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ABSTRACT
Graph clustering aims to discover community structures in net-
works, the task being fundamentally challenging mainly because
the topology structure and the content of the graphs are di�cult
to represent for clustering analysis. Recently, graph clustering
has moved from traditional shallow methods to deep learning ap-
proaches, thanks to the unique feature representation learning
capability of deep learning. However, existing deep approaches
for graph clustering can only exploit the structure information,
while ignoring the content information associated with the nodes
in a graph. In this paper, we propose a novel marginalized graph
autoencoder (MGAE) algorithm for graph clustering. �e key inno-
vation of MGAE is that it advances the autoencoder to the graph
domain, so graph representation learning can be carried out not
only in a purely unsupervised se�ing by leveraging structure and
content information, it can also be stacked in a deep fashion to learn
e�ective representation. From a technical viewpoint, we propose a
marginalized graph convolutional network to corrupt network node
content, allowing node content to interact with network features,
and marginalizes the corrupted features in a graph autoencoder
context to learn graph feature representations. �e learned features
are fed into the spectral clustering algorithm for graph cluster-
ing. Experimental results on benchmark datasets demonstrate the
superior performance of MGAE, compared to numerous baselines.
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Graph clustering; autoencoder; graph autoencoder; graph convolu-
tional network; network representation.
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1 INTRODUCTION
Network applications, such as social networks, citation networks,
and protein interaction networks, have emerged increasingly and
have a�racted much a�ention in the last decade. Unlike traditional
data which are represented as a �at-table or vector format, net-
worked data are naturally represented as graphs for characterizing
the individual properties of each node and capturing the pairwise
structure relationship between nodes in the networks. �e complex-
ity of networked data has imposed many challenges on machine
learning tasks, such as graph clustering. Given a graph (network)
with node content and structure (link) information, graph clus-
tering aims to partition the nodes in the graph into a number of
disjoint groups. �is has become one of the most important tasks
in many applications, such as community detection [6], customer
group segmentation [14], and functional group discovery in enter-
prise social networks [12]. �e major challenge of graph clustering
is how to e�ectively utilize the information in the graph.
ShallowRepresentation forGraphClustering: To enable graph
clustering, a vast number of algorithms and theories have been de-
veloped, most of which can be considered as shallow methods that
directly perform clustering or learn simple or linear representations
from the given graph.

Early clustering methods on graphs mainly focus on graph struc-
ture only. �ey either capture the betweenness of edges [7], com-
pute eigenvectors of the graph Laplacian [20, 21], or employ belief
propagation [10] to exploit the graph structure. Recently, over-
lapping community detection algorithms, like BigClam [39] and
AgmFit [38], have also been developed; however, these algorithms
are suboptimal because they only use one channel of information
and ignore the other.

When considering integrating both node content and network
information, early methods in [1, 8] apply a nonnegative matrix
factorization (NMF) strategy to decompose node content matrix
and use graph structure as regularization terms. Relational topic
model methods [3, 29] try to simultaneously model both the links
and the contents for clustering. Zhou et al. add virtual a�ribute
nodes and edges in a network and compute the similarity based on
the augmented network [41]. By considering a graph as a dynamic
system and modeling its structure as a consequence of interactions
among nodes, Liu et al. proposed an algorithm from the view
of content propagation and then modeled the interactions with
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in�uence propagation and random walk [19] . However, all these
methods, explicitly or implicitly, only capture the linear or shallow
relationships between node content and network information, while
be�er non-linear or deep representation learning techniques were
not extensively explored.
DeepRepresentation forGraphClustering: Deep learning sheds
light on modeling nonlinear or complex relationships, which has
been successfully applied in many domains, such as speech recog-
nition [5], computer vision [17], and network representations [25].
Of the deep learning methods, the autoencoder is the most com-
monly used approach for situations such as clustering where label
information is unavailable, as the autoencoder based representation
learning approach can be applied to purely unsupervised learning.
�ere are indeed several existing autoencoder based deep methods
for graph clustering [2, 31]. By showing that autoencoders and
spectral clustering have the same optimization objectives, Tian
et al. proposed to learn a non-linear mapping from the original
graph before applying the K-means algorithm [31]. By using a
random sur�ng model to capture graph structural information, Cao
et al. proposed a deep graph representation model for clustering
[2]. However, these approaches can only handle one kind of infor-
mation (structure), and the underlying architecture cannot handle
the complex structure and content information as a whole.

Motivated by these observations, we address the following chal-
lenges in dealing with graph clustering in the deep learning (e.g.,
autoencoder) framework.

• Content and Structure Integration: Graph data have
rich and complex information where content and structure
information are inter-dependent. How to e�ectively inte-
grate both structure and content information in a uni�ed
framework, and also analyze the interplay between content
and structure?

• Deep Representation for Graph Clustering: Deep and
nonlinear representation have achieved impressive results
in many supervised learning tasks. How to learn an in-
formative representation on graph data for the task of
clustering?

To address the �rst challenge, in this paper, we propose a content
and structure augmented autoencoder for graph clustering. Instead
of learning a fully connected layer from the content or/and structure
information, we develop a convolutional network as our building
block in the autoencoder architecture. Our convolutional network
combines both structure and content information, and performs the
convolution operation in the spectral domain, which is motivated by
the most recently developed graph convolutional network (GCN)
[15]. In GCN, the convolution is considered to be multiplication of
the Fourier-transform of a signal, and it has proved very e�ective
in classi�cation tasks in graphs. In this paper, we further extend it
into graph clustering, a purely unsupervised task in data mining.

When content and structure information are integrated, the
interplay between them plays an important role in learning rich
representation for graph clustering. We come up with the idea
that the disturbance caused by random noise in training provides a
more e�ective representation. In existing representation learning,
the se�ing is rather static, where the structure and/or content are
given and directly fed into the algorithms [2, 31, 37]. We argue

Figure 1: �e e�ectiveness of usingmarginalization for graph clus-
tering. Marginalization introduces a small amount of disturbance
to the node content, resulting in a dynamic environment for node
content and structures to interact. Because the optimization pro-
cess is well informed in relation to data disturbance, marginaliza-
tion will cancel out the disturbance and the underlying graph au-
toencoders can learn optimized outcomes. Results are based on the
accuracy (ACC) and normalized mutual information (NMI) of the
spectral clustering before and a�er marginalization.

that such a simple solution can only provide a simple integration
of information from a structure and content perspective, but can-
not e�ectively exploit the interplay between them, and hence may
result in suboptimal performance in representation and clustering.
In our paper, we propose a marginalization process, marginalized
graph autoencoder, which introduces some sort of ”dynamics” by
respectively adding random noises many times to the content in-
formation. �e e�ectiveness of marginalization is illustrated in
Fig 1. Our marginalized autoencoder provides a number of advan-
tages for graph clustering: (1) the marginalized process enables
the interplay between content and structure, which is su�ciently
exploited, resulting in be�er results; (2) by adding random corrup-
tions (masking some feature values as 0) into the graph content
information multiple times, the dataset is considerably enlarged,
which enables our algorithm to be trained with a larger dataset; (3)
compared to traditional autoencoders (where dropout techniques
are employed), which requires iteratively feeding the data to learn
the neural networks in multiple epochs, the marginalized process
enables the derivation of a closed form solution for our autoencoder,
providing a much more e�cient solution.

For the second challenge, we stack multiple layers of graph
autoencoder to build a deep architecture for learning e�ective rep-
resentation. Each graph autoencoder is trained sequentially with
corrupted content information, and optimization is performed to
minimize the reconstruction error between the encoded content
and clean content information without corruption. A�er obtaining
the representation of each node, we feed it into a spectral clustering
algorithm to get the graph clustering results. As the building block
in the autoencoder of our algorithm is the spectral convolutional
network algorithm which performs in the spectral domain, employ-
ing spectral clustering on the representation turns out to be a good
solution for graph clustering.

To summarize, in this paper, we propose a marginalized graph
autoencoder (MGAE) for graph clustering. Our algorithm takes
the graph structure and content as input and learns a content and
structure augmented autoencoder upon them, with the graph con-
volutional network (GCN) as a building block. To learn a be�er
representation from the graph autoencoder, we further corrupt the
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content features with noise and propose to marginalize noise for
e�cient computation. By stacking multiple layers of graph autoen-
coder, our algorithm can further learn a deep representation for
network nodes. Finally, the learned representation is re�ned and
fed into the spectral clustering framework for the �nal clustering
results. Experimental results on real-life graph datasets validate
our designs.

Our contributions can be summarized as follows:

• We propose a graph autoencoder algorithm to e�ectively
integrate both structure and content information in a deep
learning framework. �is approach essentially advances
the deep learning research to graph clustering with node
a�ributes.

• We propose a marginalization process to corrupt content
features of graphs in our deep learning framework, which
enables us to (1) exploit the interplay between content
and structure information; (2) learn on a larger dataset;
and (3) obtain a closed form solution in an autoencoder
framework.

• While convolutional networks are mainly used in classi-
�cation tasks, we take this a step further by using graph
convolutional networks for learning graph representation
for clustering.

• We conduct extensive experiments and compare to 12 algo-
rithms in total. �e results demonstrate that our algorithm
signi�cantly outperforms all state-of-the-art methods on
three benchmark datasets.

2 RELATEDWORK
Our work is closely related to graph clustering, autoencoders, and
convolutional neural networks for graphs. We brie�y review these
works in this section.

2.1 Graph Clustering
Graph or network analytics has been a long-standing research topic
in machine learning [13, 22–24, 26, 33, 35, 40]. Graph clustering
[2, 7, 8], in particular, a�racts increasing a�ention in recent years,
progressing from shallow methods to deep learning.

Early shallow methods take various approaches to graph cluster-
ing. Girvan et al. proposed a method for detecting social communi-
ties through the idea of using centrality indices to �nd community
boundaries [7]; Hasting et al. expressed community detection as
an inference problem to determine the most likely arrangement of
communities and applied belief propagation to it [10].

For clustering graphs with node content information, researchers
tried to combine structure and content information in various ways.
Cohn et al. tried to combine link models and content models
through shared hidden variables based on the popular probabilistic
models; and Liu et al. combined the two aspects of information
from the perspective of content propagation [19].

When it comes to deep methods for graph clustering, many
methods referred to autoencoders, adapting either the variational
autoencoder [16], sparse autoencoder [11, 31] or sparse denoising
autoencoder [2] and learned deep representation for clustering.

2.2 Autoencoders
Autoencoders have been a widely used tool in the deep learning area.
�ey basically consist of an encoder mapping the input feature X
to some hidden representation h(X ) and a decoder mapping it back
to reconstruct the input feature. �e parameters of the autoencoder
can be learned through minimizing the reconstruction error.

Denoising autoencoders (DAs) corrupt the input features and
then try to learn a hidden representation which best reconstructs
the original input from its corrupted version also by minimizing
the reconstruction error. Further, by regarding every hidden rep-
resentation as the input feature of the next DA and stacking these
hidden representations learned into a single matrix, the stacked
denoising autoencoder (SDA) proposed by Vincent et al. could
obtain a higher-level representation [32].

A marginalized denoising autoendcoder (mSDA) was proposed
in [4] inspired by SDA. It uses linear denoisers as the basic build-
ing blocks and marginalizes out the random feature corruption. It
avoids iterative optimization and signi�cantly simpli�es parameter
estimation while retaining a state-of-the-art classi�cation perfor-
mance.

Bene��ing from the acceleration of mSDA, Shao et al. proposed
a deep structure with a linear coder building block for graph cluster-
ing, which jointly learns the feature transform function and codings
[28].

However, this series of autoencoder-based method handles only
one channel of data and therefore could not best suit a�ributed
graph problems.

2.3 Convolutional Neural Networks for Graphs
Convolutional neural networks are widely used in machine learning
when dealing with spectrum or image processing issues. Recently.
graph convolutions have been developed to solve graph-based learn-
ing problems.

Kipf et al. adopted a spectral view on convolutions and consid-
ered convolutions to be a multiplication of the Fourier-transform
of a signal [15]. Using the concept of graph convolutions, the input
information from the neighborhood nodes is combined over the
neural network layers and outputs a signal for the estimating node.

Kipf et al. also a�empted to combine CNN with autoencoders
for graph representation. �ey developed the variational graph
autoencoder (VGAE) [16] based on the variational auto-encoder.
VGAE uses a graph convolutional network encoder and a simple
inner product decoder to learn latent representations for link pre-
diction. Our work is di�erent from [16] in that: (1) [16] is trained
on a �nite number of data by passing the dataset multiple times,
but our autoencoder is trained on a much larger dataset due to the
marginalization process which assumes that the number of cor-
ruption is in�nite. (2) [16] needs to iteratively optimize the neural
network, whereas our algorithm is much more e�cient and can
directly obtain a closed-form solution. Our experimental results
show that our algorithm is much more e�ective and e�cient for
graph clustering.

3 PROBLEM DEFINITION
We consider graphs with node content in the paper. A graph is
represented as G = (V ,E,X ), where V = {vi }i=1, · · · ,n consists of
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a set of vertices, E = {ei j } is a set of edges, and X = {x1; . . . ;xn }
is a set of a�ribute values. xi ∈ Rd is a real-value a�ribute vector
associated with vertex vi . Formally, the graph can be represented
by two types of information, the content information X ∈ Rn×d

and the structure information A ∈ Rn×n , where A is an adjacency
matrix of G and Ai, j = 1 if ei, j ∈ E otherwise 0.

Given a graph G, graph clustering aims to partition the nodes
in G into k disjoint groups {G1,G2, · · · ,Gk }, so that: (1) vertices
within the same cluster are close to each other while vertices in
di�erent clusters are distant in terms of graph structure; and (2)
vertices within the same cluster are more likely to have similar
a�ribute values.

4 PROPOSED METHOD
Graphs have rich information in terms of node content and struc-
ture interaction. To fully exploit this information, we propose an
e�ective content and structure augmented autoencoder for graph
clustering. Instead of learning a fully connected layer from the
content and structure information, in this paper, we develop a
convolution network as our building block in our neural network
architecture. �e graph convolutional network is inspired by the
most recently developed graph convolution network [15] for classi-
�cation tasks for graphs, which learns a convolution on the structure
information with node content in the spectral domain. We extend
it to a purely unsupervised clustering task. �en we reconstruct
the corrupted node content features with a marginalized autoen-
coder. A stacked architecture is further employed for learning a
deep representation. Finally a successful clustering algorithm, spec-
tral clustering, is used to obtain the �nal clustering results. Our
framework is illustrated in Fig 2.

�e �rst component of our method is the construction of an
autoencoder. We discuss the graph convolutional network of our
autoencoder in Section 4.1, and then propose our marginalized
graph autoencoder in Section 4.2.

4.1 Graph Convolutional Network
Graph convolutional networks (GCNs) de�ne the concept of convo-
lution from the spectral domain [15]. Given the adjacency matrix A
and content matrix X of graph G , a GCN aims to learn a layer-wise
transformation by a spectral convolution function f (Z (l ),A), i.e.,:

Z (l+1) = f (Z (l ),A), (1)

Here, Z l ∈ Rn×d (n nodes and d features) is the input for convolu-
tion, and Z (l+1) is the output a�er convolution. We have Z 0 = X

for our problem. If f (Z (l ),A) is well de�ned, one can build arbitrary
deep convolutional neural networks e�ciently.

Spectral convolution on a single feature: Consider each fea-
ture s ∈ Rn over all the nodes of the graph as a signal. �e spectral
convolution function f (s,A) on a graph is de�ned as the multiplica-
tion of s ∈ Rn with a �lter дθ = diag(θ ) (parameterized by θ ∈ Rn )
in the Fourier domain, such as:

дθ ? s = UдθU
T s, (2)

where U is the matrix of eigenvectors of the normalized graph
Laplacian L = IN − D−

1
2AD−

1
2 = UΛUT , with Dii =

∑
j Ai j , IN

is the identity matrix, and Λ is a diagonal matrix in which the

diagonal elements are the eigenvalues of L. дθ can be considered
as a function of the eigenvalues, i.e., дθ (Λ).

It is expensive to compute the eigen-decomposition of L for
large graphs. д(Λ) can be approximated in terms of Chebyshev
polynomials [9]:

дθ (Λ) ≈
K∑
k=0

θkTk (Λ̃), (3)

where Λ̃ = 2
λmax

Λ−IN . λmax is the largest eigenvalue of L. θ is the
Chebyshev coe�cients,T0(a) = 1 andT1(a) = a. By further limiting
the layer wise convolution operation to K = 1 and approximate
λmax ≈ 2, we could get a linear function on the graph Laplacian
spectrum.

дθ ? s ≈ θ (IN + D
− 1

2AD−
1
2 )s, (4)

where θ is the shared �lter parameter over the whole graph and
IN +D

− 1
2AD−

1
2 can be approximated by D̃−

1
2 ÃD̃−

1
2 with Ã = A+IN

and D̃ii =
∑
j Ãi j .

Spectral Convolution on multiple features: When consid-
ering multiple features (signals), i.e., Z l ∈ Rn×m , the spectral con-
volution Eq. (4) can be generalized as:

H = дW ?Z
(l ) = D̃−

1
2 ÃD̃−

1
2Z (l )W , (5)

whereW ∈ Rd×d is a matrix of �lter parameters, and H ∈ Rn×d

is the convolved signal matrix, which can be computed e�ciently
in O(|E |d2). Formally, then we have our layer-wise propagation
rule for GCN,

f (Z (l ),A) = σ (D̃−
1
2 ÃD̃−

1
2Z (l )W (l )). (6)

Here, σ is a activation function such as Relu(t) = max(0, t) or
sigmoid(t) = 1

1+e−t .

4.2 Marginalized Graph Autoencoder (MGAE)
With knowledge of the graph convolutional network, we now
present our novel Marginalized Graph Autoencoder (MGAE) ap-
proach, which learns a hidden representation for each node in a
network.

Content and StructureAugmentedAutoencoder: Our model
is built on a single-layer autoencoder. Di�erent from the two-level
encoder and decoder, it reconstructs the input X = {x1; . . . ;xn } ∈
Rn×d by using a single mapping function f (), that minimizes the
squared reconstruction loss:

‖X − f (X )‖2. (7)
f (X ) is traditionally represented as f (X ) = σ (WX ). By using

graph convolution networks f (X ,A) in Eq. (6) instead of f (X ), our
loss function becomes:

‖X − D̃−
1
2 ÃD̃−

1
2XW ‖2 + λ‖W ‖2F . (8)

Here we use the linear activation function. W ∈ Rd×d is our
parameter matrix. ‖W ‖2F is a regularization term with coe�cient λ
being a tradeo�. Our idea is to learn a graph convolutional network
from a given graphG , and minimize the reconstruction error of the
autoencoder.
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Figure 2: Conceptual framework ofMarginalized GraphAutoencoder (MGAE) for graph clustering. Given a graphG = (V ,E,X ),
MGAE �rstly learns a graph convolutional network (GCN) by using a mapping function f (X̃ ,A) based on the adjacency matrix
A and corrupted node content X̃ . By minimizing the error between the output of GCN f (X̃ ,A) and X , we will get a latent repre-
sentation Z (1). By stacking multiple GCNs and performing layer-wise training, our algorithm can learn a deep representation
Z (Γ). Finally, a spectral clustering algorithm is performed on the re�ned representation Z (Γ) of the last layer.

Marginalized Graph Autoencoder: Our autoencoder (Eq. (8))
provides an e�ective way to integrate both content and structure
information. However, it cannot further exploit the interplay be-
tween content and structure information. To solve this problem,
we propose a marginalization process for our graph autoencoder by
randomly introducing some randomness into the content features
(as shown in Fig 2). Suppose X̃ = {˜x1; . . . ; ˜xn } is the corrupted
version of the original input X . We can get the corrupted sample ˜xi
by randomly removing some features (se�ing them to 0) from xi .

Furthermore, to train the autoencoder, we need to pass the data
multiple times. To this end, we generate corruptedX multiple times
as input. Let us suppose we repeat it form times as [X̃1, · · · , X̃m ],
then our �nal objective function becomes:

1
m

m∑
i=1
‖X − D̃−

1
2 ÃD̃−

1
2 X̃iW ‖

2 + λ‖W ‖2F . (9)

If we further de�ne Â = D̃−
1
2 ÃD̃−

1
2 , our objective function be-

comes:
J = Tr[(X − ÂX̄W )T (X − ÂX̄W )] + λ‖W ‖2F ,

where Tr(·) is the trace of a matrix. X̄ = 1
m

∑m
i=1 X̃i . We can

then get the solution forW :

L(W ) = tr [XTX −WT X̄T ÂTX − XT ÂX̄W

+WT X̄T ÂT ÂX̄W ] + λ‖W ‖2F ,

∂L

∂W
= −X̄T ÂTX − X̄T ÂTX + 2X̄T ÂT ÂX̄W + 2λW = 0,

2(X̄T ÂT ÂX̄ + λ)W = 2X̄T ÂTX ,

W = X̄T ÂTX (X̄T ÂT ÂX̄ + λ)−1.

W = PQ−1 with P = X̄T ÂTX and Q = X̄T ÂT ÂX̄ + λ.

Let us de�ne Y = X̄T ÂT for convenience, Y = {y1, . . . ,yn } and
yi ∈ R

d , then P and Q can be expressed as

P = YX and Q = YYT + λ.

We are interested in the limit case where m → ∞, so that we
have enough samples to smooth out the corruption. In such a
condition, matrices P and Q converge to their expected value by
the weak law of large numbers and ourW can be expressed as

W = E[P]E[Q]−1. (10)

For E[Q], we have

E[Q] =
n∑
i=1

E[yiyi
T ] + λ, (11)

Let us assume that each feature is corrupted with a probability p,
then the diagonal entries have a (1−p) probability of surviving the
corruption while for the other entries, the probability is (1 − p)2 as
they have to survive two features at the same time. �erefore, we
can form a corruption probability vector u = [1 − p, . . . , 1 − p, 1]
for each feature (the last item should be 1 as the constant feature
is never corrupted), and then the expectation of the matrix Q is
obtained as

E[Q]i, j =

{
Squ + λ, i = j

Squ2 + λ, i , j
,

where Sq = XT ÂT ÂX is the uncorrupted version of YYT .
Similarly, we have E[p]i, j = Spu, where Sp = XT ÂTX . �en we

can directly obtain the weight forW .

W = E[P]E[Q]−1. (12)

And the �nal graph representation Z is given as follows:

Z = ÂXW . (13)

�e proposed marginalized graph convolutional autoencoder
algorithm is given in Algorithm 1.

Attractive Properties: Our algorithm has a number of a�rac-
tive properties:

(1) Interplay Exploitation. �e randomness injected into
the content information allows us to exploit the interplay
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Algorithm 1 Marginalized Graph Autoencoder
Require:
X : the a�ribute matrix of the graph;
A: Adjacency matrix of the graph;
p: the corruption probability;

Ensure:
W : the hidden representation in the autoencoder;
Z : the reconstructed representation of the input X;
Ã← A + IN ; D̃ii ←

∑
j Ãi j ;

Â← D̃−
1
2 ÃD̃−

1
2 ;

u ← [1 − p, . . . , 1 − p, 1];
Sq ← XT ÂT ÂX ;
Sp ⇐ XT ÂTX ;

E[Q]i, j ←

{
Squ + λ, i = j

Squ2 + λ, i , j
;

E[P]i, j ← Spu;
W ⇐ E[P]E[Q]−1;
Z ⇐ ÂXW ;

between content and structure, which will help improve
the performance.

(2) Larger dataset. �e marginalization process enables our
algorithm to be trained on a larger dataset due to the as-
sumption that we repeat the corruption m times (m →∞).

(3) HighE�ciency. Unlike traditional gradient descent based
optimization algorithms that require large iterations to ob-
tain convergence, we can get a global optimal solution for
the weight matrix.

StackedGraphConvolutionalAutoencoder: Our model also
has the capability of stacking multiple layers of autoencoders to cre-
ate a deep learning architecture. We feed the output of the (l − 1)th
layer Z (l−1) as the input of the lth layer. On the other hand, ac-
cording to the rule Z l = ÂX lW l , each hidden representationW l

is learned to reconstruct Z l from Z l−1 which is regarded as the
corrupted form of Z l . Finally, we regard the output of the last layer
as the representation of the graph. �e experiment results show
that it improves the performance.

4.3 Graph Clustering Algorithm
We have so far thoroughly described our autoencoder and gained
the output Z Γ , which can be regarded as our learned representation
for the graph. As the new representation is ensured, we only need
to run the clustering method. Here we use the spectral clustering
algorithm in our work because the graph convolutional network
is actually performed in the spectral domain, which makes the
spectral clustering algorithm an ideal choice.

In order to run spectral clustering, we need to re�ne our rep-
resentation. We simply apply a linear kernel function Z1 = Z0ZT0
to learn the pairwise relationship for the graph nodes. �en, simi-
lar to the multi-view representation learning algorithm clustering
problems [34, 36], we calculate Z2 = 1

2 (|Z1 | + |ZT1 |) to make sure
our representation is symmetric and nonnegative. Finally we run
the spectral clustering procedure on Z2 to obtain clusters results,
and the whole clustering algorithm is summarized in Algorithm 2.

Algorithm 2 Clustering with MGAE Algorithm
Require:

Graph G with n nodes, each node with d-dimension a�ribute
value; Constructed a�ribute matrix X ∈ Rn×d and adjacency
matrix A ∈ Rn×n of G; Number of clusters k ; Corruption prob-
ability p; Stacked autoencoder layers number Γ; Z (l ) ∈ Rn×d is
the output of layer l except Z (0) = X is the input to the �rst layer.

Ensure:
Final clustering results.
for l = 1 to Γ do

1. Construct a single layer denoising autoencoder with input
data Z (l−1);
2. Learn the autoencoder output representation Z (l ) according
to Algorithm 1;

end for
Z0 ⇐ Z (Γ);
Z1 ⇐ Z0ZT0 ;
Z2 ⇐ 1

2 (|Z1 | + |ZT1 |);
Run spectral clustering on Z2.

5 EXPERIMENTS
5.1 Benchmark Datasets
�ree benchmark datasets are used in our experiments.

Cora: A citation network with 2708 nodes and 5294 links be-
tween them, in which the nodes correspond to publications de-
scribed by binary vectors of 1433 dimensions and classi�ed into 7
classes.

Citeseer: A citation network consisting of 3312 publications
labeled into 6 sub-�elds. Each publication is described by a binary
vector of 3703 dimensions and there are 4732 links between them.

Wiki: A network with 2405 documents and 17981 links. �ese
documents have 4973-dimension vectors representing them and
are divided into 19 classes.

5.2 Baseline Methods
Twelve algorithms in total are compared in the experiments. As
previously mentioned, advanced graph clustering algorithms di�er
as some use only network structure or node a�ributes, while others
combine both. We take both classes of methods into consideration
and compare our algorithms with the following baselines.

5.2.1 Methods Using Structure or Content Only.

• K-means is the base of many clustering methods. Here we
run k-means on our original content data as a benchmark.

• Spectral clustering uses the eigenvalues of the similarity
matrix to perform dimensionality reduction before cluster-
ing and is widely used in graph clustering.

• Big-Clam [39] is a non-negative matrix factorization ap-
proach for community detection which takes only the net-
work structure into account.
• DeepWalk [27] is a structure-only representation learning

method. It obtains random walks on graphs and then trains
the representation through neural networks.
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Table 1: Experimental Results on Cora Dataset

Information ACC(↑) NMI(↑) F-score(↑) Precision(↑) Recall(↑) Avg. Entropy(↓) ARI(↑)

K-means Content 0.4922 0.3210 0.3680 0.3685 0.3693 1.7979 0.2296
Spectral Structure 0.3672 0.1267 0.3180 0.1926 0.9144 2.4408 0.0311

Big-Clam Structure 0.2718 0.0073 0.2812 0.1797 0.6452 2.6287 0.0011
GraphEncoder Structure 0.3249 0.1093 0.2981 0.1817 0.8330 2.4598 0.0055

DeepWalk Structure 0.4840 0.3270 0.3917 0.3612 0.4348 1.8140 0.2427
DNGR Structure 0.4191 0.3184 0.3401 0.2660 0.4798 1.8816 0.1422

Circles Both 0.6067 0.4042 0.4691 0.5010 0.4410 1.5563 0.3620
RTM Both 0.4396 0.2301 0.3067 0.3319 0.2851 2.0208 0.1691

RMSC Both 0.4066 0.2551 0.3305 0.2265 0.6410 2.1097 0.0895
TADW Both 0.5603 0.4411 0.4805 0.3963 0.6289 1.6052 0.3320
VGAE Both 0.5020 0.3292 0.3784 0.4087 0.3523 1.7541 0.2547
MGAE Both 0.6806 0.4892 0.5312 0.5648 0.5016 1.3315 0.4361

• GraphEncoder [31] employs deep learning into graph
clustering by training a stacked sparse autoencoder and
gets new representation for clustering.

• DNGR [2] is recent work which uses stacked denoising au-
toencoders and encodes each vertex into a low dimensional
vector representation.

5.2.2 Methods Using Both Structure and Content.

• Circles [18] is an a�ributed graph clustering algorithm
which represents overlapping hard-membership approaches
for graph clustering.

• RTM [3] is a relational topic model capturing both struc-
ture and content information to learn the topic distribu-
tions of documents.

• RMSC [36], the robust multi-view spectral clustering method
via low-rank and sparsity decomposition, tries to recover
a shared low-rank transition probability matrix for cluster-
ing using a transition probability matrix from each view.
We regard structure and content data as two views of in-
formation.

• TADW [37], text-associated DeepWalk. It re-interprets
DeepWalk as a matrix factorization method and adds the
text features of vertices into representation learning.

• VGAE [16] is the most recent representation learning algo-
rithm. It combines the graph convolutional network with
the variational autoencoder algorithm. VGAE is optimized
in an iterative way to learn the latent representation.

• MGAE is our proposed marginalized graph convolutional
autoencoder algorithm for graph clustering.

For the representation learning based algorithms, such as Deep-
Walk, DNGR and TADW, we �rst get the representations from
these algorithms, and then apply the K-means algorithm on the
representations respectively, the best results are reported in the
paper.

5.3 Evaluation Metrics & Parameter Settings
EvaluationMetrics: We use seven quality metrics [36] to measure
the clustering result, namely Accuracy (ACC), Normalized Mutual
Information (NMI), F-score, Precision, Recall, Average Entropy (AE)
and Adjusted Rand Index (ARI). A be�er clustering result should

lead to a lower value of average entropy and higher values for the
other metrics.
Parameter Settings: we set the corruption level p to 0.4, the num-
ber of layers to 3, and λ is �xed to 10−5 for our algorithm. For
the other algorithms, we carefully select the parameters for each
algorithm following the procedures in the original papers. For in-
stance, in the Circle method, we set the regularization parameter
λϵ ∈ {0, 1, 10, 100}, and choose the best values as the �nal results;
in TADW, we select the dimension k = 80 and the harmonic factor
λ = 0.2 for Cora and Citeseer but k = 100, 200 and λ = 0.2 for Wiki;
for DNGR, we stack three layers for the autoencoder with 512 and
256 nodes in the hidden layers, etc.. For a fair comparison, we run
each algorithm 50 times on each dataset and report the average
results.

5.4 Experiment Results
We �rst compare MGAE with 11 baseline methods on graph clus-
tering. A�er this, we perform a detailed analysis on the marginal-
ization process, deep stacked architecture, time, and network visu-
alization.

5.4.1 Clustering Performance Comparison: Our experiment re-
sults on the three datasets are respectively summarized in Tables 1,
2, and 3, where the bold values in the text indicate the best results.
It is obvious that our method outperforms all the baselines across
di�erent evaluation metrics except for Recall. In particular on the
Cora data, our method’s performance represents a relative increase
of 12.18%, 10.90%, 10.55% and 12.73% w.r.t. accuracy, NMI, F-score
and precision compared to the best baseline result.
One side vs both side information: From the comparison, it is
shown that methods using both structure and content information
perform be�er than those using only one side of information in
general. For instance, in the Cora dataset, Circles and TADW
algorithms signi�cantly outperform the k-means, Spectral, and
Big-Clam algorithms. �is manifestation demonstrates that node
content contains useful information for graph clustering.
Deep learning models: �e results show that GraphEncoder and
DNGR algorithms, both of which employ deep autoencoder archi-
tectures for graph clustering, are not necessarily an improvement
over the other algorithms. �is is because they only exploit the
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Table 2: Experimental Results on Citeseer Dataset

Information ACC(↑) NMI(↑) F-score(↑) Precision(↑) Recall(↑) Avg. Entropy(↓) ARI(↑)

K-means Content 0.5401 0.3054 0.4087 0.4052 0.4128 1.7543 0.2786
Spectral Structure 0.2389 0.0557 0.2990 0.1786 0.9169 2.4451 0.0100

Big-Clam Structure 0.2500 0.0357 0.2881 0.1817 0.6954 2.4614 0.0071
GraphEncoder Structure 0.2252 0.0330 0.3007 0.1786 0.9492 2.4785 0.0100

DeepWalk Structure 0.3365 0.0878 0.2699 0.2481 0.2998 2.3079 0.0922
DNGR Structure 0.3259 0.1802 0.2997 0.1996 0.6093 2.1675 0.0429

Circles Both 0.5716 0.3007 0.4238 0.4089 0.4399 1.7751 0.2930
RTM Both 0.4509 0.2393 0.3421 0.3492 0.3353 1.9154 0.2026

RMSC Both 0.2950 0.1387 0.3200 0.2037 0.8051 2.2770 0.0488
TADW Both 0.4548 0.2914 0.4140 0.3119 0.6407 1.9160 0.2281
VGAE Both 0.4670 0.2605 0.3452 0.3505 0.3403 1.8630 0.2056
MGAE Both 0.6691 0.4158 0.5257 0.5362 0.5156 1.4671 0.4250

Table 3: Experimental Results on Wiki Dataset

Information ACC(↑) NMI(↑) F-score(↑) Precision(↑) Recall(↑) Avg. Entropy(↓) ARI(↑)

K-means Content 0.4172 0.4402 0.2628 0.2108 0.4488 2.1241 0.1507
Spectral Structure 0.2204 0.1817 0.1757 0.1055 0.5243 3.0891 0.0146

Big-Clam Structure 0.1563 0.0900 0.1638 0.0946 0.6117 3.3690 0.0070
GraphEncoder Structure 0.2067 0.1207 0.1717 0.1006 0.5936 3.2770 0.0049

DeepWalk Structure 0.3846 0.3238 0.2574 0.2418 0.2779 2.4514 0.1703
DNGR Structure 0.3758 0.3585 0.2538 0.2773 0.2353 2.2605 0.1797

Circles Both 0.4241 0.4180 0.3035 0.3662 0.2592 2.0038 0.2420
RTM Both 0.4364 0.4495 0.2481 0.1920 0.3539 2.0458 0.1384

RMSC Both 0.3976 0.4150 0.2344 0.1672 0.3975 2.2201 0.1116
TADW Both 0.3096 0.2713 0.2068 0.1203 0.7538 2.9080 0.0454
VGAE Both 0.4509 0.4676 0.3278 0.3687 0.2957 1.8510 0.2634
MGAE Both 0.5293 0.5104 0.4294 0.5178 0.3671 1.6676 0.3787

(a) ACC on Cora (b) NMI on Cora (c) F-score on Cora (d) Precision on Cora

(e) ACC on Citeseer (f) NMI on Citeseer (g) F-score on Citeseer (h) Precision on Citeseer

Figure 3: Parameters study on noise and number of layers.

structure information and completely ignore the content informa-
tion in the networks. In contrast, our MGAE algorithm achieves
superior performance across all datasets because (1) we employ a
graph convolutional network that e�ectively integrates both struc-
ture and content information in the spectral domain; (2) we use a
deep marginalized architecture to learn a more informative repre-
sentation, which results in be�er clustering results.

It is worth noting that our algorithm outperforms the VGAE
algorithm, which is based on the variational autoencoder and con-
volutional network for graphs. �is is because the marginalization
process enables our algorithm to learn on much larger dataset
(m → ∞) and it can be�er exploit the interplay between content
and structure information.

5.4.2 Marginalization & Deep Stacking Analysis. As the key in-
novation of the MGAE, the disturbance of the node content, through
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random noise, allows network structures and nodes to interact in
a dynamic se�ing, so the graph autoencoder can learn e�ective
feature representation. In this subsection, we study the impact of
marginalization on MGAE performance by varying the disturbance
noise level p and the number of stacked layers Γ, and report the
performance of MGAE w.r.t. di�erent performance metrics in Fig. 3.
E�ectiveness of Marginalization: �e results in Fig. 3 con�rm
that adding a certain level of disturbance noise (corruption) indeed
helps improve the clustering performance. Overall, compared to
noise-free se�ings, the best performance is likely to be achieved
with a noise disturbance level between 0.3 to 0.5. �e disturbance
noise resembles a dynamic factor in our framework. Adding a small
amount of noise to disturb the data is one way to generate di�erent
copies of data with minor variances. �is helps to deliver a dynamic
se�ing, allowing network node content and structures to interact.
Because our marginalization process has su�cient knowledge of
the disturbance noise, the corrupted data are canceled out through
the optimization process and the graph autoencoder can leverage
the dynamic data se�ings to learn be�er representation.
E�ectiveness of Deep Stacking: Fig. 3 also show that when in-
creasing the number of stacked layers Γ from 1 to 3, the performance
of MGAE, including ACC, NMI, F-score and Precision, also increases
accordingly. �is validates that using a stacked architecture instead
of a single-layer architecture can improve the clustering perfor-
mance. However, when we continuously increase the number of
layers Γ (from 6-9), the performance of MGAE reduces sharply in
terms of all the evaluation metrics, especially on the Citeseer dataset.
�is is because a more complex architecture is more di�cult to
train and is subject to the risk of the information loss.

5.4.3 Time Consumption Analysis: We also depict the training
time for di�erent methods in Fig 4. We run all these methods on
the same hardware and the time result is plo�ed in log scale. It
can be observed that: 1) fundamental clustering methods such as
k-means and spectral clustering are quite fast, whereas the recent
developed methods are all slower as they have a much more com-
plicated training procedure; 2) RMSC is the slowest of the observed
methods because learning transition probability matrix via low-
rank and sparse decomposition is time-consuming; 3) VGAE is a
similar method to our MGAE, using a GCN-based autoencoder for
a�ributed graph learning, however it is much slower, as it is based
on a traditional kind of autoencoder and needs to iteratively train
the graph convolutional network for optimization; 4) our MGAE
is quite e�cient compared to the other clustering methods, ben-
e��ing from its closed-form solution of the eigen-decomposition
computing and avoidance of iterative optimization.

5.4.4 Network Visualization: To intuitively show the quality of
our learned representation, we follow [30] to learn low-dimensional
representations for each node, and map Cora and Citeseer into 2D
space in Fig 5.

For both datasets, in order to show the need for our deep struc-
ture, we list and compare the visualization using representations
learned from each stacked layer. We also show the results obtained
by using the original content data representation. Similar to pre-
processing for spectral clustering, we regard these representations
as Z0 in Alдorithm2 and calculate Z2 for visualization training.

Figure 4: Runtime comparisons of di�erent methods.

We can see from Fig 5 that the visualization by the original
representation is highly overlapping. �e results obtained by our
method are more clear with less overlapping and each node is
be�er gathered to its own group. Moreover, as we stack our MGAE
training layers from 1 to 3, the result becomes increasingly be�er
as each group of nodes gradually gets away from each other.

6 CONCLUSION
In this paper we proposed a marginalized graph autoencoder, MGAE,
to learn feature representation, combining both network node con-
tent and structures, for graph clustering. While using deep learning
for graph clustering has been addressed in several existing studies,
we argued that they can only exploit network structures but ignore
the node content information in the graph. In addition, existing
solutions lack a framework capable of being �exibly stacked in a
deep fashion for learning. Accordingly, MGAE is proposed to use
a graph autoencoder to learn feature representation. MGAE uses
a unique marginalization process to disturb the network informa-
tion such that the content and structures can interact with each
other to achieve optimized learning outcomes. As a result, MGAE
delivers a stacked graph convolutional network architecture, with
each layer integrating both structure and content information in
a convolutional neural network. Such layered structures can be
�exibly stacked to support deep learning. MGAE utilizes all useful
information of the graph for representation learning in the spectral
domain, in which the spectral clustering algorithm achieves supe-
rior clustering results. Experimental results and comparisons, using
11 state-of-the-art algorithms, validated the MGAE’s performance.
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