity minimization and least square

inimization terms, we final formulate the semi-supervised

hapelets learning model as in Eq. (3) . 

.5. Shapelet similarity minimization 

The selected most discriminative shapelets should be diverse in

hape to avoid similar shapelets be selected. Assume that H ( S ) ∈
 

m ×m is the similarity matrix, where each element H (i, j) repre- 

ents the similarity between two shapelets S i and S j , and H (i, j)

an be calculated as follows, 

H (i, j) = e −
‖ d i, j ‖ 2 

σ2 (9) 

here d i , j , the distance between shapelets S i and S j , can be calcu-

ated by Eq. (5) . 

. The SSSL algorithm 

To solve the optimization function in SSSL, we first rewrite the

ptimization problem in Eq. (3) as follows, 

min 

W , S , Z 

1 

2 

tr( Z L G ( S ) Z 

� ) + 

λ1 

2 

‖ H ( S ) ‖ 

2 
F + 

λ2 

2 

‖ W ‖ 

2 
F 

+ 

λ3 

2 

‖ W 

� X u ( S ) − Z ‖ 

2 
F + 

λ4 

2 

‖ W 

� X l ( S ) − Y l ‖ 

2 
F 

+ 

ζ1 

2 

( Z 

T Z − I c ) − ζ2 Z 

(10) 

here ζ 1 , ζ 2 are parameters to control the orthogonality and pos-

tive conditions. In practise, ζ 1 and ζ 2 should be large enough to

nsure the constraints satisfied. Then we resort to the coordinate

escent algorithm to iteratively update one variable by fixing the

emaining two variables. 

1) Solve Z (fix W and S ): With fixed W and S , Eq. (10) degen-

rates to 

min 

Z 
F( Z ) = 

1 

2 

tr( Z L G Z 

� ) + 

λ3 

2 

‖ W 

� X u ( S ) − Z ‖ 

2 
F 

+ 

ζ1 

2 

( Z 

T Z − I c ) − ζ2 Z 

(11) 

Then by setting the derivatives of the function in Eq. (11) to 0

ith respect to parameters Z , we obtain that Z can be updated as

ollows, 

Z 

t+1 = (λ3 W 

� 
t X 

t 
u + ζ2 I )( L 

t 
G + λ3 I + ζ1 I ) 

−1 (12) 

The derivation of Eq. (12) is in Appendix A.1 . 
2) Solve W (fix S and Z ): With fixed S and Z , Eq. (10) degener-

tes to 

min 

W 

F( W ) = 

λ2 

2 

‖ W ‖ 

2 
F + 

λ3 

2 

‖ W 

� X u ( S ) − Z ‖ 

2 
F 

+ 

λ4 

2 

‖ W 

� X l ( S ) − Y l ‖ 

2 
F 

(13) 

Then by setting the derivatives of the function in Eq. (13) to 0

ith respect to parameters W , we obtain that W can be updated

s follows, 

W t+1 = (λ2 I + λ3 X 

t 
u ( X 

t 
u ) 

� + λ4 X 

t 
l ( X 

t 
l ) 

� ) −1 

× (λ3 X 

t 
u ( Z 

t ) � + λ4 X 

t 
l ( Y 

t 
l ) 

� ) 
(14) 

The derivation of Eq. (14) is in Appendix A.2 . 

3) Solve S (fix W and Z ): With fixed W and Z , Eq. (10) degen-

rates to 

min 

S 
F( S ) = 

1 

2 

tr( Z L G ( S ) Z 

� ) + 

λ1 

2 

‖ H ( S ) | 2 F 

+ 

λ3 

2 

‖ W 

� X u ( S ) − Z ‖ 

2 
F + 

λ4 

2 

‖ W 

� X l ( S ) − Y l ‖ 

2 
F 

(15) 

We cannot solve S like updating W and Z because Eq. (15) is

on-convex. We use an iterative algorithm by setting a learning

ate η, i.e., S i +1 = S i − η∇ S i , where ∇ S i = ∂ F( S i ) /∂ S . The deriva-

ive of Eq. (15) with respect to S ( k, p ) is 

∂F( S ) 

S ( k, p ) 
= 

1 

2 

Z 

� Z 

∂ L G ( S ) 

∂ S ( k, p ) 
+ λ1 H ( S ) 

∂ H ( S ) 

∂ S ( k, p ) 

+ λ3 W ( W 

� X u ( S ) − Z ) 
∂ X u ( S ) 

∂ S ( k, p ) 

+ λ4 W ( W 

� X l ( S ) − Y l ) 
∂ X l ( S ) 

∂ S ( k, p ) 

(16) 

here k = 1 , · · · , m, and p = 1 , · · · , l k . 

Appendix A.3 provides the details to calculate the gradient

 S i = 

∂F( S ) 
∂ S 

. 

lgorithm 1 SSSL: Semi-supervised shapelets learning. 

1: Initialize: S 0 , W 0 , Z 0 ; 

2: Generate the labeled and unlabeled series based on τ ; 

3: repeat 

4: Calculate : 

5: X (i, j) based on Eq. (4); 

6: L t G based on Eq. (6); 

7: H t based on Shapelet similarity minimization; 

8: for i= { 1 , . . . , l min } do 

9: S i +1 ← S i − η∇ S i ; 

10: ∇ S i = 

∂F( S i ) 

∂ S 
// from Eq. (16) 

11: end for 

12: S t+1 = S i max + 1 

13: W t+1 ← (λ2 I + λ3 X 

t 
u ( X 

t 
u ) 

� + λ4 X 

t 
l ( X 

t 
l ) 

� ) −1 (λ3 X 

t 
u ( Z 

t ) � + 

λ4 X 

t 
l ( Y 

t 
l ) 

� ) ; 
14: Z 

t+1 ← λ3 W 

� 
t X 

t 
u ( L 

t 
G + λ3 I ) 

−1 ; //update W t+1 , Z 

t+1 

15: t ← t + 1 ; 

16: until Convergence 

17: return S ∗ = S t+1 , W 

∗ = W t+1 ; 

After having derived the gradients of the shapelets, pseudo-

abels, and the weights, we can introduce the overall learning algo-

ithm. Our approach iteratively updates one value by fixing the re-

aining two variables based on the coordinate descent algorithm.

herefore, the final algorithm for optimizing Eq. (3) is presented

n Algorithm 1 . The algorithm expects to initialize S 0 , Z 0 , and W 0 .

he algorithm performance and convergence speed depend on the
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Table 2 

The real-world time series data sets. 

Data set Classes Size of dataset Length 

Coffee 2 56 286 

CBF 3 930 128 

ECG 2 200 96 

Face four 4 112 350 

Gun point 2 200 150 

ItalyPow.Dem. 2 1096 24 

Lighting2 2 121 637 

Lighting7 7 143 319 

OSU leaf 6 442 427 

Trace 4 200 275 

WordsSyn 25 905 270 

OliveOil 4 60 570 

StarLightCurves 3 9236 1024 
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parameters initialization. As a result, we applied clustering tech-

niques to initialize the shapelets more efficiently. We first initial-

ize S 0 by using the centroids of the segments having the same

length with the shapelets length, because centroids represent typ-

ical patterns behind the data. Then, X 0 can be initialized by us-

ing the shapelet-transformed matrix of time series. Next, the cen-

ters of clusters obtained by k-means is used to initialize W 0 and

Z 0 . The initialization can achieve fast convergence. The initializa-

tion enables fast convergence. After initializing S 0 , Z 0 , and W 0 , we

can calculate X (i, j) based on Eq. (4) , L t G based on Eq. (6) , and H t 

based on shapelet similarity minimization. Then, theses matrices

are used for updating S t+1 , W t+1 and Z 

t+1 . The process ends until

the objective function becomes convergence. 

Convergence: The convergence of Algorithm 1 depends on step-

wise descents. When updating S , a closed-form derivative is diffi-

cult to obtain as the objective function in Eq. (15) is not convex.

We resort to a gradient descent algorithm as a solution to tackle

this problem. We set a small learning rate η to make the objec-

tive function decrease to convergence. Due to the objective func-

tion in Eq. (3) is non-negative, it has a lower bound of 0. Therefore,

Algorithm 1 converges to local optima. We run the algorithm sev-

eral times under various initializations to select the best solution

as output. 

6. Experiments 

The extensive experiments are carried out to validate the ef-

fectiveness of SSSL model compared with the state-of-the-art ap-

proaches. All experiments are conducted on a Linux Ubuntu server

with 16 ∗2.9 GHZ CPU and 64G memory. 

6.1. Data sets 

We evaluate our algorithm on 13 publicly available real-world

data sets from UCR time-series repository [7] . Due to the space

limitation, the 13 data sets from the UCR repository are randomly

selected but include all the data sets used in the state-of-the-art

method in [14] . The data sets consisting of time-series data sets

with various numbers of instances, lengths and number of classes.

The detailed information is summarized in Table 2 . 

6.2. Benchmark methods 

• Wei ’s approach [13] is one of the most prominent semi-

supervised time-series classifiers. The method starts by train-

ing a Euclidean distance-based classifier with labeled data, by

which the unlabeled data can be classified. Then, the most con-

fident unlabeled time series are added to the training data. The
classifier is retrained and the procedure repeated until conver-

gence. 
• DTW-D [40] uses modified Dynamic Time Warping (DTW) as

distance measure. The method firstly trains a classifier on la-

beled data, then computes distance of each unlabeled samples

to labeled samples using DTW-D. Among all the unlabeled ob-

jects, the one that is closest to the labeled samples will be

added into the labeled data set. The procedure repeated until

stopping criterion is met. 
• SUCCESS [41] is based on constrained hierarchical clustering.

The method clusters all of the labeled and unlabeled time se-

ries by using single-linkage hierarchical agglomerative cluster-

ing. Then the top-level clusters are labeled by their correspond-

ing seeds. 
• Xu ’s approach [14] is a graph-based semi-supervised learning

framework. This state-of-the-art method first constructs a graph

to effectively derive the underlying structures of the whole set

of time series data. Then the unlabeled time series are classi-

fied by label propagation over the constructed graph based on

harmonic Gaussian fields method. 
• BoW [26] generates the bag-of-words representation for time

series classification. Firstly, a group of local segments are ex-

tracted from each time series by a sliding window with a cer-

tain length. Then, a codebook consists of several codewords is

constructed by clustering all local segments from training time

series. Each local segment is assigned a codeword. The time se-

ries is then represented as a histogram of codewords, each en-

try of which is the count of a codeword appeared in the time

series. Finally, the bag-of-words representation is used as in-

put to SVM for classification. Since the BoW method is based

on supervised learning, we only used the labeled time series to

construct the codebook and extract a histogram representation

for each time series. 

.3. Measures 

In the experiments, we use 80% for training and the remain-

ng 20% for testing, as the same in all baselines [13,14,40,41] . In

he training instances, we randomly split 10% (20%, 30% and 40%)

s labeled time series while the remaining instances as unlabeled

ime series. 

We measure the performance of the baselines and our approach

y classification accuracy: (tp+tn) / (tp+fp+fn+tn) , where tp is true

ositive, fp is false positive, fn is false negative, and tn is true neg-

tive. For each data set, we repeated all experiments 10 times, the

veraged result is reported to measure the performance. 

.4. Parameter study 

Fig. 2 shows the parameter tests with respect to the two key

arameters in SSSL, i.e., the number of shapelets m and the length

f shapelets l min on the real-world data sets. The parameters are

 = 1 , l min = 0 . 1 by default. We set the learning rate η = 0 . 01 and

he number of iterations i max = 50 in updating S . We use the grid

earch to choose the best parameters because SSSL contains many

arameters, i.e., the parameters λ1 , λ2 , λ3 and λ4 vary from 10 −8 

o 10 8 . The number of shapelets varies in a range of m ∈ {1, 2, 3,

, 5, 6}, and l min ∈ { 0 . 05 , 0 . 1 , 0 . 15 , 0 . 2 , 0 . 25 } , which is a fraction of

he series length, e.g. m = 0 . 2 means 20% of q i . For the baselines,

he parameter settings are based on the settings in their original

ublications. 

Based on the results in Fig. 2 , we can observe that the algorithm

erforms well when the parameters m and l min are set to a small

alue. Therefore, it is not necessary to set the shapelet number and

hapelet length to be very large. 
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Fig. 2. Parameter study based on the classification accuracy of SSSL with respect to the number m and the length l min of the learnt shapelets. 

Table 3 

Comparisons of classification accuracy between SSSL and baselines. 

Data set Wei DTW-D SUCCESS Xu BoW SSSL 

Coffee 0.571 0.601 0.632 0.588 0.620 0.792 

CBF 0.995 0.833 0.997 0.921 0.873 1.00 

ECG 0.763 0.953 0.775 0.819 0.955 0.793 

Face four 0.818 0.782 0.800 0.833 0.744 0.851 

OSU leaf 0.468 0.701 0.534 0.642 0.685 0.835 

ItalyPow.Dem. 0.934 0.664 0.924 0.772 0.813 0.941 

Lighting2 0.658 0.641 0.683 0.698 0.721 0.813 

Lighting7 0.464 0.503 0.471 0.511 0.677 0.796 

Gun point 0.925 0.711 0.955 0.729 0.925 0.824 

Trace 0.950 0.801 1.00 0.788 1.00 1.00 

WordsSyn 0.590 0.863 0.618 0.639 0.795 0.875 

OliveOil 0.633 0.732 0.617 0.639 0.766 0.776 

StarLightCurves 0.860 0.743 0.800 0.755 0.851 0.872 

Average 0.741 0.733 0.754 0.718 0.802 0.859 
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.5. Comparisons 

In this part, we compare SSSL with the state-of-the-art base-

ines. We report the best results by conducting experiments

en times under different parameter initializations. We set λ1 =
2 = λ3 = λ4 = 1 , σ = 1 , I max = 50 , η = 0 . 01 , and l min changes over

0.05, 0.1, 0.15}, r ∈ {1, 2}, and m ∈ {1, 2, 3}. 
Table 3 shows the comparisons given 10% labeled data with re-

pect to classification accuracy. We can observe that the proposed

SSL method performs better than other four benchmarks on the

ost of data sets. The results validate the effectiveness of the

emi-supervised learning-based shapelets discovery method. Since 

e repeated all experiments 10 times, Fig. 3 illustrates the boxplot

f accuracies of 10 times on different data sets with 10% labeled

ata. From the boxplot, we can see that the proposed SSSL algo-

ithm is more robustness and less fluctuation of the performance. 

The classification accuracy of SSSL with respect to different ra-

ios τ of labeled data (10%, 20%, 30%, 40%) are shown in Fig. 4 . It

eveals that the classification accuracy rises with increasing the ra-

ios of labeled time series. This is because more labeled data can

elp to improve the performance of semi-supervised learning. Nev-

rtheless, our proposed SSSL model can achieve acceptable accu-

acy even with low ratios of labeled data. 

.6. The learnt shapelets 

Fig. 5 lists the shapelets learnt by SSSL on the real-world data

ets. We vary the number of shapelets from 1 to 6 and draw the

earnt shapelets in red. The results show that when increasing the

umber of shapelets, there will be heavy overlap of the learnt

hapelets. This confirms that we do not need to set the length of

hapelets too large in practice. 
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Fig. 3. The boxplot of accuracies of 10 times on the CBF, Face Four, Gun Point and StarLightCurves data sets. 

Fig. 4. Classification accuracy of SSSL with respect to various ratios of labeled data. 
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Fig. 5. An illustration of the shapelets learnt by SSSL on the real-world data sets. The left part shows a small portion of time series examples drawn from the original data 

sets. The right part shows the learnt shapelets. Shapelets in red color are learnt by increasing the number from 1 to 6. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Table 4 

Running time comparisons with respect to the number of shapelets on data of CBF, ECG, FaceFour, ItalyPow.Dem, Lighting2 

and Lighting7. 

# of Shapelets Time: mean + std. (seconds) 

CBF ECG FaceFour ItalyPow.Dem. Lighting2 Lighting7 

2 219.63 ± 28.3 7.05 ± 0.2 17.21 ± 4.1 118.74 ± 0.9 87.77 ± 11.7 23.33 ± 5.3 

4 403.61 ± 30.3 11.23 ± 0.1 38.20 ± 1.5 189.90 ± 0.5 153.72 ± 2.3 42.62 ± 4.4 

6 577.86 ± 42.7 16.55 ± 0.3 55.89 ± 0.5 277.33 ± 0.2 211.63 ± 7.9 69.65 ± 2.1 

8 602.31 ± 31.6 18.67 ± 0.2 78.57 ± 1.2 316.17 ± 0.3 299.22 ± 11.6 85.44 ± 2.0 

10 675.11 ± 8.2 20.33 ± 0.4 96.41 ± 4.8 411.90 ± 1.1 354.74 ± 13.3 101.20 ± 3.3 

12 699.60 ± 12.1 22.01 ± 0.1 107.22 ± 3.8 496.44 ± 1.3 397.81 ± 8.6 121.80 ± 4.4 
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Fig. 5. Continued 

Table 5 

Running time comparisons with respect to the number of shapelets on data of OSU Leaf, Gun Point, Trace, WordsSyn, Coffee 

and OliveOil. 

# of Shapelets Time: mean + std. (seconds) 

OSU Leaf Gun Point Trace WordsSyn Coffee OliveOil 

2 366.25 ± 33.3 38.20 ± 17.5 10.33 ± 1.3 401.75 ± 22.0 5.22 ± 0.2 6.65 ± 1.0 

4 643.60 ± 8.0 51.03 ± 10.33 19.85 ± 1.0 688.55 ± 15.4 9.33 ± 0.1 15.30 ± 2.0 

6 876.56 ± 22.0 93.13 ± 2.8 22.60 ± 3.3 902.30 ± 10.33 14.10 ± 0.3 19.23 ± 2.1 

8 956.60 ± 3.3 155.63 ± 8.0 25.85 ± 2.1 997.66 ± 11.5 17.75 ± 0.6 23.43 ± 0.9 

10 1125.66 ± 3.9 233.33 ± 11.3 28.76 ± 2.0 1112.45 ± 8.6 19.95 ± 0.2 27.66 ± 1.3 

12 1228.87 ± 2.0 301.20 ± 1.1 31.41 ± 3.3 1356.43 ± 9.5 21.11 ± 1.0 29.89 ± 2.3 
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6.7. Run time 

We test the run time of SSSL with respect to the number of

shapelets m . We vary the parameter m from 2 to 12 with a step

size of 2 and repeat experiments ten times. From Tables 4 and 5 ,

we can see that the run time generally increases linearly with re-

 

w  
pect to the number of shapelets, which means it scales well to

arge data sets. 

. Conclusion 

Time series classification has been a long-standing problem

ith a large scope of real-world applications [47,48] such as
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iomedical engineering and clinical prediction. However, in real

orld applications, it can be expensive or time-consuming to la-

el data as it may require access to domain experts, whereas un-

abeled data is cheap and easy to collect and store. In this paper,

e explored a new problem of semi-supervised shapelets learning,

here the data contain both labeled and unlabeled time series.

n optimization model SSSL by integrating the strength of regu-

arized least-square, shapelets regularization, spectral analysis, and

seudo-label to auto-learn the most discriminative shapelets from

abeled and unlabeled time series data. The experiments and com-

arisons on real-world time series data sets demonstrate that SSSL

utperforms state-of-the-art semi-supervised time series classifica-

ion algorithms on most of the data sets. 

Although our algorithm of SSSL over labeled and unlabeled time

eries achieves high accuracy and meets the need of using both

abeled and unlabeled data, some limitations exist that need im-

rovement in future work: 1) we will compare SSSL with other

hapelet learning models using advanced time series represen-

ation and alternative distance measures instead only using Eu-

lidean distance as a measure; and 2) the proposed algorithm,

ased on a gradient descent algorithm, is a straightforward solu-

ion to solve the objective function, however more state-of-the-

rt gradient descent algorithms could be applied to this semi-

upervised time series learning problem. This work inspires some

nteresting directions for future research: 1) the problem could be

urther extended by using deep learning framework, such as tri-

raining or co-training deep learning framework can be used for

emi-supervised time series learning; and 2) the idea could also be

sed for multivariate time series. For example, the objective func-

ion could be extended to learn shapelet feature from both labeled

nd unlabeled multivariate time series. 
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ppendix A 

1. The derivation of Eq. (12) 

The derivatives of Eq. (11) with respect to Z is 

∇F( Z ) = Z L G − λ3 ( W 

� X u − Z ) + ζ1 Z − ζ2 I 

= Z ( L G + λ3 I + ζ1 I ) − λ3 W 

� X u − ζ2 I 
(A.1) 

here I is an identity matrix. By making the derivatives equal to

, we obtain, 

Z = (λ3 W 

� X u + ζ2 I )( L G + λ3 I + ζ1 I ) 
−1 (A.2) 

Thus, Z can be updated as follows, 

Z 

t+1 = (λ3 W 

� 
t X 

t 
u + ζ2 I )( L 

t 
G + λ3 I + ζ1 I ) 

−1 (A.3) 

2. The derivation of Eq. (12) 

The derivatives of Eq. (13) with respect to W is 

∇F( W ) = λ2 W + λ3 X u ( W 

� X u − Z ) + λ4 X l ( W 

� X l − Y l ) 

= λ2 W + λ3 X u X 

� 
u W − λ3 X u Z 

� + λ4 X l X 

� 
l W − λ4 X l Y 

� 
l 

= (λ2 I + λ3 X u X 

� 
u + λ4 X l X 

� 
l ) W − λ3 X u Z 

� − λ4 X l Y 

� 
l 

(A.4) 
When setting the derivatives equal to 0, we have, 

W = (λ2 I + λ3 X u X 

� 
u + λ4 X l X 

� 
l ) 

−1 (λ3 X u Z 

� + λ4 X l Y 

� 
l ) (A.5) 

Thus, W can be updated as follows, 

W t+1 = (λ2 I + λ3 X 

t 
u ( X 

t 
u ) 

� + λ4 X 

t 
l ( X 

t 
l ) 

� ) −1 

× (λ3 X 

t 
u ( Z 

t ) � + λ4 X 

t 
l ( Y 

t 
l ) 

� ) 
(A.6) 

3. Details of calculating ∇S i in Eq. (16) 

As L G = D G − G and D G (i, i ) = 

∑ n 
j=1 G ( i, j ) , the first term in

q. (16) turns to calculating ∂ G ( i, j ) /∂ S ( k, p ) as in Eq. (A.7) , 

∂ G ( i, j ) 

∂ S ( k, p ) 
= − 2 G ( i, j ) 

σ 2 

(
m ∑ 

q =1 

(
X u (q, i ) − X u (q, j) 

))

×
(

∂ X u (q, i ) 

∂ S ( k, p ) 
− ∂ X u (q, j) 

∂ S ( k, p ) 

) (A.7) 

nd 

∂ X ( i, j ) 

∂ S ( k, p ) 
= 

1 


2 

q̄ i, j ∑ 

q =1 

e αd i, j,q ((1 + αd i, j,q )
 − α�) 
∂d i, j,q 

∂ S ( k, p ) 
(A.8) 

here 
 = 

∑ q̄ i, j 

q =1 
e αd i, j,q , � = 

∑ q̄ i, j 

q =1 
d i, j,q e 

αd i, j,q and q̄ i, j = q j − l i + 1 ,

 i, j,q = 

1 
l i 

∑ l i 
h =1 

( T j 
q + h −1 

− S i h ) 
2 . 

∂d i, j,q 

∂ S ( k, p ) 
= 

{
0 i f i 
 = k 
2 
l k 
( S ( k, p ) − T 

j 
q + p−1 

) i f i = k 
(A.9) 

The second term in Eq. (16) turns to calculating Eq. (A.10) 

∂ H (i, j) 

∂ S ( k, p ) 
= − 1 

σ 2 
˜ d i, j e 

− 1 

σ2 
˜ d 2 
i, j 

∂ ˜ d i, j 

∂ S ( k, p ) 
(A.10) 

here ˜ d i, j is the distance between shapelets S i and S j . 

Based on Eqs. (A .7) –(A .10) , we can calculate the gradient ∇ S i =
∂F( S ) 
∂ S i 

. 
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