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Abstract—One-shot neural architecture search (NAS) has recently become mainstream in the NAS community because it significantly
improves computational efficiency through weight sharing. However, the supernet training paradigm in one-shot NAS introduces
catastrophic forgetting, where each step of the training can deteriorate the performance of other architectures that contain
partially-shared weights with current architecture. To overcome this problem of catastrophic forgetting, we formulate supernet training
for one-shot NAS as a constrained continual learning optimization problem such that learning the current architecture does not degrade
the validation accuracy of previous architectures. The key to solving this constrained optimization problem is a novelty search based
architecture selection (NSAS) loss function that regularizes the supernet training by using a greedy novelty search method to find the
most representative subset. We applied the NSAS loss function to two one-shot NAS baselines and extensively tested them on both a
common search space and a NAS benchmark dataset. We further derive three variants based on the NSAS loss function, the NSAS
with depth constrain (NSAS-C) to improve the transferability, and NSAS-G and NSAS-LG to handle the situation with a limited number
of constraints. The experiments on the common NAS search space demonstrate that NSAS and it variants improve the predictive ability
of supernet training in one-shot NAS with remarkable and efficient performance on the CIFAR-10, CIFAR-100, and ImageNet datasets.
The results with the NAS benchmark dataset also confirm the significant improvements these one-shot NAS baselines can make.

Index Terms—AutoML, neural architecture search, continual learning, catastrophic forgetting, novelty search.
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1 INTRODUCTION

N EURAL architecture search (NAS) has recently attracted
massive interest from the deep learning community because

experts do not have inordinate amounts of time and labor design-
ing neural networks [13], [18], [29], [35], [42], [48], [51], [72].
Early NAS methods were based on a nested approach that trained
numerous separate architectures from scratch and then used rein-
forcement learning (RL) or an evolutionary algorithm (EA) to find
the most promising architectures, based on validation accuracy
[19], [47], [73]. However, these methods are so computationally-
expensive as to be impractical for most machine learning prac-
titioners. For example, it would take more than 1800 GPU days
through RL to find promising architectures for the problem out-
lined in [73], and Real et al. [47] spent 7 days with 450 GPUs
searching for promising architectures with an EA. Recent studies
have shown that NAS can significantly improve computational
efficiency [3], [6], [64]. Weight sharing, in particular, also called
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one-shot NAS [4], [46], [67], has attracted enormous attention for
automating neural architecture design. This is because it not only
finds state-of-the-art architectures but also significantly reduces
the search hours needed. One-shot NAS encodes the search space
as a supernet, where all possible architectures directly inherit
weights from the supernet for evaluation without needing to be
trained from scratch. Since one-shot NAS only trains the supernet
for architecture searches, this learning paradigm might reduce the
time a search takes from many days down to several hours.

Pioneer studies on one-shot NAS follow two sequential steps
[4], [14], [30], [46]. They first adopt an architecture sampling
controller to sample architectures for training the supernet. Then,
a heuristic search method finds promising architectures over a
discrete search space based on the trained supernet [20], [30],
[46], [59]. Later studies [7], [16], [38], [39], [56], [60], [65] have
further employed continuous relaxation to differentiate between
architectures so that the gradient descent can be used to optimize
the architecture with respect to validation accuracy. The architec-
ture parameters and supernet weights are alternatively optimized
through a bilevel optimization method, and the most promising
architecture is obtained once the supernet is trained.

Since one-shot NAS evaluates candidate architectures based
on the validation accuracy of the weights it inherits from the
supernet as opposed to training them from scratch, the success
of one-shot NAS relies on a critical assumption that the validation
accuracy should approximate the test accuracy after training from
scratch or be highly predictive. The authors of the first study on
one-shot NAS [4] observed a strong positive correlation between
the validation accuracy and the test accuracy when the supernet
was trained through random path dropout. Subsequent studies
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Fig. 1: Left: The general process of one-shot NAS. First, the search space is defined as a supernet containing all candidate architectures.
Then a single path of the supernet (an architecture) is trained in each step of the supernet training process. Promising architectures are
selected based on the validation accuracy of weights inherited from the trained supernet without the need for training from scratch.
Right: The validation accuracy for four different architectures during the supernet training. The solid lines (“Arch”) are the accuracies
returned using weights inherited from the supernet; the dashed lines (“Arch-R”) are the accuracies after retraining.

all rightly considered this assumption to be true for all one-shot
NAS methods. However, several recent studies have revealed that
this assumption may not hold in most popular one-shot NAS
approaches. For instance, Sciuto et al. [62] show that there is no
observable correlation between the validation and test accuracy of
the weight-sharing paradigm with ENAS [46], and Adam et al.
[1] show that the RNN controller in ENAS does not depend on
past sampled architectures, which means its performance is the
same as a random search. Similarly, Singh et al. [52] find that
there is no visible progress in terms of the retrained performance
for found architectures based on supernet during the architecture
search phase, implying the supernet training is useless for im-
proving the predictive ability of one-shot NAS. Further, Yang et
al. [58] conducted extensive experiments that demonstrated that
the current one-shot NAS techniques struggle to outperform naive
baselines. Rather, the success of one-shot NAS is mostly due to
the design of the search space.

Most one-shot NAS approaches [7], [14], [20], [30] adopt a
single-path training method for their supernet training, where only
a single path (one architecture) in the supernet is trained in each
step. This is the scenario we consider. However, Benyahia et al.
[5] observed that when training multiple models (architectures)
with partially-shared weights for a single task, the training of each
model may lower the performance of other models. Benyahia
et al. [5] defined this phenomenon as multi-model forgetting,
also known as catastrophic forgetting. They also observed this
catastrophic forgetting in one-shot NAS. For example, consider
a large supernet containing multiple models with shared weights
across them. Sequentially training each model on a single task
could mean that the accuracy of each model tends to drop when
training another model containing partially-shared weights [5],
[62]. This multi-model forgetting in one-shot NAS is illustrated
in Fig.1 in terms of the validation accuracy of four different
architectures during supernet training. What is clear from the
figure is that inheriting weights makes performance deteriorate
even further during supernet training.

So, although weight sharing can greatly reduce computation
hours, it can also introduce catastrophic forgetting into the su-
pernet training, which results in unreliable architecture rankings.
Addressing multi-model forgetting during supernet training is an
urgent issue if we are to better leverage one-shot NAS and improve

the predictive ability of supernets. Hence, we have formulated
supernet training as a constrained optimization problem for con-
tinual learning to avoid degrading the performance of previous
architectures when training a new one.

That said, it is intractable to consider all previously visited
architectures. Therefore, only the most representative subset of
previous architectures is used to regularize learning of the current
architecture. We have devised an efficient greedy novelty search
method based on maximizing diversity to select the constraints.
We have also implemented the approach in two one-shot baselines.
The experimental results demonstrate that our strategy is able
to relieve multi-model forgetting in one-shot NAS methods. A
summary of our main contributions follows.

• We first formulate supernet training with one-shot NAS as
a constrained optimization problem of continual learning,
where learning the current architecture should not degrade
the performance of previous architectures with partially-
shared weights.

• We have also designed an efficient greedy novelty search
method based on maximizing diversity to select a subset
of the constraints that best approximate the feasible region
formed by all previous architectures.

• With these two techniques, we then incorporate this NSAS
loss function (novelty search-based architecture selection)
into the RandomNAS [30] and GDAS [16] one-shot NAS
baselines to form RandomNAS-NSAS and GDAS-NSAS,
with the goal of reducing the level of multi-model forget-
ting during supernet training. Our best-found models from
the common search space [38] returned a competitive test
error of 2.59% on CIFAR-10 and only took 0.7 GPU days
of search time.

• To improve transferability, we further devised a variant
of NSAS, called NSAS-C, which searches for “deeper”
architectures in the convolutional cell search. Experiments
on the common search space demonstrate increased trans-
ferability of the found models, and competitive test errors
of 16.69% on CIFAR-100 and 25.5% on ImageNet.

• A series of experiments conducted with the NAS bench-
mark dataset NAS-Bench-201 [17] also verify that NSAS
significantly reduce forgetting and improve the perfor-
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mance of one-shot NAS baselines.

This paper outlines some significant extensions to our recent
conference paper [66]. These include: (1) improvements to the
transferability of the found models through a variant of novel
search strategy called NSAS-C. NSAS-C has a depth constraint
for convolutional architecture searches. Experiments with Ima-
geNet demonstrate its efficacy; (2) a new NAS search space, NSA-
Bench-201, along with comparative experiments against relevant
baselines; (3) two new variants of NSAS, NSAS-G and NSAS-
LG, to handle situations with a limited number of constraints.
Comparison experiments with the NAS-Bench-201 dataset are
provided to showcase these extensions; and (4) an impact analysis
of the hyperparameters settings and constraint selection strategy
in Section 5.2.2 and Section 5.2.3.

2 BACKGROUND

2.1 Neural Architecture Search
The goal of NAS is to automatically design deep neural networks
without human intervention. In general, the architecture of a deep
neural network α is usually represented as a directed acyclic graph
(DAG), which is also a subgraph of the whole search space α ∈ A.
A deep neural network could be defined as U(α,wα), where wα
are the weights associated with architecture α. With NAS, one
tries to find the architecture with the best validation performance
according to:

α∗ = argmin
α∈A

Lval(U(α,w∗α)), (1)

where w∗α is derived by training architecture α on the training set
while minimizing the training loss function Ltrain:

w∗α = argmin
w

Ltrain(U(α,wα)). (2)

Early studies on NAS usually used a nested approach to finding
promising architectures by training numerous architectures from
scratch and leveraging EA [47] or RL [72] to reveal the promising
ones. However, from a practical standpoint, it is computationally
inefficient and often unaffordable to evaluate numerous archi-
tectures in this way. Therefore, more recently, researchers have
shifted their attention to reducing computation costs with strate-
gies such as performance prediction [3], [55], weights generation
[6], [64], weight sharing [38], [46], and so on [73].

2.2 One-Shot Neural Architecture Search
One-shot NAS encodes a search space A as a supernet WA that
consumes all possible candidates. Only the supernet is trained,
while all candidate architectures α directly inherit weights from
the supernet without needing to be trained from scratch. Search
times are therefore greatly reduced because only one neural
network needs to be trained during the architecture search phase.
The most promising architecture α∗ is based on validation perfor-
mance with weights inherited from the supernet:

min
α∈A

Lval(W∗A(α))

s.t. W∗A(α) = argmin Ltrain(WA(α)).
(3)

Eq. (3) is more than a challenging bilevel optimization prob-
lem: the discrete characteristic of the architecture space makes it
impossible to use a gradient-based method to solve the formula
directly. For this reason, ENAS [46] uses an LSTM controller to

sample the architectures. Whereas, [20] and [30] train the supernet
based on a uniform sampling strategy and the best-performing
architecture from the trained supernet is found through a random
search or evolutionary method.

Several state-of-the-art one-shot methods use continuous re-
laxation to transform discrete architectures into a continuous space
Aθ with a softmax function to further improve efficiency [16],
[38], [44], [56]. The supernet weights and architecture parameters
can be jointly optimized through:

(α∗θ,WAθ (α∗θ)) = argmin
αθ,W

Ltrain(WAθ (α∗θ)), (4)

making it possible to continually optimize the architecture search.
The best architecture α∗ is determined through argmax based on
the continuous architecture representation α∗θ .

Since Eq.(4) is supposed to train the entire supernet in each
step, it has a much higher memory requirement than ENAS.
Hence, ProxylessNAS [7] transforms the real-valued architecture
parameters into binary representations through binary gates, and
only a single path is activated during the supernet training. In this
way, the memory requirement for ProxylessNAS is the same as
training a single architecture. GDAS [16] introduces a gradient-
based sampler to sample the single path for each training step.
Additionally, the distribution of architectures and the supernet
weights can be jointly optimized, which means the memory
requirement also equates to only training a single architecture.
Yao et al. [60] developed a constrained optimization method to
force each step of the architecture optimization process in the
continuous space to arrive at a binary result, thus reducing the
memory requirement of supernet training. Unlike continuous re-
laxation, NAO [39] uses an LSTM-based autoencoder to transform
discrete neural architectures into continuous representations. A
differentiable method is then used to search for architectures in
the continuous space.

2.3 Multi-model Forgetting in One-Shot NAS

Catastrophic Forgetting is a common problem in artificial gen-
eral intelligence and multi-task learning. It describes the phe-
nomenon of where a model forgets what it has learned about a
previous task(s) after being trained on a new task [9], [22], [26],
[28], [34], [45]. Formally, a model with optimal parameters θ∗A for
dataset DA will perform substantially less well on DA after it has
trained on another dataset DB . Methods to resolve such issues are
defined as continual learning. Some examples include learning
without forgetting (LwF) [33], which adds a response from the
old task as a regularization term to prevent catastrophic forgetting,
and elastic weight consolidation (EWC) [26], which maximizes
the likelihood of a conditional probability p(θ | D), where D
containing two independent data sets DA and DB , and DA is not
available when trained on DB .

Multi-model Forgetting occurs when training multiple models
with a single dataset. Unlike training a model on several tasks
sequentially, one-shot NAS applies different models to a single
dataset D, e.g., θa = (θpa, θ

s) and θb = (θpb , θ
s), to a single

dataset D, where θs is the shared weight and θpa and θpb are private
weights. Several recent studies [31], [54], [62] have shown that
the interactions between networks can degrade the performance of
a whole network, and that catastrophic forgetting with one-shot
NAS can lower the performance of previous architectures after
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training a new architecture in the supernet. To alleviate this prob-
lem, Benyahia et al. [5] proposed a weight plasticity loss (WPL),
which maximizes the posterior probability p(θpa, θ

p
b , θ

s | D) as:

p(θ | D) = p(θpa, θ
p
b , θ

s,D)
p(D)

=
p(θpa | θ

p
b , θ

s,D)p(θpb , θs,D)
p(D)

=
p(θpa, θ

s | D)p(D | θpb , θs)p(θ
p
b , θ

s)

p(θs,D)

=
p(θa | D)p(D | θb)p(θb)

p(θs,D)
.

(5)

However, it is intractable to calculate (θs,D) in Eq.(5), so
Benyahia et al. [5] made several presuppositions to make the
calculation feasible: a) that θpa and θs are independent, and b)
that the weights θa for previous model are in optimal points.
This way, p(θs,D) can be estimated by the distance of θs to the
optimal θ∗s with the diagonal of the Fisher information defining
the importance of each parameter. In WPL, the loss function to
maximize the likelihood of p(θpa, θ

p
b , θ

s | D) is calculated as:

LWPL(θb) = Lc(θb) +
η

2
(‖θpb‖

2
+ ‖θs‖2) +

∑
θsi∈θs

ε

2
Fθsi (θsi − θ

∗
si), (6)

where Lc is the cross-entropy loss function, and Fθsi is the
diagonal element of the Fisher information matrix corresponding
to parameter θsi . Fθsi is estimated by presupposing parameters
(θpa, θ

p
b ) are independent, and that θ∗s are the shared parameters

θs after the previous model has been trained, which are assumed
to be in the optimal points. A detailed derivation of Eq.(6) can be
found in [5].

Limitations weight plasticity loss (WPL) only considers one
previous architecture in each step of supernet training. This
method is also based on the assumption that the shared weights are
optimal. However, these two assumptions are hard to hold when
training a supernet in a one-shot NAS scheme given numerous
architectures shared weights with the current architecture. Plus, the
shared weights are usually far away from the optimal points. To
address these concerns, we formulated supernet training with one-
shot NAS as a constrained optimization problem, where learning
the current architecture does not degrade the performance of
previously-visited architectures. We consider a subset of previous
architectures as constraints to regularize the learning of the current
architecture. We also demonstrate that the loss function of the
posterior probability p(θpa, θ

p
b , θ

s | D) can be calculated without
assuming that the shared weights are optimal when maximizing
the diversity of the selected architectures.

3 METHODOLOGY

3.1 Problem Formulation
Unlike jointly optimizing the posterior probability under the
assumption that θa is near-optimal as per WPL [5] or keeping
the shared weights fixed as per Learn to Grow [32], we formulate
supernet training as a constrained optimization problem. Specif-
ically, we enforce the architectures with inherited weights in the
current step so as to perform better than the last step. Without
loss of generality, we consider a typical scenario where only
one architecture in the supernet is trained in each step, and the
constrained optimization problem is defined as:

Wt
A = argmin

θ∈WA(αt)

Ltrain(WA(αt)),

s.t. Ltrain(Wt
A(α

i)) ≤ Ltrain(Wt−1
A (αi)); ∀i ∈ {0...t− 1}.

(7)

Algorithm 1 Greedy Novelty Search
Input: constraints archive M, recent architectures archive C,
selected architecture αm, n.

1: N(αm,M)← calculate the novelty score of αm inM based
on Eq.(9);

2: for i = 1, 2, ..., n do
3: randomly sample an architecture αr from C;
4: if N(αr,M) > N(αm,M) then
5: replace αm with αr;
6: end if
7: end for

Here, Ltrain(WA(α)) = Lc(WA(α))+λR(WA(α)), andWA
represents the total of all weights in the supernet. αt is the current
architecture in step t, andWA(αt) is the weights of αt inherited
from the supernet, and onlyWA(αt) is optimized in each step t.

3.2 Constraints Selection based on Novelty Search
The constraints in Eq.(7) prevent the learning the current architec-
ture from degrading the performance of previous architectures as
a strategy to overcome multi-model forgetting in one-shot NAS.
However, the number of constraints in Eq.(7) increases linearly
with the step, which makes it intractable to consider all constraints
in the optimization. Therefore, it is more practical to try and select
a subset of M constraints from the previous architectures that
forms as close a feasible region to the original feasible region
as possible. Intuitively, maximizing the diversity of the subset is
an efficient way to find the most representative samples from the
previous architectures. Based on this observation and motivated
by [2], we propose a surrogate for constraint selection:

maximizeM
∑

αi,αj∈M

dis(αi, αj),

s.t. M⊂ {α1...αt−1}; |M| =M,

(8)

where dis(αi, αj) is a function to calculate the distance between
architectures. Further, to solve this equation, we proposed a greedy
novelty search method to maximize the diversity of the subset.
Before the archive is full, all the new coming architectures are
added into the subset. Once full, the most similar one to the
current architecture is chosen to replace the one that maximizes
the novelty score of the archive. Algorithm 1 sets out a simple im-
plementation of our greedy novelty search method. A simple and
standard novelty measurement, defined as N(α,M), measures
the mean distance of its k-nearest neighbors inM:

N(α,M) =
1

|S|
∑
αj∈S

dis(α, αj)

S = kNN(α,M) = {α1, α2, ..., αk}.
(9)

In this paper, we measure the difference of the input edges for each
node in an architecture. The input edge of the same node for two
architectures is considered to be the same only when the two edges
have the same input node and the same operations. M constraint
architectures are then selected from |C| recent architectures rather
than all previous architectures.

3.3 The NSAS Loss Function
After finding the M most representative architectures
{α1, ..., αM} by maximizing diversity, we need to forcibly opti-
mize the learning of the current architecture in the feasible region
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Fig. 2: NSAS loss function ensures that the learning of current
architecture will not deteriorate the performance of previous
architectures in the constraint subset.

formed by these constraints. A common approach is to convert the
constraints into a soft regularization loss or apply a replay buffer
[2]. The weights of these architectures in the subset are described
as {θ1, ..., θM}. When the selected constraints are converted to
a soft regularization loss, the loss function for the constrained
optimization problem in Eq. (7) could be described as Eq.(10):

LN (WA(αt)) = (1− β)(Lc(WA(αt)) + λR(WA(αt)))

+
β

M

∑
i=1:M

(Lc(WA(αi)) + λR(WA(αi))),
(10)

where Lc is the cross-entropy loss function,R is the `2 regulariza-
tion term, and β are the trade-offs. The term LN (WA(αt)) is the
NSAS loss function. While learning the current architecture αt,
NSAS protects the performance of those constraint architectures
by ensuring the shared parameters stay in a region of low error for
these constraints, as shown schematically in Fig. 2.

3.4 From Weight Plasticity Loss (WPL) to NSAS
WPL [5] regularizes the learning of current architecture by max-
imizing the posterior probability p(θpa, θ

p
b , θ

s | D), where θa =
{θpa, θs} is the weights of the last architecture, θb = {θpb , θs}
is the weights of the current architecture, and θs is their shared
weights. Unlike WPL, which only considers one previous archi-
tecture, we consider a subset of previously visited architectures
- θa = {θ1, ..., θM} = {(θp1 , θs1), ..., (θ

p
M , θ

s
M )} - where θpi is

the private weights, and θsi is the weights shared with the current
architecture. When selected constraints make the following two
assumptions hold true, then Lemma 1 describes the relationship
between WPL and NSAS.
Assumption 1: The architectures in the constraint subset cover all
weights of the current architecture αt that θ(e)b ⊆ {θ

(e)
1 ∪...∪θ

(e)
M }

for every edge e in αt, where θ(e)m is the weight of the operations
assigned to each edge of αm.
Assumption 2: There are no shared weights among these con-
straint architectures, i.e, θ1 ∩ θ2 = ... = θM−1 ∩ θM = ∅.
Lemma 1. When the selected constraint architectures satisfy the

above two assumptions, the NSAS loss function with the WPL
can be formulated as:

LN (WA(αt)) = Lc(WA(αt)) + γLWPL(WA(αt)). (11)

Proof Since the weights of current architecture θb are shared by
the constraints described in Assumption 1, θ(e)b ⊆ {θ(e)1 ∪ ... ∪
θ
(e)
M }, and for every edge e in αt, we have θpb = ∅. Further, θi and

θj (i, j = 1...M ) are independent as the architectures are trained
separately without shared weights, as described in Assumption 2.
Now the posterior probability in the WPL can be written as:

p(θ | D) = p(θ1...θM , θb | D) =
p(θp1 ...θ

p
M , θ

s
1...θ

s
M ,D)

p(D)

=
p(θ1...θM ,D)

p(D)
=
p(θ1 | θ2...θM ,D)p(θ2...θM ,D)

p(D)
=

∏
i=1:M

p(θi | D) ∝
∏

i=1:M

p(D | θi)p(θi)

= p(θ)
∏

i=1:M

p(D | θi) = p(θt)
∏

i=1:M

p(D | θi),

(12)

where θi is the weights of architecture αi in the constraint subset.
As only architecture αt is trained, p(θ) = p(θt), where θt is the
weights of the current architecture αt, and θ is all the considered
weights. Eq.(12) derives the posterior probability without the
assumption that θs in the previous step is optimal. Hence, now,
the WPL to optimize the posterior probability p(θ | D) can be
expressed as:

LWPL(WA(αt)) = εR(WA(αt)) +
∑
i=1:M

Lc(WA(αi)), (13)

where ε is the trade-off factor. And the proposed NSAS loss
function with the WPL can be expressed as:

LN (WA(αt)) = (1− β)(Lc(WA(αt)) + λR(WA(αt)))

+
β

M

∑
i=1:M

(Lc(WA(αi)) + λR(WA(αi)))

= Lc(WA(αt)) + γLWPL(WA(αt)).

(14)

Lemma 1 demonstrates that the NSAS loss function not only
contains the WPL but also optimizes learning of the current
architecture when the appropriate constraints have been selected.
Additionally, when a specific number of constraints for a densely-
connected search space are set, the strategy of selecting constraints
based on maximizing diversity has the potential to see the two
assumptions hold true. Take the search space of NAS-Bench-201
[17] (as defined in Section 4.2) as an example. When the number
of candidate operations in each edge M = 5 and the diver-
sity of the constraint subset is maximized, those five constraint
architectures should cover all possible operations for all edges
(Assumption 1), and each edge in each constraint architecture
should contain different operations (Assumption 2).

3.5 One-Shot NAS with Novelty Search based Architec-
ture Selection
We implemented our loss function into two popular one-shot
NAS: RandomNAS [30] and GDAS [16]. Like the most weight
sharing NAS methods, only a single path is trained in each step
of the architecture search phase. Therefore, incorporating NSAS
into RandomNAS is relatively easy. However, most gradient-
based NAS methods, like DARTS [38], train the whole supernet
in each step of the supernet training, which would violate both
the assumptions set out above. For this reason, we chose GDAS
[16] as the gradient method, which uses the Gumbel-Max trick
[24], [41], [56] to relax the discrete architecture distribution so
as to be continuous and differentiable. The argmax function
reparameterizes the architecture distribution and samples only one
architecture in each supernet training step during the forward pass.
The softmax function is applied during the backward pass for
architecture learning. Algorithm 2 outlines the one-shot NAS with
the NSAS loss function, called one-shot NAS-NSAS.
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(b) The cell in NAS-Bench-201 is a densely-connected structure, where the operation nodes and output nodes select all former nodes7
with the applied operations as their inputs.

Algorithm 2 One-Shot NAS-NSAS
Input: Dtrain, Dval,W , constraints archiveM = ∅, M , neural
architecture search iteration T , batch size b

for t = 1, 2, ..., (T ∗ size(Dtrain)/b) do
2: if size(M) < M then

sample αt based on gradient search or random search,
and update the weightsWA(α) by normal loss function,
and add architecture α intoM;

4: else
sample αt based on gradient search or random search,
select the architecture αm that is most similar to αt from
M, and replace αm with αt to maximize the diversity of
M based on Algorithm 1. Update the weightsWA(α) by
our proposed loss function in Eq.(10) or a replay buffer;

6: end if
end for

8: Obtain α∗ based on Eq.(3) (RandomNAS-NASA) or Eq.(4)
(GDAS-NASA).

4 EXPERIMENTAL SETTINGS

To evaluate the performance of NSAS loss function, we com-
pared baseline versions of RandomNAS [30] and GDAS [16]
with our NSAS implementations denoted as RandomNAS-NSAS
and GDAS-NSAS. We considered two different search spaces: a
common search space adopted by most state-of-the-art one-shot
NAS methods [30], [38], and a second NAS-Bench-201 space
[17]. The NAS-Bench-201 dataset was specifically designed for
one-shot NAS research, so it comes with a guarantee of fair
comparison between one-shot NAS methods. The NAS-Bench-
201 search space is much smaller than the common search space,
and, accordingly, the best test performances for all candidate
architectures on all datasets were reported with this search space,
relieving the computational concern in the further analysis of one-
shot NAS approaches. We first apply RandomNAS-NSAS and
GDAS-NSAS to search for promising neural architectures in the
common search space and compared the results with the two
baselines and many other current one-shot NAS algorithms. We
then further analyzed NSAS loss function with the NAS-Bench-
201 benchmark dataset. Fig. 3 illustrates the differences between
the two different search spaces. In the next two subsections, we
describe the experimental settings for each of these search spaces.

4.1 One-Shot NAS Common Search Space

The design on the search space is important with NAS, and a
common search space [38] is typically regarded as best for a
fair comparison. The cell structure in this space contains eight
different types of operations: 3 × 3 max pooling and average
pooling operation, 3×3 and 5×5 separable convolution operation,
3× 3 and 5× 5 dilated separable convolutions operation, identity,
and zero. There are seven nodes in each cell: two input nodes,
four operation nodes, and one output node. The inputs to a cell are
the outputs of two of its former cells, and the output of the cell is
the sum of the outputs of all operation nodes. In a CNN structure,
there are two types of cells with the same search space: a normal
cell αnormal and a reduction cell αreduce. The reduction cells
are located in the 1/3 and 2/3 depths of the network as residual
blocks. The cell structure is repeatedly stacked to form the final
CNN structure.

The number of cells for the CNN supernet training was set
to only 8. We used the momentum SGD optimizer for supernet
to learn the weights, and an Adam optimizer to optimize the
architecture parameters. The initial learning rate for SGD was
set to 0.025 with a cosine schedule to annealed down to 0. The
momentum of SGD and the weight decay were set to 0.9 and
3× 10−4, respectively. The initial learning rate for Adam was set
to 3 × 10−4, and the momentum and weight decay were set to
(0.5,0.999) and 10−3, respectively. The dropout probability was
0.4 with 16 initial channels. The CIFAR-10 dataset was used as
the training set, divided into two halves at the architecture search
stage. One half was used for the supernet weight learning, and the
other for the architecture parameter optimization. Training took
place with a batch size of 64 to derive the most promising cell
structure. After supernet training and selecting the promising cells,
we stacked 20 cells for full training with a batch size of 96.

The best-found cell structure with CIFAR-10 was then trans-
ferred to CIFAR-100 with the same hyperparameter settings as
with the CIFAR-10 experiments. We also transferred the the best-
found cell structure to ImageNet following the mobile settings in
[30], [38], [56], and restricted the number of FLOPs to less than
600M. The weight decay is 3×10−5, and the initial SGD learning
rate is 0.1 with a decayed factor of 0.97. The network is stacked
by 14 cells with batch size 128 with 250 epochs training.

As described in the previous Section 3.2 and outlined in
Algorithm 1, one-shot NAS-NSAS selects M architectures from
|C| previously visited architectures based on Algorithm 1. We set
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TABLE 1: Results with the existing NAS approaches on CIFAR-10 and CIFAR-100.

Method Test Error (%) Param. FLOPs Search Cost Memory Search
CIFAR-10 CIFAR-100 (M) (M) (GPU Days) Consumption Method

NASNet-A [72] 2.65 17.81 3.3 - 1800 Single path RL
AmoebaNet-A [47] 3.34±0.06 - 3.2 - 3150 Single path EA
Hierarchical Evo [37] 3.75±0.12 - 15.7 - 300 Single path EA
PNAS [36] 3.41±0.09 17.63 3.2 - 225 P Single path SMBO
IRLAS [19] 2.60 - 3.91 - - Single path RL
IRLAS-differential [19] 2.71 - 3.43 - - Single path RL
NAO [39] 3.18 - 10.6 - 1000 Single path Gradient

NAO-WS [39] 3.53 - 2.5 - - Single path Gradient
SETN (T=1K) [15] 2.69 17.25 4.6 606 1.8 Single path Gradient
ENAS [46] 2.89 18.91 4.6 - 0.5 Single path RL
SNAS [56] 2.85±0.02 20.09 2.8 422 1.5 Whole Supernet Gradient
PARSEC [8] 2.86±0.06 - 3.6 485 0.6 Single path Gradient
BayesNAS [71] 2.81±0.04 - 3.4 - 0.2 Whole Supernet Gradient
RENAS [12] 2.88±0.02 - 3.5 - 6 - RL&EA
MdeNAS [70] 2.55 17.61 3.8 599 0.16 Single path MDL
DSO-NAS [68] 2.84±0.07 - 3.0 - 1 Whole Superne Gradient
WPL [5] 3.81 - - - - Single path RL
XNAS [44] 2.57±0.09* 16.34 3.7 596 0.3 - Gradient
PDARTS [11] 2.50 16.63 3.4 532 0.3 - Gradient
PC-DARTS [57] 2.57±0.07 17.11 3.6 557 0.3 - Gradient
Random baseline [38] 3.29±0.15 - 3.2 - 4 - Random
DARTS (1st) [38] 2.94 - 2.9 501 1.5 Whole Supernet Gradient
DARTS (2nd) [38] 2.76±0.09 17.54 3.4 528 4 Whole Supernet Gradient

GDAS [16] 2.93 18.38 3.4 519 0.21 Single path Gradient
GDAS-NSAS 2.75±0.08 18.02±0.05 3.5 528 0.4 Single path Gradient
GDAS-NSAS-C 2.70±0.07 16.70±0.08 3.3 520 0.4 Single path Gradient

RandomNAS [30] 2.85±0.08 17.63 4.3 612 2.7 Single path Random
RandomNAS-NSAS 2.59±0.06 17.56±0.05 3.1 489 0.7 Single path Random
RandomNAS-NSAS-C 2.65±0.05 16.69±0.06 3.5 552 0.7 Single path Random

The first block contains the NAS methods without weight sharing. The approaches in the second block are the one-shot NAS methods. “*” indicates the results
were reproduced with the best-reported cell structures in the original paper but with the same experimental settings as all the other comparators. Methods with
“-” in the CIFAR-100 experiment were not reproduced because either they had different search spaces or did not report their best structures. All models were
trained for 600 epochs, and we trained our best-searched architecture with 3 different random seeds to get the statistical results. “P Single path” means that the
search space progressively increases during the architecture search, while only a single path is trained at each step of supernet training.

M = 8 and |C| = 50 for the common CNN search space. The
trade-off in Eq.(10) is set as β = 0.5.

4.2 NAS-Bench-201
The NAS-Bench-201 search space is similar to the recent cell-
based NAS methods [30], [38], which repeatedly stack computa-
tional cells to form the final structure. The architectural skeleton
of this search space contains three stages connected by a basic
residual block [21] ] with a stride of 2 between them. In each stage,
the cell structure was stacked N = 5 times. In this search space,
the cell structure is represented as a densely connected directed
acyclic graph (DAG) with four nodes. There are six different
edges between these nodes, and each edge is associated with
five candidate operations, resulting in 56 = 15625 candidate cell
structures. The candidate operations included: a 1×1 convolution,
3 × 3 convolution, 3 × 3 average pooling, skip connection, and
zero. The zero helps to drop the associated edge. The initial
channel c for the supernet was set to 16 and trained with an SDG
optimizer. The learning rate was decayed from 0.025 to 0.001 with
a cosine schedule, and the weight decay and the momentum were
set to 0.0005 and 0.9, respectively. We followed the experimental
setup in [17], and trained the supernet with a batch size of
64. After the architecture search phase and the most promising
architectures in hand, we directly indexed the test performance of

each architecture based on NAS-Bench-201 dataset [17] without
training from scratch.

As described in Sec. 3.2, another important hyperparameter in
our proposed method is the number of constraints in Eq.10. Since
the search space of NAS-Bench-201 is very small, we default set
M = 2 in this search space, and the trade-off for the constraints
regularization term as β = 0.2.

5 EXPERIMENTS AND RESULTS

Our first set of experiments was to conduct a neural architecture
search on the common search space and compare with all methods,
including our implementations, the baselines and a range of
current and state-of-the-arts methods. The in-depth experiments
with NSAS loss function and baselines on the NAS-Bench-201
dataset [17] followed.

5.1 Experimental Results on Common Search Space
5.1.1 Architecture Search on CIFAR-10
With this experiment, we searched for micro-cell structures in the
search space and formed the final structure by stacking the cells in
series. To compare the performance of one-shot NAS-NSAS with
state-of-the-art NAS methods, we follow DARTS’s experimental
setting in [38]. We conducted the architecture search several times
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TABLE 2: Results with existing manual-designed architectures
and NAS approaches on the ImageNet dataset.

Method Test Error (%) Param. FLOPs
ImageNet (M) (M)

Inception-v1 [53] 30.2 6.6 1448
MobileNet [23] 29.4 4.2 569
MobileNet V2 [10], [49] 25.3 6.9 585
ShuffleNet 2× (V1) [69] 26.4 5 524
ShuffleNet 2× (V2) [40] 25.1 5 591
NASNet-A [73] 26.0 5.3 564
AmoebaNet-A [47] 25.5 5.1 555
PNAS [36] 25.8 5.1 588

SNAS [56] 27.3 4.3 522
SETN [15] 25.7 5.4 599
PARSEC [8] 26.3 5.5 -
BayesNAS [71] 26.5 3.9 -
MdeNAS [70] 26.8 6.1 595
DSO-NAS [68] 26.2 4.7 571
PDARTS [11] 25.9* 4.9 557
XNAS [44] 25.3*(24.7†) 5.3 590
PC-DARTS [57] 25.7* (25.1†) 5.3 586
DARTS (2nd) [38] 26.7 4.7 574

GDAS [16] 27.5 4.4 497
GDAS-NSAS 26.7 5.1 564
GDAS-NSAS-C 25.9 5.2 565

RandomNAS [30] 27.1 5.4 595
RandomNAS-NSAS 26.1 5.2 581
RandomNAS-NSAS-C 25.5 (24.65†) 5.4 593

The first block contains manually-designed architectures and the NAS methods
without weight sharing. The second block contains one-shot NAS methods.
We trained RandomNAS-NSAS with 52 initial channels C and RandomNAS-
NSAS-C with C = 50. GDAS-NSAS and GDAS-NSAS-C were set to
C = 50, and the FLOPs were restricted to less than 600M. * indicates that
the architecture evaluation is reproduced following the common DARTS [38]
setting, same as remaining methods. † indicates that the architecture evaluation
settings are following PC-DARTS [57], with a warm-up linear learning rate
scheduler.

with different random seeds to obtain the architectures, and then
retrained them to pick the best architectures based on retraining
validation performance. The comparison results are provided in
Table 1 and can be summarized as follows:

• Compared to RandomNAS and GDAS, RandomNAS-
NSAS and GDAS-NSAS greatly improve the search re-
sults. The NSAS loss function decreased the test errors
from 2.85% for RandomNAS to 2.59%, from 2.93% for
GDAS to 2.75%, demonstrating the effectiveness of NSAS
at improving the predictive ability of the supernet.

• RandomNAS-NSAS’ results were competitive compared
to the other NAS methods, with a 2.59% test error and
only 489M FLOPs. This is an inspiring result to validate
our strategy for overcoming multi-model forgetting.

• Our NSAS evaluate more architectures during supernet
training, so the search cost is slightly higher than the
baselines. However, it still efficient in the sense that the
supernet training in RandomNAS-NSAS only took 0.7
GPU days for and only 0.4 GPU days for GDAS-NSAS.

5.1.2 Convolutional Cell Search with Depth Constraint to
Improve Transferability
In the next experiments, we transferred the best-found archi-
tectures from CIFAR-10 to CIFAR-100 and ImageNet datasets

to evaluat their transferability. The results on CIFAR-100 are
reported in Table 1 and ImageNet are reported in Table 2.

From Table 1 and Table 2, we can see that the NSAS loss
function improves the performance of RandomNAS and GDAS
with both datasets. However, although the NSAS methods yielded
remarkable performance with CIFAR-10, the performance was
not as impressive with CIFAR-100 and ImageNet. For example,
NSAS decrease RandomNAS’ test error from 2.85% to 2.59%
on CIFAR-10, but only from 17.63% to 17.56% with CIFAR-
100. Similarly, with ImageNet, the improvement was only 27.1%
to 26.1%. More importantly though, the architectures returned by
RandomNAS-NSAS on CIFAR-10 were competitive, while XNAS
[44] was the superior method with CIFAR100 and ImageNet,
thus demonstrating better transferability. XNAS [44] suggests that
the architectures with “deeper” cell structures should provide
superior performance with the ImageNet dataset. The authors
also observe that most NAS methods usually return shallower
cells with a larger width after searching CIFAR-10, noting that a
visualization of the CNN models found from all one-shot baselines
is provided in Appendix 2. For example, the architectures found
by PC-DARTS and NSAS on CIFAR-10 are extremely shallow,
which gave excellent results with CIFAR-10 but poor results
with ImageNet. Conversely, the architectures found by XNAS,
PDARTS, and PC-DARTS on ImageNet were much deeper and
the results were impressive. A recent study on neural network
optimization [50] gives a hint as to why most NAS methods prefer
wider networks. The authors observe that width is a key factor
affecting the convergence speed of neural networks, and therefore
wider networks are easier to train. Based on this observation, the
wider (shallower) architecture in the NAS search space reduces
the loss with limited supernet training epochs, and has a higher
probability of being chosen.

These findings suggest that encouraging NAS methods to
search for “deeper” architectures could improve transferability;
hence, our variant of NSAS-C, NSAS with depth constraint . The
depth constraint in NSAS-C force NAS to search for “deeper”
architectures. Simply put, the structure of the architectures are
“fixed” to a depth so that the inputs of each node are the outputs
of its previous node and the output of the previous cell. Figure 4
(c) and (d) show an example. This way, we only need to determine
the operation of each edge in an architecture. All remaining
experimental settings stay the same. Table 1 and 2 report the
transferability of the models found by NSAS-C with CIFAR-100
and ImageNet. Compared to NSAS, the results are excellent. The
best found cells by NSAS-C are shown in Fig. 4 (c) and (d), with
competitive performance of 2.69%, 16.58%, and 25.5% test errors
on CIFAR-10, CIFAR-100 and ImageNet, respectively. The codes
and trained models are available online 1. From Table 1, we can
see that restricting the architecture depth is a very effective way
of improving the transferability of NAS methods, e.g., 16.75%
for GDAS-NSAS compared to 18.02% for GDAS with CIFAR-
100, and RandomNAS-NSAS from 17.56% to 16.69%. Similarly,
as shown in the ImageNet results in Table 2, NSAS-C again im-
proves transferability, with improving GDAS-NSAS from 26.7%
to 25.9%, and RandomNAS-NSAS from 26.2% to 25.5%.

5.1.3 Supernet Predictive Ability Comparison
Multi-model Forgetting in One-Shot NAS To demonstrate catas-
trophic forgetting in a neural architecture search, we conducted

1. https://github.com/MiaoZhang0525/NSAS FOR CVPR.

https://github.com/MiaoZhang0525/NSAS_FOR_CVPR
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Fig. 4: The best found cells with NSAS and NSAS-C on CIFAR-
10.

experiments with a convolutional cell search task. The results
show the differences between weight sharing and a retraining-
based architecture ranking strategy. We tracked the validation
accuracy of inheriting weights for several fixed sampled architec-
tures with GDAS and also plotted the validation accuracy over 100
epochs when retraining these separate architectures from scratch
in Fig. 1. From the results, we find that the validation accuracy
of the architectures that directly inherit weights from the supernet
fluctuate tremendously, making it hard to verify the quality of the
architecture. What is worse is that the architecture ranking results
completely violate the primary hypothesis of weight sharing NAS,
i.e., that architectures with higher validation performance based
on weight sharing should yield better retraining performance. It
is worth noting that the performance of the architectures that
inherited weights gets even worse during the supernet training,
as shown in Fig. 1.

We also tracked the validation accuracy of weight sharing and
retraining during the supernet training with RandomNAS-NSAS
and GDAS-NSAS. The results are given in Fig. 5. We find that the
NSAS loss function substantially alleviates multi-model forgetting
with one-shot NAS. The plots of the validation accuracy with
the inherited weight methods are much smoother, especially for
architectures 2, 3, and 4. Moreover, performance does not decrease
during supernet training. This is clearly a more reliable method.

Supernet Predictive Ability Comparison RandomNAS-NSAS
and GDAS-NSAS should also alleviate ranking errors. The exper-
iments we conducted to verify the architecture ranking predictions
are shown in Figures 6 and 7. For these experiments, we sampled
four of the best architectures over four rounds with RandomNAS
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Fig. 6: The Kendall Tau metric (τ ) of architecture ranking based
on weight sharing and retraining.

and RandomNAS-NSAS, and four randomly sampled from the
previous experiment. Then we individually trained these 12 ar-
chitectures from scratch and calculated the correlation between
the architecture ranking and the validation accuracy for each of
the weight sharing and retraining approaches. Fig. 6 presents the
Kendall Tau (τ ) metric [25], [70] of the architecture rankings
based on weight sharing and retraining. The results show the
difference in rankings between the normal cross-entropy loss func-
tion and the NSAS loss function. Fig. 7 (a) gives the final Kendall
Tau (τ ) metric values for RandomNAS and GDAS with different
loss functions after supernet training. Here, the normal loss func-
tion has poor supernet predictive ability, with only τ = 0.0909
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respectively). (b) The mean retraining validation accuracy for the
architectures found through different methods.
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TABLE 3: Results of one-shot NAS baselines on NAS-Bench-201.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
Valid(%) Test(%) Valid(%) Test(%) Valid(%) Test(%)

ENAS [46] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10
DARTS (1st) [38] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS (2nd) [38] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
SETN [15] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21
RandomNAS [30] 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09
GDAS [16] 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.09

RandomNAS* [30] 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
RandomNAS-NSAS 89.20±0.31 92.61±0.10 68.62±1.94 68.47±1.73 41.17±2.16 41.68±1.91
GDAS* [16] 89.88±0.33 93.40±0.49 70.95±0.78 70.33±0.87 41.28±0.46 41.47±0.21
GDAS-NSAS 89.99±0.29 93.55±0.16 71.17±0.44 70.69±0.33 41.85±1.71 42.14±1.40

“*” indicates that we reproduce the results with same random seeds as our approaches. All results in the first block are from [17]. The
hyperparameters M and β were set to 5 and 0.5 for RandomNAS-NSA, 2 and 0.2 for GDAS-NSAS. We run each scenario for 4 independent
times with random seed { 0, 1, 100, 101 } following the experimental settings in [17].

TABLE 4: Analysis of one-shot NAS with various settings for β and M on the NAS-Bench-201 dataset.

Method β
CIFAR-10 CIFAR-100 ImageNet-16-120

Valid Acc(%) Test Acc(%) Valid Acc(%) Test Acc(%) Valid Acc(%) Test Acc(%)

0 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
RandomNAS-NSAS 0.2 86.38±4.35 89.58±2.82 63.64±6.36 64.72±4.47 34.68±7.80 34.19±5.72

(M = 2) 0.5 85.13±1.43 88.09±1.23 58.73±6.82 60.77±3.85 31.67±3.58 30.35±4.18
0.8 86.82±2.44 90.14±2.35 64.41±4.34 64.27±3.26 35.06±4.81 34.82±6.06

0 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
RandomNAS-NSAS 0.2 88.38±4.35 90.74±1.31 63.64±6.36 64.83±4.05 36.53±6.50 36.08±4.68

(M = 3) 0.5 87.93±1.63 91.23±1.03 66.03±3.46 66.17±4.12 38.14±2.76 38.72±3.11
0.8 85.58±2.59 88.78±2.23 64.12±4.55 65.06±3.35 34.80±4.24 34.37±5.57

0 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
RandomNAS-NSAS 0.2 86.73±1.30 90.64±0.99 62.38±4.57 66.42±1.47 36.68±3.80 37.59±3.72

(M = 4) 0.5 87.13±1.43 91.04±0.43 64.43±4.82 64.77±3.61 36.86±3.70 36.35±4.15
0.8 88.52±0.74 92.04±0.50 67.40±2.22 67.62±1.94 39.91±4.50 40.61±3.51

0 85.30±0.59 88.14±0.21 62.60±3.56 63.40±4.52 33.60±4.36 33.83±3.17
RandomNAS-NSAS 0.2 88.45±0.47 91.36±0.74 65.79±0.59 65.58±0.42 37.69±1.23 37.31±2.42

(M = 5) 0.5 89.20±0.31 92.61±0.10 68.62±1.94 68.47±1.73 41.17±2.16 41.68±1.91
0.8 88.42±0.30 91.56±0.36 66.77±4.83 66.58±4.99 39.53±4.85 38.64±5.13

and τ = −0.1818 for RandomNAS and GDAS, respectively.
Although the supernet trained with the NSAS loss function was
not able to provide identical architecture rankings, the positive
correlations matched the Kendall Tau metrics (τ = 0.4242 and
τ = 0.3030 for RandomNAS-NSAS and GDAS-NSAS, respec-
tively). From this we surmise that a supernet with better predictive
ability tends to provide architectures with better retraining perfor-
mance. Fig. 7 (b) plots the mean retraining validation accuracy of
the sampled architectures with various methods. We found that
RandomNAS-NSAS achieved better results than RandomNAS,
further verifying its effectiveness.

5.2 Experimental Results on NAS-Bench-201

Evaluating architectures in one-shot NAS is much more computa-
tionally intensive than an architecture search, so most state-of-
the-art one-shot NAS methods only report the results of their
best-found architectures. Comprehensive statistical analyses of
the results are usually also overlooked due to computational
limitations. Several concurrent studies [17], [27], [61], [63] have
tried to address this problem by building benchmark datasets
for NAS. With these datasets, researchers can analyze their one-

shot NAS methods without evaluating numerous architectures. To
analyze our approach in this way, we chose NASBench-201 [17]
as a benchmark evaluation set. NAS-Bench-201 is easy to use
and can be directly applied to most one-shot NAS algorithms.
It also reports the performance of all candidate architectures on
CIFAR-10, CIFAR-100, and ImageNet, making it sufficient to
evaluate one-shot NAS algorithms. We did not restrict the width
of architectures in the NAS-Bench-201 search space because the
architectures are densely connected and have the same depth,
making that constraint somewhat moot. To verify and further
analyze the effectiveness of the NSAS loss function, we conducted
three sets of experiments with this search space: 1) a comparison
of the baselines; 2) a study of the hyperparameter settings; and 3)
a study of the constraint selection strategies.

5.2.1 Empirical Comparison with Baselines
The results of the comparison study are presented in Table 3, and
all experimental settings follow [17]. The statistical results were
calculated from independent searches with four different random
seeds. We found the NSAS loss function significantly improved
the performance of the two baselines. RandomNAS-NSAS, in
particular, achieved a test accuracy of 92.61%±0.10 on CIFAR-
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TABLE 5: Analysis of the one-shot NAS methods with various constraint selection strategies on CIFAR-10.

METHOD β
NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RandomNAS 0.2 89.58±2.82 91.74±1.16 91.11±2.16 89.24±2.24 90.13±4.25 89.72±3.64
Test Acc(%) 0.5 88.09±1.23 90.37±2.14 91.19±0.79 77.30±19.76 89.86±2.91 86.85±10.29
(88.14±0.21) 0.8 90.14±2.35 92.52±0.48 91.18±1.73 89.53±0.24 89.39±3.88 85.54±7.18

GDAS 0.2 93.55±0.16 93.37±0.27 93.52±0.30 93.29±0.19 93.51±0.14 93.40±0.26
Test Acc(%) 0.5 93.49±0.24 93.51±0.14 93.46±0.27 93.31±0.30 93.47±0.29 93.36±0.21
(93.40±0.49) 0.8 93.32±0.18 93.29±0.29 93.55±0.20 93.40±0.28 93.55±0.20 93.55±0.16

10 compared to RandomNAS at only 88.14%±0.21. Similarly,
GDAS-NSAS yielded a test accuracy of 93.55%±0.16 on CIFAR-
10 compared to the 93.40%±0.49 of GDAS. Furthermore, the
architectures searched by RandomNAS-NSAS and GDAS-NSAS
also performed better when transferred to the larger CIFAR-100
and ImageNet datasets.

5.2.2 Hyperparameter Study

As described in Eq.(10), the trade-off β and the number of
constraints M are important hyperparameters for the NSAS loss
function LN . we studied the impact of β concurrent with M .

First, we considered to fix the number of constraints, and
investigated the impact of four different settings of β on multi-
model forgetting with one-shot NAS. In this experiment, we took
the RandomNAS-NSAS with M = 5 as example. The results,
shown in the last four rows of Table 4, indicate that using
constraints to regularize the supernet training can greatly improve
test performance and, additionally, that RandomNAS-NSAS is
somewhat sensitive to β. More important, with different number
of constraints (M = 2, 3, 4), the results all demonstrated our
regularization method can enhance the performance, where our
RandomNAS-NSAS with different M and β all outperformed the
baseline.

We then fixed β = 0.2 and varied M , also to analyzed the
impact on forgetting. Given there are only five candidate oper-
ations in the NAS-Bench-201 search space, there are no shared
weights among constraints only when M ≤ 5. The four settings
for M in this experiment were 2, 3, 4, and 5. From the results,
we found that, again, RandomNAS-NSAS seemed sensitive to
the number of constraints, and the larger M = 5 gave much
better results than the other scenarios for RandomNAS-NSAS with
CIFAR10, CIFAR-100, and ImageNet. More interestingly, there
was a large performance gain between M = 4 and M = 5
with RandomNAS-NSAS. One underlying reason may be that
M = 5 has the potential to ensure the two assumptions hold true,
as discussed in Section 3.3. Similarly, the tendency also exists in
the remain 2 different β, that increasing the number of constrained
architectures can enhance the performance. More details on these
results can be found in Table 4.

Overall, Table 4 considered three settings for β and four
settings for M , and presented the results of RadnomNAS-NSAS
on CIFAR-10, CIFAR-100, and ImageNet-16-120. In general, a
larger β and a largerM provided the better results. In the next sub-
section, we discuss the benefits of holding to the two assumptions
with NSAS, with respect to the constrained architecture selection
strategy.

5.2.3 Analysis of Constraints Selection
Although we demonstrate the theoretical benefits of the NSAS
loss function in relieving catastrophic forgetting Section 3.3, and
the experiments in Sections 5.2.1 and 5.2.2 support these theories,
at least for one-shot NAS, is it still open to debate as to whether
these improvements are due to the constraint selection strategy or
simply because of the regularization. In this section, we further
conduct an ablation study to investigate the impact of different
architecture selection strategies.

Directly maximizing the diversity of the constraint subset,
as per Section 3.4, easily holds Assumption 2, but it does not
guarantee that Assumption 1 will hold. Therefore, we devised two
variants of the NSAS loss function, both of which strictly observe
the assumptions when selecting constraints. These are NSAS-
G and NSAS-LG. The difference between the two concerns
treatment of the last architecture. More specifically, with NSAS-
G, the constraints are generated randomly, maximizing diversity,
but the last constraint θM is generated by complementing the
operations contained in the current architecture αt that have not
been covered in the previous constraints. This means all selected
architectures {θ1, ..., θM} covering all parameters of αt such
that θt ⊆ {θ1 ∪ ... ∪ θM}. With NSAS-LG, however, the last
architecture αt−1 is first added into the subset, and remaining
constraints are generated as following NSAS-G. This is to test
the common thinking on catastrophic forgetting that the last
architecture deteriorates performance the most.

We evaluated all three loss functions - NSAS, NSAS-G, and
NSAS-LG - along with three naive architecture selection methods
added to the RandomNAS and GDAS baseline to regularize the
supernet training. Thus, the six loss functions were:

• NSAS - which selects constraints through maximizing
diversity.

• NSAS-G - a variant of NSAS described above.
• NSAS-LG - a variant of NSAS described above.
• RG - randomly generates architectures to form the con-

straint subspace.
• LoW - only adds the last architecture αt−1 to the con-

straint subset.
• LoW-R - adds the last architecture αt−1 to the constraint

subset plus randomly generated constraints.

Table 5, 6, and 7 show the test accuracies for the CIFAR-10,
CIFAR-100, and ImageNet-16-120 datasets. We set the number
of constraints M = 2 in this experiment, to more precisely
investigate the effect of architecture selection and quantitatively
analyze the constraint selection strategies. The results for one-shot
NAS without relieving forgetting are shown in the first column of
Table 5, 6, and 7. All NSAS methods improved performance but,
interestingly, some of the naive constraint selection methods did
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TABLE 6: Analysis of the one-shot NAS methods with various constraint selection strategies on CIFAR-100.

METHOD β
NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RANDOMNAS 0.2 64.72±4.47 67.22±2.20 66.58±3.43 63.66±3.97 64.06±7.89 60.68±9.04
Test Acc(%) 0.5 60.77±3.85 65.30±3.49 66.74±2.66 47.28±27.17 64.27±6.43 59.47±13.13
(63.40±4.52) 0.8 64.27±3.26 67.83±1.66 66.01±2.94 64.13±0.56 61.37±8.95 58.32±8.82

GDAS 0.2 70.69±0.33 70.49±0.61 70.86±0.90 70.43±0.56 70.53±0.34 70.40±0.51
Test Acc(%) 0.5 70.53±0.30 70.57±0.23 70.69±0.67 70.21±0.44 70.10±0.70 70.25±0.38
(70.33±0.87) 0.8 70.33±0.41 70.28±0.58 70.80±0.55 70.40±0.60 70.78±0.19 70.38±0.45

TABLE 7: Analysis of the one-shot NAS methods with various constraint selection strategies on ImageNet-16-120.

METHOD β
NSAS NSAS-G NSAS-LG RG LoW LoW-R

Test Acc(%) Test Acc (%) Test Acc(%) Test Acc(%) Test Acc(%) Test Acc (%)

RANDOMNAS 0.2 34.19±5.72 39.58±2.60 37.79±5.11 34.38±5.02 36.32±8.07 30.64±13.19
Test Acc(%) 0.5 30.35±4.18 35.14±3.33 39.81±2.81 31.96±26.53 36.81±5.47 29.11±17.77
(33.83±3.17) 0.8 34.82±6.06 40.14±2.60 38.34±4.65 34.94±2.29 33.75±7.91 28.38±9.84

GDAS 0.2 42.14±1.40 42.26±0.20 41.71±0.57 41.35±0.13 42.16±1.30 41.68±1.18
Test Acc(%) 0.5 42.20±1.31 42.16±1.30 42.29±1.00 42.45±1.07 41.32±1.56 42.20±1.25
(41.47±0.21) 0.8 41.78±0.89 42.21±0.16 41.64±1.01 41.68±0.96 41.84±1.01 41.64±1.21

as well, which indicates that overcoming catastrophic forgetting
is a promising research direction for one-shot NAS. For example,
LoW improved performance simply by including the last visited
architecture in the regularization. However, these results also show
the importance of constraint selection strategy, as randomly select-
ing constraints can reduce performance. We observed that RG was
the worst method in all cases, with a reduction in test accuracy
from 88.14±0.21 to 77.30% ±19.76 for RandomNAS, and from
93.40±0.49 to 93.29±0.19 for GDAS in CIFAR-10. Moreover, the
LoW-R strategy of adding more randomly generated constraints
into the replay buffer yielded even worse results than LoW in most
cases. These results suggest that randomly selecting constraints
does not alleviate multi-model forgetting with one-shot NAS.

As for the NSAS and its variants, NSAS-G and NSAS-
LG, all improved performance significantly. It is interesting that
NSAS and NSAS-G achieved similar results with GDAS. This
indicates that Assumption 1, which requires the constraints to
cover all parameters of αt, may not be so important for relieving
catastrophic forgetting with gradient-based one-shot NAS while
holding to this assumption with RandomNAS did help. Overall,
NSAS-G achieved much better results than NSAS and, in most
cases, NSAS-G and NSAS-LG produced the best results. Thus,
simultaneously considering the last visited architecture and max-
imizing the diversity of constraints combined are the two key
factors that need to be addressed to relieve catastrophic forgetting
with both random sampling-based and gradient-based one-shot
NAS.

5.3 Discussion
We can draw several conclusions from this series of experiments.

• RandomNAS tends to achieve better performance than
GDAS with a common search space, whereas GDAS
outperforms RandomNAS with the NASBench-201 space
no matter the loss function. This may be because gradient-
based methods typically arrive at the local optimal solution
once the supernet is trained. RandomNAS, however, must
perform a subsequent model selection process using either

a random search or an EA to find a global optimal solution
from the trained supernet. Since common search spaces
are much more complicated than the one in NAS-Bench-
201, a global optimization method will usually outperform
a gradient method, while gradient-based NAS is more
efficient and effective with simple search spaces.

• It is clear that the NSAS loss function can increase the
predictive ability of the supernet, which, in turn, greatly
improves the performance of the architectures found by
RandomNAS and GDAS. However, supernet training in
one-shot NAS is still a problem with much room for
further advancements. Devising a more appropriate loss
function than the status quo appears to be a promising
direction for improving the performance of one-shot NAS
methods.

• Lastly, the ablation study indicates that adding recently
visited architectures into the constraint subset and max-
imizing its diversity are two efficient ways to mitigate
catastrophic forgetting with one-shot NAS.

6 CONCLUSION AND FUTURE WORKS

In this paper, we formulated supernet training as a constrained
optimization problem to reduce some of the negative impacts
of catastrophic forgetting with one-shot NAS, and multi-model
forgetting in particular. Our strategy is to select a representative
subset of constraints with a greedy novelty search method. Then
the supernet training is regularized in a feasible region with a
new novelty search-based architecture selection loss function, i.e.,
NSAS to overcome multi-model forgetting.

We implemented NSAS into two one-shot NAS baselines
- RandomNAS and GDAS - and compared the quality of the
architecture selections with and without the new loss function.
The results of experiments on the common search space of a
neural architecture show NSAS and two of its variants improve
the predictive ability of the supernet with both convolutional
and recurrent cell search. Experiments with the NAS-Bench-201
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dataset also suggest that NSAS can substantially offset perfor-
mance degradation due to forgetting with one-shot NAS. In future
research, we plan to focus on searching on a latent space by
transforming discrete architectures into continuous representa-
tions. Further, we will look to leveraging expert knowledge with
DNN searches to design architectures with greater transferability.
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TABLE 8: Comparison results with the existing NAS methods on PTB.

Method Perplexity(PTB) Parameters Search Memory Search
Valid Test (M) Cost Consumption Method

LSTM [72] 60.7 58.8 24 - - Manual Design
LSTM+SC [43] 60.9 58.3 24 - - Manual Design

NAS baseline [72] - 64 25 1e4 Single path RL
Random baseline [38] 61.8 59.4 23 2 Single path Random
ENAS [30] 60.8 58.6 24 0.5 Single path RL
WPL [5] - 61.9 - - Single path RL
DARTS (1st) [38] 60.2 57.6 23 0.5 Whole Supernet Gradient
DARTS (2nd) [38] 58.8 56.6 23 1 Whole Supernet Gradient

RandomNAS* [30] 59.7* 57.16* 23 0.25 Single path Random
RandomNAS-NSAS 59.22 56.84 23 0.62 Single path Random

GDAS [16] 59.8 57.5 23 0.4 Single path Gradient
GDAS-NSAS 59.74 57.24 23 0.50 Single path Gradien

“*” indicates the results were reproduced with the best-reported cell structures in the original paper but with the same experimental settings as all the other
competitors. The first block includes manually-designed neural architectures, and the second block includes the NAS methods without weight sharing and the
one-shot NAS methods.

APPENDIX1: ARCHITECTURE SEARCH FOR RECUR-
RENT CELLS

Beyond the convolutional cell structure search, we also conducted
experiments on RNN cell structure search with the PTB dataset.
For a fair comparison, the search space and hyperparameters
were set following [30], [38]. The RNN’s search space only
contains four different types of operations: identity, relu, tanh,
sigmoid. The recurrent cell contains 12 nodes: 2 input nodes, 1
adding nodes, 8 operation nodes, and 1 output node. The adding
node adds the two inputs and applies the tanh activation function.
The input of each node is the output of one of its previous nodes,
and the output of the cell is the summation of outputs of all
operation nodes. Unlike the CNN structure, our RNN architecture
only contains a single cell. Fig.8 (a) shows the common search
spaces of the RNN cell structure.

We used an SGD optimizer for the recurrent architecture
search, without momentum for weight learning. The learning rate
was set to 20.0, and the weight decay was set to 5 × 10−7. Like
the CNN search, we also used an Adam optimizer for architecture
optimization. The initial learning rate was set to 3 × 10−3 ,
the weight decay was 10−3, with a momentum of (0.9,0.999).
Variational dropout was used with probabilities of 0.2 for the
word embeddings, 0.75 for the cell input, and 0.25 for all the
hidden nodes. Dropout was also applied to the output layer with
a probability of 0.75. We trained the supernet for 300 epochs and
a batch size of 256 to arrive at the most promising RNN cell
structure. Then, to train the best-found recurrent cell, we changed
the embedding and the hidden sizes to 850 with a batch size of 64.
The other hyperparameters had the same settings as before. All
setups of the search space for CNN and RNN can also be found
in [30], [38].

A comparison of the results across all the baselines is pre-
sented in Table 8. The best model discovered by RandomNAS-
NSAS had a validation and test perplexity of 59.22 and 56.84,
respectively, which are on par with the state-of-the-art ap-
proaches. Further, the two baselines with the NSAS loss function
showed an improved supernet predictive ability, as evidenced by
RandomNAS-NSA’ inferior test perplexity with the normal loss
function of 56.84 compared to 57.16 with NSAS and GDAS with
57.24 compared to 57.69 with NSAS. Fig. 8 (b) visualizes the
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Fig. 8: The search space and the best discovered RNN cell.

best-found cells with the RandomNAS-NSAS approach for the
RNN models.

APPENDIX2: VISUALIZATION FOR THE BEST
SEARCHED CNN ARCHITECTURES AND DEPTH

As discussed in Section 5.1.2, most existing NAS approaches
are expected to find shallow CNN structures when searching the
CIFAR-10 dataset, but deliver poor performance when transferred
to ImageNet dataset. Several recent studies, including XNAS [44],
PDARTS [11], and PC-DARTS [57], suggest that encouraging a
deeper search is an effective way to improve the transferability
of the found models. In this section, we first visualize the best
found normal cell structures through several existing one-shot
NAS methods in Fig. 9. From the results, we find the first five
cells are much shallower than the rest of the structures.

We also followed the metric in Section 10 of XNAS to measure
the cell “depth”. This metric calculates the average of the input
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Fig. 9: Several example normal cell structures searched one-shot NAS methods. PC-DARTS-I is the same as ours that the model
searched on CIFAR-10 and transferred to ImageNet, while PC-DARTS-C is the model directly searched on ImageNet.

TABLE 9: The depth of normal cells with the NAS approaches on
CIFAR-10 and their performance on ImageNet.

Method Test Error (%) DepthCIFAR-10 ImageNet

SNAS [56] 2.85±0.02 27.3 0.5
DARTS (2nd) [38] 2.76±0.09 26.7 0.625
PARSEC [8] 2.86±0.06 26.3 0.5
Our NSAS 2.59±0.05 26.2 0.5
PDARTS [11] 2.50 25.9* 1.25
PC-DARTS-C [57] 2.57±0.07 25.7* 0.5
SETN [15] 2.69 25.7 1.375
Our NSAS-C 2.69±0.05 25.5 1.25
XNAS [44] 2.57±0.09* 25.3* 1.375

The one-shot NAS methods are ranked in descending order of performance on
ImageNet. * indicates that the architecture evaluation on ImageNet follows the
common DARTS [38] setting.

index of all the nodes in a cell. Since there are only two reduction
cells compared to 12 normal cells in the final CNN structure
with the ImageNet dataset, the depth of a normal cell is the main
indicator for measuring the depth of the final CNN structure.

To more intuitively reveal the depth and the transferability
of the found models, we also present the depth of normal cells
searched on CIFAR-10 and ImageNet using the one-shot NAS
methods in Table 9. Similar to XNAS, we observed that, in
general, those architectures with a larger depth performed better
and had higher transferability with ImageNet.

Another interesting finding from Table 9 is that our reproduced
results for PDARTS [11], PC-DARTS [57], and XNAS [44] are
not as good as the results reported in the original studies. PC-
DART should have resulted in a 25.1% test error with ImageNet,
but we found a test error of 25.7%. Similarly, PCDART obtained
a 25.9% test error with ImageNet rather than 24.4%. Likewise,
XNAS’s test error should have been 24.0% with ImageNet but,
in attempting to reproduce that result, we arrived at 25.3%. With
CIFAR-10, we found a test error of 2.52% compared to its reported
1.81% in XNAS. With PDARTS [11] and PC-DARTS [57], the
authors changed the architecture evaluation settings and added
some tricks to improve performance with the ImageNet dataset.
However, although these tricks may have significantly improved
performance with some architectures, validation accuracy with
others was reduced and even deteriorated in some cases. Similarly,
XNAS [57] improved performance with its selected model with
CIFAR-10 by increasing the number of initial filters and training
epochs, augmenting the data, and other tricks. Although they
achieved state-of-the-art performance through these changes, we
could not reproduce these results in a scenario with settings com-
mon to all baselines. A standard framework for fairly evaluating
architectures is still an open problem in the neural architecture
search community.


