

Abstract—Graph neural networks (GNNs) have shown great

ability in modeling graphs, however, their performance would

significantly degrade when there are noisy edges connecting nodes

from different classes. To alleviate negative effect of noisy edges
on neighborhood aggregation, some recent GNNs propose to

predict the label agreement between node pairs within a single

network. However, predicting the label agreement of edges across

different networks has not been investigated yet. Our work makes

the pioneering attempt to study a novel problem of cross-network

homophilous and heterophilous edge classification (CNHHEC),

and proposes a novel domain-adaptive graph attention-supervised

network (DGASN) to effectively tackle the CNHHEC problem.

Firstly, DGASN adopts multi-head GAT as the GNN encoder,

which jointly trains node embeddings and edge embeddings via

the node classification and edge classification losses. As a result,

label-discriminative embeddings can be obtained to distinguish

homophilous edges from heterophilous edges. In addition,

DGASN applies direct supervision on graph attention learning

based on the observed edge labels from the source network, thus

lowering the negative effects of heterophilous edges while

enlarging the positive effects of homophilous edges during

neighborhood aggregation. To facilitate knowledge transfer

across networks, DGASN employs adversarial domain adaptation

to mitigate domain divergence. Extensive experiments on

real-world benchmark datasets demonstrate that the proposed

DGASN achieves the state-of-the-art performance in CNHHEC.

Index Terms—Graph Neural Network, Cross-network Edge

Classification, Graph Domain Adaptation, Intra-class and

Inter-class Neighbors

I. INTRODUCTION

Graph Neural Networks (GNNs) [1] have made remarkable

achievements on graph representation learning in various

Manuscript submitted for review on December 19, 2022; revised 1 June

2023; accepted 24 August 2023. This work was supported in part by National

Natural Science Foundation of China (No. 62102124, No. 62362020), Hainan

Provincial Natural Science Foundation of China (No. 322RC570), the Specific
Research Fund of The Innovation Platform for Academicians of Hainan

Province (No. PT2300002941), and the Research Start-up Fund of Hainan

University (No. KYQD(ZR)-22016). (Corresponding author: Xiao Shen.)

X. Shen and M. Shao are with the School of Computer Science and

Technology, Hainan University, Haikou, China (e-mail:
shenxiaocam@163.com; MengqiuShao@hainanu.edu.cn).

S. Pan is with the School of Information and Communication Technology,

Griffith University, Gold Coast, Australia (e-mail: s.pan@griffith.edu.au).
L. T. Yang are with the School of Computer Science and Technology,

Hainan University, Haikou, China, and the Department of Computer Science,

St. Francis Xavier University, Canada (e-mail: ltyang@ieee.org).
X. Zhou is with the College of Tropical Crops, Hainan University, Haikou,

China (e-mail: xzhou@hainanu.edu.cn).

domains, such as social networks [2], protein-protein

interaction networks [3], scene graphs [4], financial system [5],

recommendation system [6], and healthcare [7]. The success of

GNNs relies on a recursive neighborhood aggregation scheme,

where the embedding of each node is updated by aggregating

the embeddings of its neighbors. The neighborhood

aggregation is based on the homophily assumption of networks

[8] that suggests connected nodes generally have the same

labels or similar features. With perfect homophily, aggregating

the information from similar neighbors is indeed helpful for

learning informative embeddings for various downstream

tasks.

However, not all the information aggregated from the

neighborhood is beneficial [9-12], since the real-world graphs

usually contain structure noises, i.e., the noisy edges

connecting nodes of different labels or features. Aggregating

information through such noisy inter-class edges makes the

information of different classes get mixed and consequently

causes the over-smoothing issue [13], i.e., the embeddings of

nodes from different classes become indistinguishable. Then,

the performance of GNNs on downstream tasks can

significantly degrade. To alleviate the negative effect of noisy

edges, some recent GNNs [9-12, 14, 15] propose to predict the

label agreement between node pairs, and then utilize the

predicted output to filter out or down-weight the noisy

inter-class edges during neighborhood aggregation. However,

all these work [9-12, 14, 15] are conducted within a single

network. To the best of our knowledge, predicting noisy edges

Domain-adaptive Graph Attention-supervised

Network for Cross-network Edge Classification

Xiao Shen, Mengqiu Shao, Shirui Pan, Senior Member, IEEE,
Laurence T. Yang, Fellow, IEEE, Xi Zhou

Fig. 1. An illustration of the CNHHEC problem. The source network has

observed node and edge labels, while the target network is completely

unlabeled. A node can be associated with multiple labels. The edges are labeled

according to the label agreement between two nodes on each edge.

Node Class 1
Node Class 2
Node Class 3

Node Class 1 and 3

Homophilous Edge
Heterophilous Edge

Unlabeled Node

Unlabeled Edge

Source Network Target Network

Transfer

Node Attributes
Node Attributes

Domain Discrepancy

mailto:shenxiaocam@163.com
mailto:s.pan@griffith.edu.au
mailto:ltyang@ieee.org
mailto:xzhou@hainanu.edu.cn

across different networks has not been investigated yet.

To fill in this gap, in this work, we study a novel problem of

cross-network homophilous and heterophilous edge

classification (CNHHEC). Fig. 1 illustrates the CNHHEC

problem, where each edge is labeled as either homophilous or

heterophilous, according to the label agreement between two

nodes on the edge. Specifically, a homophilous edge indicates

that the two connected nodes share at least one common

class-label. On the contrary, a heterophilous edge reflects that

the two connected nodes have totally different class-labels. In

CNHHEC, we have a fully labeled source network and a

completely unlabeled target network, where the inherent

domain discrepancy exists between the two networks. The goal

is to accurately classify edges in the target network into either

homophilous or heterophilous, by transferring the knowledge

from the source network. For example, for cross-domain social

recommendation, given a mature online social network (OSN)

where many users have annotated tags indicating their interests,

and a newly formed OSN where users are without labels, one

can conduct CNHHEC to transfer the knowledge from the

mature source network to predict homophilous and

heterophilous edges in the new target network. Then, based on

the predicted edge labels, one can recommend new connections

(i.e. homophilous edges) between users who share similar

interests, and also filter out noisy existing connections (i.e.,

heterophilous edges) between users with opposite hobbies.

In recent few years, cross-network node classification

(CNNC) has gained increasing attention, which aims to transfer

the knowledge from a fully labeled source network to

accurately classify nodes in an unlabeled target network. The

existing CNNC literatures [16-22] adopt a typical paradigm to

integrate GNNs with domain adaptation to yield

domain-adaptive GNNs. However, such domain-adaptive

GNNs only focus on learning network-invariant node

embeddings to address the downstream node classification task.

While there is no existing domain-adaptive GNNs aiming to

tackle the CNHHEC problem.

To fill in this gap, this work aims to propose the first

domain-adaptive GNN to address the CNHHEC problem. In

essence, we need to solve three challenges as follows: 1) Most

existing GNNs focus on learning node embeddings, while how

to learn informative edge embeddings to discriminate

heterophilous edges from homophilous edges is not clear. 2)

Due to message-passing among neighborhood, GNNs are

vulnerable to noisy edges that connect nodes from different

classes. How to alleviate negative effect of noisy heterophilous

edges on neighborhood aggregation is a key issue we must

address in the CNHHEC problem. 3) The source and target

networks inherently have domain discrepancy, which hinders

the GNN trained on the source to be directly applied to the

target. How to reduce domain discrepancy across networks to

learn network-invariant edge embeddings is an important issue

should be tackled in CNHHEC.

To address the aforementioned challenges, we propose a

novel domain-adaptive graph attention-supervised network

(DGASN). Firstly, a multi-head graph attention network (GAT)

[23] is adopted as the GNN encoder to learn node embeddings.

Then, we construct edge embeddings based on the embeddings

of two nodes on each edge. A key design of DGASN is to

jointly train node embeddings and edge embeddings via both

node classification and edge classification losses. As a result,

not only label-discriminative node embeddings can be learned

to separate nodes from different classes, but also

label-discriminative edge embeddings can be learned to

distinguish homophilous edges from heterophilous edges.

Secondly, real-world graphs are usually noisy with connections

between unrelated nodes, directly utilizing the adjacency

matrix with fixed edge weights for neighborhood aggregation

would inevitably introduce noises to node embeddings. Thus,

instead of utilizing fixed edge weights, the proposed DGASN

adopts GAT to automatically learn adaptive edge weights to

capture various degree of importance of each neighbor, which

can alleviate the negative effect of noisy heterophilous edges to

some extent. However, in original GAT [23], the supervision

on graph attention weights is limited and indirect [24, 25]. To

improve the expressive power of graph attention weights,

DGASN proposes to apply direct supervision on the attention

weights learned by each GAT layer. Specifically, given the

observed edge labels in the source network, a supervised

attention loss is devised to guide the attention weights to be

smaller for heterophilous edges while be larger for

homophilous edges. As a result, the noisy heterophilous edges

with smaller attention weights would have less effect during

neighborhood aggregation. Thirdly, to learn network-invariant

edge embeddings, DGASN adopts the representative

adversarial domain adaptation method [26] to make the GNN

encoder compete against the domain discriminator in an

adversarial training manner. The proposed DGASN is trained

in an end-to-end fashion to yield both label-discriminative and

network-invariant edge embeddings to effectively address

CNHHEC.

The contributions of this work are summarized as follows:

1) We are the first to formulate and study a novel problem of

cross-network homophilous and heterophilous edge

classification.

2) To effectively tackle CNHHEC, we propose a novel

framework named DGASN, which jointly trains node

embeddings and edge embeddings to distinguish heterophilous

edges from homophilous edges, applies direct supervision on

graph attention learning to lower negative effect of

heterophilous edges, and learns network-invariant edge

embeddings via adversarial domain adaptation.

3) Extensive experiments and ablation studies on benchmark

datasets demonstrate the effectiveness of the proposed DGASN

on the challenging CNHHEC problem.

II. RELATED WORK

A. Graph Neural Networks

The success of GNNs relies on recursive neighborhood

aggregation, which iteratively updates the embedding of each

central node by aggregating the embeddings among its

neighborhood. Graph convolution network (GCN) [2] is the

most representative GNN, which generalizes convolution

operation in computer vision to graph data. Inspired by GCN,

many GNNs [3, 27, 28] have been proposed. Instead of treating

all neighbors equally, the attention-based GNNs propose to

learn adaptive attention weights to capture various degree of

importance of each neighbor to represent the center node. GAT

[23] is the most representative attention-based GNN, which

adopts a masked self-attention mechanism to learn adaptive

edge weights in neighborhood aggregation. Inspired by GAT,

various attention-based GNNs [29-31] have been proposed.

However, these attention-based GNNs lack direct supervision

on the learning of attention weights, which easily causes

over-fitting and over-smoothing [25], especially when graphs

are noisy. To remedy this limitation, SuperGAT [25] employs a

self-supervised task of link prediction to directly supervise

attention weights. Inspired by SuperGAT, the proposed

DGASN also applies direct supervision on graph attention

learning so as to improve the expressive power of attention

weights. However, our work is inherently different from

SuperGAT in that instead of supervising the attention weights

to distinguish connected nodes (i.e. edges) from disconnected

nodes (i.e. non-edges) within a single network, our DGASN

supervises the attention weights to distinguish homophilous

edges from heterophilous edges across different networks with

distribution shifts.

Real-world graphs usually contain structure noises, and

aggregating neighborhood information through such noisy

inter-class edges would be harmful to the downstream tasks

[9-12, 14, 15]. To address this, some GNNs propose to predict

the label agreement between node pairs. LAGCN [11] employs

a label-aware edge classifier to filter out existing neighbors

with different labels and add new edges between disconnected

but the same labeled nodes. GAM [10] proposes an auxiliary

model to predict the probability of two nodes sharing the same

label, and used the predicted output to regularize the node

classification model. EGAI [9] proposes to remove inter-class

edges so as to achieve a high-quality neighborhood aggregation.

NRGNN [14] adopts a GNN-based edge predictor to link

unlabeled nodes with similar labeled nodes. RS-GNN [12]

employs a link predictor to down-weight noisy edges and

densify graph by adding new edges that connect nodes with

high similarity. All these work focus on predicting the label

agreement between node pairs within a single network. In

contrast, our work aims to predict the label agreement of edges

across different networks.

B. Cross-network Node Classification

Motivated by the significant achievements of knowledge

transfer [32-34] in Computer Vision (CV) and Natural

Language Processing (NLP), recently, a line of work proposes

to transfer the knowledge across graph-structured data.

Cross-network node classification (CNNC) [16-22] aims to

transfer the node classification knowledge from a labeled

source network to classify unlabeled nodes in a target network.

CDNE [16] is a pioneering CNNC algorithm, which employs

two stacked auto-encoders (SAEs) to reconstruct the

topological proximity matrix of the source and target networks

respectively. Then, it minimizes MMD and class-conditional

MMD [35] to learn network-invariant node representations.

AdaGCN [17] leverages GCN [2] to learn node representations

and employs the Wasserstein distance guided adversarial

domain adaptation [36] to mitigate domain discrepancy.

ACDNE [19] employs dual feature extractors with different

learnable parameters to separately learn node representations

from neighbor representations so as to jointly capture

homophily and heterophily between nodes. UDAGCN [20]

employs dual GCN to jointly capture local and global

consistency for neighborhood aggregation. Similar to

UDAGCN, ASN [18] also employs a dual GCN for graph

representation learning, and further adopts Domain Separation

Networks (DSN) [37] to separate domain-private and

domain-shared representations.

The most representative adversarial domain adaptation

method, which inserts a gradient reversal layer (GRL) [26]

between domain discriminator and generator, has been adopted

in [18-20] to guide network-invariant node representations.

Our work is related to the recent CNNC algorithms [16-20],

since we also integrate GNN with domain adaptation to yield

domain-adaptive GNN. However, our work is inherently

different from the CNNC literatures since we study a new

problem of CNHHEC.

C. Cross-network Edge Classification

The cross-network edge classification problem has been

studied in some early literatures. Tang et al. [38, 39] proposed

a TranFG model to classify social relationships in a target

network by borrowing the knowledge from a source network.

Qi et al. [40] proposed a cross-network link prediction model

to predict unseen links in the target network by transferring

the link information from the source network. Shen et al. [41,

42] proposed a cross-network learning model to predict

inactive edges for influence maximization in the target

network by leveraging the knowledge learned from the source

network.

Our work is inherently different from the early

cross-network edge classification literatures [38-42] in three

aspects. Firstly, the early literatures adopted the feature

engineering approach to manually define explicit edge

features based on social theories [38, 39] or topological

features [40-42]. Instead, our DGASN employs the

attention-supervised GNN to automatically learn latent edge

embeddings in an end-to-end manner. Secondly, previous

cross-network edge classification algorithms adopted the

early domain adaptation methods, such as re-sampling [40] or

self-training [41, 42]. While our DGASN adopts more

powerful adversarial domain adaptation method. Thirdly, the

definition of edge labels is different between our work and

previous literatures. Specifically, [38, 39] define edge labels

as the type of social relationships, [40] defines edge labels as

links or non-links, [41, 42] defines edge labels as active or

inactive for influence maximization. In contrast, we define

edge labels as homophilous or heterophilous, according to the

label agreement between two connected nodes.

III. PROPOSED MODEL

In this section, we firstly formulate the CNHHEC problem,

and then elaborate on the proposed DGASN. Fig. 2 shows the

model architecture of DGASN, which contains a multi-head

GAT encoder, a node classifier, an edge classifier, and a

domain discriminator.

A. Problem Definition

Let 𝒢 = (𝒱, ℰ, 𝑨,𝑿, 𝒀, 𝒛) denote an undirected network with

a set of nodes 𝒱, a set of undirected edges ℰ, an adjacency

matrix 𝑨 ∈ ℝ|𝒱|×|𝒱| , a node attribute matrix 𝑿 ∈ ℝ|𝒱|×𝒲 , a

node label matrix 𝒀 ∈ ℝ|𝒱|×𝒞𝒱 , and an edge label vector 𝒛 ∈

ℝ|ℰ|, where |𝒱|, |ℰ|,𝒲, 𝒞𝒱 denote the number of nodes, edges,

node attributes, and node label categories in 𝒢 respectively.

Specifically, if there is an edge connecting 𝑣𝑖 and 𝑣𝑗 , i.e.,

(𝑣𝑖 , 𝑣𝑗) ∈ ℰ , then 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1; otherwise, i.e., (𝑣𝑖 , 𝑣𝑗) ∉ ℰ ,

𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 0. 𝑋𝑖𝑘 = 1 if node 𝑣𝑖 is associated with the k-th

node attribute, otherwise 𝑋𝑖𝑘 = 0 . 𝑌𝑖𝑐 = 1 if node 𝑣𝑖 is

associated with node label 𝑐, otherwise 𝑌𝑖𝑐 = 0. Note that for

multi-label node classification, a node can be associated with

multiple labels. 𝑧(𝑣𝑖,𝑣𝑗) is the edge label of (𝑣𝑖 , 𝑣𝑗) , where

𝑧(𝑣𝑖,𝑣𝑗) = 1 if (𝑣𝑖 , 𝑣𝑗) is a homophilous edge and 𝑧(𝑣𝑖,𝑣𝑗) = 0 if

(𝑣𝑖 , 𝑣𝑗) is a heterophilous edge. Specifically, 𝑧(𝑣𝑖,𝑣𝑗) = 1 if 𝑣𝑖

and 𝑣𝑗 share at least one common node label, i.e., ∃𝑐 ∈

{1,2,⋯ , 𝒞𝒱}, 𝑌𝑖𝑐 = 𝑌𝑗𝑐 = 1. On the contrary, if 𝑣𝑖 and 𝑣𝑗 have

totally different node labels, then 𝑧(𝑣𝑖,𝑣𝑗) = 0.

In the CNHHEC problem, we have a fully labeled source

network 𝒢𝑠 = (𝒱𝑠, ℰ𝑠 , 𝑨𝑠, 𝑿𝑠 , 𝒀𝑠, 𝒛𝑠) where all nodes and

edges have observed labels, and a completely unlabeled target

network 𝒢𝑡 = (𝒱𝑡 , ℰ𝑡 , 𝑨𝑡 , 𝑿𝑡) where all nodes and edges do not

have labels. Note that 𝒢𝑠 and 𝒢𝑡 have different distributions of

network topology and node attributes, while 𝒢𝑠 and 𝒢𝑡 share

the common label space. The goal of CNHHEC is to take

advantage of the fully labeled source data and unlabeled target

data to accurately predict edge labels of 𝒢𝑡 in an end-to-end

manner. For clarity, the frequently used notations are

summarized in Table I.

B. Joint Training of Node and Edge Embeddings

The GCN-like models [2, 3, 27, 28] are vulnerable to noisy

inter-class edges, since all neighbors are treated equally with

the fixed edge weights during neighborhood aggregation.

While GAT [23] can alleviate negative effects of noisy edges,

by automatically assigning adaptive attention edge weights to

different neighbors to reflect their important degree to the target

node. Thus, in the proposed DGASN, we opt for GAT as the

GNN encoder for node embedding learning.

1) Node Embeddings and Node Classification

Each 𝑙-th GAT layer learns the node embedding of 𝑣𝑖 by

adaptively aggregating the embeddings of itself and its

neighbors at previous layer and then applies an ELU nonlinear

activation function, which is expressed as:

 𝒉𝑖
(𝑙)

= ELU(∑ �̂�(𝑣𝑖,𝑣𝑗)
(𝑙)

𝑗∈𝒩𝑖∪{𝑖}
𝑾(𝑙)𝒉𝑗

(𝑙−1)
) , ∀1 ≤ 𝑙 ≤ 𝐿 (1)

where 𝒉𝑖
(𝑙)

∈ ℝ𝕕(𝑙) is the node embedding of 𝑣𝑖 at the 𝑙-th GAT

layer, 𝕕(𝑙) is the number of embedding dimensions at the 𝑙-th

TABLE I
FREQUENTLY USED NOTATIONS.

Notations Descriptions

𝒢 A network

𝒢𝑠, 𝒢𝑡 Source network and target network

|𝒱|, |ℰ| Number of nodes and edges in 𝒢

𝒲 Number of node attributes in 𝒢

𝑣𝑖 i-th node in 𝒢

𝒙𝑖 Node attribute vector of 𝑣𝑖

𝒚𝑖 Node label vector of 𝑣𝑖

𝒉𝑖 Node embedding vector of 𝑣𝑖

𝕕(𝑙) Node embedding dimensions at l-th GAT layer

(𝑣𝑖 , 𝑣𝑗) An edge connecting 𝑣𝑖 and 𝑣𝑗 in 𝒢

𝑧(𝑣𝑖,𝑣𝑗) Edge label of (𝑣𝑖 , 𝑣𝑗)

𝒆(𝑣𝑖,𝑣𝑗) Edge embedding vector of (𝑣𝑖 , 𝑣𝑗)

𝛼(𝑣𝑖,𝑣𝑗)
(𝑙)

 Attention edge weight of (𝑣𝑖 , 𝑣𝑗) at l-th GAT layer

𝐾 Number of attention heads

𝐿 Number of GAT layers

𝑓ℎ , 𝑓𝑦, 𝑓𝑧, 𝑓𝑑
GNN encoder, node classifier, edge classifier and domain

discriminator

𝜃ℎ , 𝜃𝑦, 𝜃𝑧, 𝜃𝑑 Learnable parameters of 𝑓ℎ , 𝑓𝑦, 𝑓𝑧, 𝑓𝑑

Fig. 2. The model architecture of DGASN. A multi-head GAT is adopted as the GNN encoder to learn node embeddings for both 𝒢 𝑠 and 𝒢𝑡. The supervised

attention loss is applied on the source attention weights at each layer of GAT, supervised by the observed edge labels in 𝒢𝑠. The node classification loss and edge

classification loss are guided by the observed node and edge labels in 𝒢𝑠. The domain classification loss is guided by the domain labels of edges.

Source network

Target network

Multi-head GAT

Attention head 1

…

Layer 1

Attention head 2

Attention head K

Attention head 1

…

Layer 2

Attention head 2

Attention head K

…

Attention head 1

…

Layer L

Attention head 2

Attention head K

Multi-head GAT

Attention head 1

…

Layer 1

Attention head 2

Attention head K

Attention head 1

…

Layer 2

Attention head 2

Attention head K

…

Attention head 1

…

Layer L

Attention head 2

Attention head K

Generate

edge embeddings Edge classifier
Edge classification loss

Domain discriminator Domain classification loss

Node classifier Node classification loss

…
Supervised attention loss

Shared learnable parameters

between and

…

C
o

n
c

a
te

n
a

te

…

C
o

n
c

a
te

n
a
te

GAT layer, 𝒉𝑖
(0)

= 𝒙𝑖 ∈ ℝ𝒲 is the input node attribute vector

of 𝑣𝑖, 𝑾
(𝑙) ∈ ℝ𝕕(𝑙)×𝕕(𝑙−1) is the learnable weight matrix of the

𝑙 -th layer, and 𝐿 is the number of GAT layers. 𝒩𝑖 =

{𝑗|𝐴𝑖𝑗 = 1} denotes the first-order neighbors of 𝑣𝑖.

The key idea of GAT is to automatically learn adaptive edge

weight �̂�(𝑣𝑖,𝑣𝑗)
(𝑙)

 by a self-attention mechanism. Specifically, by

taking the embeddings of 𝑣𝑖 and 𝑣𝑗 at (𝑙 − 1)-th layer as the

inputs, the l-th GAT layer learns adaptive edge weight of

(𝑣𝑖 , 𝑣𝑗), as:

 𝛼(𝑣𝑖,𝑣𝑗)
(𝑙)

= LeakyReLU (𝓪(𝑙)𝑇[𝑾(𝑙)𝒉𝑖
(𝑙−1)

‖𝑾(𝑙)𝒉𝑗
(𝑙−1)

]) (2)

where 𝓪(𝑙) ∈ ℝ2𝕕(𝑙) is a learnable vector of the 𝑙-th layer, ·𝑇 is

the transposition operation, and [∙ ‖ ∙] is the concatenation

operation. To take network topology into account in graph

attention learning, a masked attention mechanism is adopted to

only compute 𝛼(𝑣𝑖,𝑣𝑗)
(𝑙)

 for 𝑗 ∈ 𝒩𝑖 ∪ {𝑖}. In addition, to make the

attention edge weights in Eq. (2) easily comparable across

different nodes, 𝛼(𝑣𝑖,𝑣𝑗)
(𝑙)

 is normalized across all choices of 𝑗 via

the Softmax function, as:

 �̂�(𝑣𝑖,𝑣𝑗)
(𝑙)

=
exp (𝛼(𝑣𝑖,𝑣𝑗)

(𝑙)
)

∑ exp (𝛼(𝑣𝑖,𝑣𝑘)
(𝑙)

)𝑘∈𝒩𝑖∪{𝑖}

 (3)

where �̂�(𝑣𝑖,𝑣𝑗)
(𝑙)

 is the relative importance degree of 𝑣𝑗 among the

neighborhood of 𝑣𝑖 (including 𝑣𝑖 itself) at the 𝑙-th GAT layer.

To make the self-attention mechanism more stable, we

employ the multi-head attention mechanism to adopt K

independent attention heads to learn node embedding of 𝑣𝑖 in

Eq. (1), and then concatenate the output embeddings of all

attention heads as the node embedding of 𝑣𝑖. Then, the number

of node embedding dimensions at the l-th GAT layer would

become 𝐾𝕕(𝑙).

For simplicity of notation, we denote the aforementioned

multi-layer and multi-head GAT encoder as 𝑓ℎ(∙ ; 𝜃ℎ), where

𝜃ℎ represents the trainable parameters of node embedding

learning. In the context of cross-network classification, we

employ the shared learnable parameters 𝜃ℎ between 𝒢𝑠 and 𝒢𝑡

to generate the cross-network node embeddings, as:

 𝑯𝑠 = {𝒉𝑖
𝑠}𝑖=1

|𝒱𝑠|
= 𝑓ℎ(𝑨

𝑠, 𝑿𝑠; 𝜃ℎ)

 𝑯𝑡 = {𝒉𝑗
𝑡}

𝑗=1

|𝒱𝑡|
= 𝑓ℎ(𝑨

𝑡 , 𝑿𝑡; 𝜃ℎ) (4)

where 𝒉𝑖
𝑠 , 𝒉𝑗

𝑡 ∈ ℝ𝐾𝕕(𝐿) are the final node embedding vectors of

𝑣𝑖
𝑠 and 𝑣𝑗

𝑡 learned by the deepest layer of multi-head GAT.

Then, a node classifier 𝑓𝑦(∙ ; 𝜃𝑦) parameterized by 𝜃𝑦

constructed by a multi-layer perceptron (MLP) is added on the

final node embedding vector of each node 𝑣𝑖 ∈ 𝒱𝑠 ∪ 𝒱𝑡:

 �̂�𝑖 = 𝑓𝑦(𝒉𝑖 ; 𝜃𝑦) (5)

where �̂�𝑖 ∈ ℝ𝒞𝒱 is the predicted node label vector of 𝑣𝑖 over

𝒞𝒱 categories. Given the observed node labels in 𝒢𝑠 , the

sigmoid cross-entropy loss is adopted to define the multi-label

node classification loss, as:

 ℒ𝑛 = −
1

|𝒱𝑠|
∑ ∑ (

𝑌𝑖𝑐
𝑠 log �̂�𝑖𝑐

𝑠 +

(1 − 𝑌𝑖𝑐
𝑠) log(1 − �̂�𝑖𝑐

𝑠)
)

𝒞𝒱
𝑐=1𝑣𝑖∈𝒱

𝑠 (6)

where 𝑌𝑖𝑐
𝑠 is the ground-truth node label of 𝑣𝑖

𝑠, 𝑌𝑖𝑐
𝑠 = 1 if 𝑣𝑖

𝑠 is

associated with label 𝑐; otherwise, 𝑌𝑖𝑐
𝑠 = 0. �̂�𝑖𝑐

𝑠 is the predicted

probability of 𝑣𝑖
𝑠 belonging to category 𝑐 . Minimizing ℒ𝑛

guides label-discriminative node embeddings, which are

conducive to distinguish homophilous edges (connecting nodes

of the same label) from heterophilous edges (connecting nodes

with different labels).

2) Edge Embeddings and Edge Classification

Next, we generate the edge embeddings based on the

embeddings of two nodes on each edge. Five operators can be

adopted to construct edge embeddings, following [43]:

Concatenate: 𝒆(𝑣𝑖,𝑣𝑗) = [𝒉𝑖‖𝒉𝑗]

Hadamard: 𝒆(𝑣𝑖,𝑣𝑗) = 𝒉𝑖 ⊙ 𝒉𝑗

Average: 𝒆(𝑣𝑖,𝑣𝑗) = (𝒉𝑖 + 𝒉𝑗) ∕ 2

L1: 𝒆(𝑣𝑖,𝑣𝑗) = |𝒉𝑖 − 𝒉𝑗|

 L2: 𝒆(𝑣𝑖,𝑣𝑗) = |𝒉𝑖 − 𝒉𝑗|
2
 (7)

where 𝒆(𝑣𝑖,𝑣𝑗) denotes the edge embedding vector of (𝑣𝑖 , 𝑣𝑗),

and ⊙ denotes the element-wise Hadamard product operator.

In the proposed DGASN, we opt for the Concatenate operator

to construct edge embeddings.

An edge classifier 𝑓𝑧(∙ ; 𝜃𝑧) parameterized by 𝜃𝑧 is

constructed by an MLP. Given the edge embedding 𝒆(𝑣𝑖,𝑣𝑗) as

the input, the edge classifier outputs:

 �̂�(𝑣𝑖,𝑣𝑗) = 𝑓𝑧 (𝒆(𝑣𝑖,𝑣𝑗) ; 𝜃𝑧) (8)

where �̂�(𝑣𝑖,𝑣𝑗) is the predicted probability of (𝑣𝑖 , 𝑣𝑗) to be

homophilous. Given observed edge labels of 𝒢𝑠 , the edge

classification loss is defined as:

 ℒ𝑒 = −
1

|ℰ𝑠|
∑ (

𝑧(𝑣𝑖,𝑣𝑗)
𝑠 log �̂�(𝑣𝑖,𝑣𝑗)

𝑠 +

(1 − 𝑧(𝑣𝑖,𝑣𝑗)
𝑠) log (1 − �̂�(𝑣𝑖,𝑣𝑗)

𝑠)
)(𝑣𝑖,𝑣𝑗)∈ℰ

𝑆 (9)

where 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 is the ground-truth edge label of (𝑣𝑖 , 𝑣𝑗) ∈ ℰ𝑠 ,

𝑧(𝑣𝑖,𝑣𝑗)
𝑠 = 1 if (𝑣𝑖 , 𝑣𝑗) is homophilous and 𝑧(𝑣𝑖,𝑣𝑗)

𝑠 = 0 if (𝑣𝑖 , 𝑣𝑗)

is heterophilous.

Fig. 3 illustrates the joint training process of node and edge

embeddings in the proposed DGASN, where the node and edge

embeddings are learned end-to-end by optimizing both node

classification loss ℒ𝑛 and edge classification loss ℒ𝑒 together.

Fig. 3. An illustration of the joint training of node and edge embeddings via

optimizing both node classification loss ℒ𝑛 and edge classification loss ℒ𝑒 .

Edge embedding is constructed based on the embeddings of two nodes on the

edge. Label-discriminative edge embeddings can be implicitly learned by

optimizing ℒ𝑛 and explicitly learned by optimizing ℒ𝑒.

Node Classification

Loss

Edge Classification
Loss

Joint Training

Node Embeddings

Edge Embeddings

Input Graph

Node and Edge Embeddings

Node Class 1

Homophilous Edge Heterophilous Edge

Node Class 2Node Embedding

Edge Embedding

It is worth noting that the edge embedding 𝒆(𝑣𝑖,𝑣𝑗) is

constructed based on the embeddings of two nodes 𝒉𝑖 and 𝒉𝑗

connected by each edge, via various operators in Eq. (7). On

one hand, by optimizing the node classification loss ℒ𝑛 ,

label-discriminative node embeddings separating different

node classes can be learned. Then, a homophilous edge (e.g.

𝒆(𝑣0,𝑣1) in Fig. 3) connecting two nodes from the same class

would construct an edge embedding given two similar node

embeddings as the inputs, whereas, a heterophilous edge (e.g.

𝒆(𝑣0,𝑣2) in Fig. 3) connecting two nodes from different classes

would construct an edge embedding given two dissimilar node

embeddings as the inputs. As a result, label-discriminative edge

embeddings to distinguish homophilous edges from

heterophilous edges can be implicitly learned upon such

label-discriminate node embeddings. On the other hand, by

directly optimizing the edge classification loss ℒ𝑒 supervised

by the ground-truth edge labels, label-discriminative edge

embeddings can be explicitly learned. Since the node and edge

embeddings are jointly learned end-to-end, such explicitly

label-discriminative edge embeddings can in turn yield more

label-discriminative node embeddings. The ablation study in

Section Ⅳ. C verifies that both node classification loss ℒ𝑛 and

edge classification loss ℒ𝑒 are indispensable in the proposed

DGASN to tackle the CNHHEC problem.

C. Direct Supervision on Graph Attention Learning

GAT easily causes overfitting in graph attention learning,

due to the limited and indirect supervision on learnable

attention parameters [25]. In original GAT [23], the supervision

on attention weights only comes from the node classification

loss. In addition, it has been theoretically and empirically

shown that if there are noisy edges connecting nodes from

different classes, then by increasing the depth of GAT, the

over-smoothing issue easily arises, where the embeddings of

nodes from different classes become indistinguishable [24, 25].

The over-smoothing of node embeddings would severely

impede the identification of heterophilous edges which connect

nodes from different classes.

To go beyond the limits of original GAT, the proposed

DGASN gives more supervision on the learnable parameters of

graph attention, where the supervised signals come from not

only the node classification loss, but also the edge classification

loss, the supervised attention loss and the domain classification

loss (will be introduced later). Actually, the ideal attention

mechanism should assign larger weights to the intra-class

neighbors linked by homophilous edges, while smaller weights

to the inter-class neighbors linked by heterophilous edges. To

this end, the proposed DGASN applies direct supervision on

graph attention learning, according to the observed edge labels

in 𝒢𝑠.

Fig. 4 illustrates the idea of direct attention supervision on

𝒢𝑠 at each l-th GAT layer. Firstly, for each source edge

(𝑣𝑖 , 𝑣𝑗) ∈ ℰ𝑠, we compute the attention weight by averaging

over 𝐾 attention heads, i.e., 𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

=
1

𝐾
∑ 𝛼(𝑣𝑖,𝑣𝑗)

𝑠(𝑙)(𝑘)𝐾
𝑘=1 , where

𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)(𝑘)

 is the unnormalized attention edge weight of (𝑣𝑖 , 𝑣𝑗) in

Eq. (2) learned by the 𝑘-th head at the l-th GAT layer. In

addition, note that for an undirected edge (𝑣𝑖 , 𝑣𝑗) , two

asymmetric attention weights 𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

 and 𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

 are learned by

GAT, i.e., 𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

≠ 𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

, where 𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

 reflects the

importance of 𝑣𝑗 to 𝑣𝑖 during the node embedding learning of

𝑣𝑖 , while 𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

 indicates the importance of 𝑣𝑖 to 𝑣𝑗 when

learning the node embedding of 𝑣𝑗 . Given the ground-truth

edge labels in 𝒢𝑠, we devise the supervised attention loss to

guide larger (lower) asymmetric attention weights on each

homophilous (heterophilous) edge. Accordingly, the

supervised attention loss at each l-th GAT layer is defined as:

ℒ𝑎
(𝑙) =

−
1

2|ℰ𝑠|
∑

(

𝑧(𝑣𝑖,𝑣𝑗)
𝑠 (log 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)

𝑠(𝑙)
) + log 𝜎 (𝛼(𝑣𝑗 ,𝑣𝑖)

𝑠(𝑙)
))

+ (1 − 𝑧(𝑣𝑖,𝑣𝑗)
𝑠)(

log (1 − 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)))

+log (1 − 𝜎 (𝛼(𝑣𝑗 ,𝑣𝑖)
𝑠(𝑙)))

)

)

(𝑣𝑖,𝑣𝑗)∈ℰ
𝑠 (10)

where 𝜎 is a sigmoid activation function. Minimizing Eq. (10)

guides both 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

) and 𝜎 (𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

) to be 1, if (𝑣𝑖 , 𝑣𝑗) is a

homophilous edge, i.e., 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 = 1 ; in contrast, both

𝜎 (𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

) and 𝜎 (𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

) would be optimized to 0 for each

heterophilous edge, i.e., 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 = 0.

In addition, note that the number of homophilous edges is

much larger than that of heterophilous edges in networks with

homophily. Thus, directly minimizing Eq. (10) makes the

supervised attention learning bias towards the homophilous

edges. To address this, we incorporate a cost-sensitive

parameter 𝛾 > 1 to modify Eq. (10) to impose the supervised

attention learning focus more on the scarce heterophilous edges,

which is expressed as:

ℒ𝑎
(𝑙) =

−
1

2|ℰ𝑠|
∑

(

𝑧(𝑣𝑖,𝑣𝑗)
𝑠 (log 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)

𝑠(𝑙)
) + log𝜎 (𝛼(𝑣𝑗 ,𝑣𝑖)

𝑠(𝑙)
))

+γ (1 − 𝑧(𝑣𝑖,𝑣𝑗)
𝑠)(

log (1 − 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)))

+log (1 − 𝜎 (𝛼(𝑣𝑗 ,𝑣𝑖)
𝑠(𝑙)))

)

)

(𝑣𝑖,𝑣𝑗)∈ℰ
𝑠 (11)

Fig. 4. An illustration of direct supervision on graph attention learning on 𝒢𝑠 at

the l-th GAT layer. Firstly, asymmetric attention weights are learned for each
undirected edge by averaging over multiple attention heads. Then, given the

ground-truth edge labels of 𝒢𝑠, the supervised attention loss is devised to guide

larger (lower) asymmetric attention weights for each homophilous
(heterophilous) edge.

Average…

Supervised Attention Loss of -th GAT Layer

Average over K HeadsInput of -th GAT Layer
Ground-truth Edge Labels of

Edge Attention Learning

Node Class 1

Homophilous Edge Heterophilous Edge

Node Class 2Node Embedding

Attention Head 1

Attention Head K

By applying Eq. (11) on all the 𝐿 GAT layers, the total

supervised attention loss is defined as:

 ℒ𝑎 = ∑ ℒ𝑎
(𝑙)𝐿

𝑙=1 (12)

Minimizing ℒ𝑎 directly supervises GAT to learn more

expressive attention weights, i.e., larger weights for

homophilous edges while smaller weights for heterophilous

edges.

D. Adversarial Domain Adaptation

The source and the target networks inherently have different

data distributions, which hinders the edge classifier 𝑓𝑧 trained

on the source to be directly applied to the target. To mitigate the

domain discrepancy between 𝒢𝑠 and 𝒢𝑡, the proposed DGASN

employs the adversarial domain adaptation method [26] by

training the GNN encoder 𝑓ℎ and the domain discriminator 𝑓𝑑

in an adversarial manner. The domain discriminator 𝑓𝑑(∙ ; 𝜃𝑑)
parameterized by 𝜃𝑑 is constructed by an MLP, taking the edge

embedding 𝒆(𝑣𝑖,𝑣𝑗) as the input, it outputs:

 �̂�(𝑣𝑖,𝑣𝑗) = 𝑓𝑑 (𝒆(𝑣𝑖,𝑣𝑗) ; 𝜃𝑑) (13)

where �̂�(𝑣𝑖,𝑣𝑗)
 is the predicted probability of (𝑣𝑖 , 𝑣𝑗) coming

from 𝒢𝑡 . Then, given the ground-truth domain labels of all

edges in 𝒢𝑠 and 𝒢𝑡, the domain classification loss is defined

as:

ℒ𝑑 =

−
1

|ℰ𝑠|+|ℰ𝑡|
∑ (

𝑑(𝑣𝑖,𝑣𝑗) 𝑙𝑜𝑔 �̂�(𝑣𝑖,𝑣𝑗) +

(1 − 𝑑(𝑣𝑖,𝑣𝑗)) 𝑙𝑜𝑔 (1 − �̂�(𝑣𝑖,𝑣𝑗))
)(𝑣𝑖,𝑣𝑗)∈ℰ

𝑠∪ℰ𝑡 (14)

where 𝑑(𝑣𝑖,𝑣𝑗)
 is the ground-truth domain label of (𝑣𝑖 , 𝑣𝑗) ,

𝑑(𝑣𝑖,𝑣𝑗) = 1 if (𝑣𝑖 , 𝑣𝑗) ∈ ℰ𝑡 and 𝑑(𝑣𝑖,𝑣𝑗) = 0 if (𝑣𝑖 , 𝑣𝑗) ∈ ℰ𝑠.

In adversarial domain adaptation, the domain discriminator

𝑓𝑑 and the GNN encoder 𝑓ℎ act as two players in a min-max

game. On one hand, 𝑚𝑖𝑛
𝜃𝑑

{ℒ𝑑} guides 𝑓𝑑 to accurately predict

which network an edge comes from. On the other hand,

𝑚𝑎𝑥
𝜃ℎ

{ℒ𝑑} guides 𝑓ℎ to learn network-invariant edge

embeddings to deceive 𝑓𝑑 . That is, 𝑓𝑑 and 𝑓ℎ are competing

against each other by minimizing and maximizing the domain

classification loss ℒ𝑑 in an adversarial way. In order to

simultaneously update the learnable parameters of 𝑓𝑑 and 𝑓ℎ,

we follow [26] to insert a GRL between 𝑓𝑑 and 𝑓ℎ during

back-propagation. Note that the GRL is not associated with any

learnable parameters and does not perform during

forward-propagation. However, during back-propagation, as

shown in Fig. 5, the GRL reverses the partial derivative of the

domain classification loss ℒ𝑑 w.r.t. the learnable parameters of

the GNN encoder 𝑓ℎ (i.e.
𝜕ℒ𝑑

𝜕𝜃ℎ
) by multiplying it by −𝜆, where

𝜆 > 0 is the weight of the domain classification loss in the

overall loss of DGASN. That is, after inserting the GRL,
𝜕ℒ𝑑

𝜕𝜃ℎ
 is

effectively replaced with −𝜆
𝜕ℒ𝑑

𝜕𝜃ℎ
 during back-propagation. As

a result, maximizing the domain classification loss ℒ𝑑 w.r.t. the

GNN encoder 𝑓ℎ (i.e. 𝑚𝑎𝑥
𝜃ℎ

{ℒ𝑑}) can be optimized together

with the minimization of ℒ𝑑 w.r.t. the domain discriminator 𝑓𝑑

(i.e. 𝑚𝑖𝑛
𝜃𝑑

{ℒ𝑑}), during each back-propagation.

E. Model Optimization

In the proposed DGASN, the GNN encoder 𝑓ℎ , node

classifier 𝑓𝑦, edge classifier 𝑓𝑧 and domain discriminator 𝑓𝑑 are

trained end-to-end by optimizing the overall minimax objective

Algorithm 1: DGASN

Input: Fully labeled Source network 𝒢𝑠 =
(𝒱𝑠, ℰ𝑠, 𝑨𝑠, 𝑿𝑠 , 𝒀𝑠, 𝒛𝑠) , completely unlabeled target

network 𝒢𝑡 = (𝒱𝑡 , ℰ𝑡 , 𝑨𝑡 , 𝑿𝑡).

1 Initialize learnable parameters 𝜃ℎ, 𝜃𝑦, 𝜃𝑧 , 𝜃𝑑;

2 while not max epoch do:

3
Learn cross-network node embeddings {𝒉𝑖

𝑠}𝑖=1
|𝒱𝑠|

and {𝒉𝑗
𝑡}

𝑗=1

|𝒱𝑡|
 by GNN encoder 𝑓ℎ in Eq. (4);

4
Compute node classification loss ℒ𝑛 based on

{(𝒉𝑖
𝑠 , 𝒚𝑖

𝑠)}𝑖=1
|𝒱𝑠|

 in Eq. (6);

5

Generate cross-network edge embeddings

{𝒆(𝑣𝑖,𝑣𝑗)
𝑠 }

(𝑣𝑖,𝑣𝑗)∈ℰ
𝑠
 and {𝒆(𝑣𝑖,𝑣𝑗)

𝑡 }
(𝑣𝑖,𝑣𝑗)∈ℰ

𝑡
 in Eq. (7);

6

Compute edge classification loss ℒ𝑒 based on

{(𝒆(𝑣𝑖,𝑣𝑗)
𝑠 , 𝑧(𝑣𝑖,𝑣𝑗)

𝑠)}
(𝑣𝑖,𝑣𝑗)∈ℰ

𝑠
 in Eq. (9);

7

Compute supervised attention loss ℒ𝑎 based on

{{𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

}
𝑙=1

𝐿

, {𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

}
𝑙=1

𝐿

, 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 }

(𝑣𝑖,𝑣𝑗)∈ℰ
𝑠

 in Eq.

(12);

8

Compute domain classification loss ℒ𝑑 based on

{(𝒆(𝑣𝑖,𝑣𝑗)
𝑠 , 𝑑(𝑣𝑖,𝑣𝑗))}(𝑣𝑖,𝑣𝑗)∈ℰ𝑠

 and

{(𝒆(𝑣𝑖,𝑣𝑗)
𝑡 , 𝑑(𝑣𝑖,𝑣𝑗))}(𝑣𝑖,𝑣𝑗)∈ℰ𝑡

 in Eq. (14);

9
Backpropagate and update 𝜃ℎ, 𝜃𝑦 , 𝜃𝑧 , 𝜃𝑑 to

optimize overall loss in Eq. (15);

10 end while

11

Apply optimized parameters 𝜃ℎ
∗ to generate

cross-network node and edge embeddings in Eq. (4)

and (7);

12
Apply optimized parameters 𝜃𝑧

∗ to predict target edge

labels in Eq. (8).

Output: Optimized parameters 𝜃ℎ
∗ , 𝜃𝑦

∗, 𝜃𝑧
∗, 𝜃𝑑

∗ .

Fig. 5. An illustration of the adversarial domain adaptation. The domain

discriminator 𝑓𝑑 and the GNN encoder 𝑓ℎ are trained in an adversarial manner,

by minimizing and maximizing the domain classification loss ℒ𝑑 respectively.

A gradient reversal layer (GRL) is inserted between 𝑓𝑑 and 𝑓ℎ during

back-propagation to reverse the partial derivative of the domain classification

loss w.r.t. the GNN encoder (i.e.
𝜕ℒ𝑑

𝜕𝜃ℎ
) by multiplying it by −𝜆. Then, 𝑚𝑎𝑥

𝜃ℎ
{ℒ𝑑}

and 𝑚𝑖𝑛
𝜃𝑑

{ℒ𝑑} can be simultaneously undated during each back-propagation.

Source Network

Target Network

Domain Discriminator

Generate

Edge

Embeddings

Input
GNN Encoder

Domain Classification Loss
Gradient

Reversal

Layer

Forward-propagation Back-propagation

Predicted

Domain Label

Ground-truth

Domain Label

function:

 ℒ = 𝑚𝑖𝑛
𝜃ℎ,𝜃𝑦,𝜃𝑧

{ℒ𝑒+𝜂ℒ𝑛 + 𝜉ℒ𝑎 + 𝜆𝑚𝑎𝑥
𝜃𝑑

{−ℒ𝑑}} (15)

where 𝜂 , 𝜉 and 𝜆 are all the trade-off hyper-parameters to

balance the effect of different loss terms.

Algorithm 1 shows the training process of DGASN. The

cross-network node embeddings are learned in Line 3, and the

node classification loss is computed in Line 4. The

cross-network edge embeddings are generated in Line 5 and the

edge classification loss is computed in Line 6. The supervised

attention loss is computed in Line 7. The domain classification

loss is computed in Line 8. The proposed DGASN is trained

end-to-end by optimizing the overall objective function in Line

9. After training convergence or reaching a maximum training

epoch, the optimized learnable parameters are employed to

generate cross-network node and edge embeddings in Line 11,

and then predict the target edge labels in Line 12.

F. Time Complexity

The time complexity of the GNN encoder constructed by

multi-head GAT is 𝑂 (((|𝒱𝑠| + |𝒱𝑡|)𝒲𝕕 + (|ℰ𝑠| +

|ℰ𝑡|)𝕕)𝐾), where 𝕕 is the number of embedding dimensions

of each head, 𝐾 is the number of attention heads, |𝒱𝑠| and |𝒱𝑡|
are the number of nodes in 𝒢𝑠 and 𝒢𝑡 respectively, |ℰ𝑠| and

|ℰ𝑡| are the number of edges in 𝒢𝑠 and 𝒢𝑡 respectively, 𝒲 is

the number of node attributes. The node classifier, edge

classifier, and domain discriminator are all constructed as an

MLP respectively. The time complexity of node classifier is

linear to the number of nodes, and the time complexity of edge

classifier and domain discriminator are both linear to the

number of edges. Thus, the overall time complexity of DGASN

is linear to number of nodes and edges in 𝒢𝑠 and 𝒢𝑡.

IV. EXPERIMENTS

We conducted extensive experiments to investigate the

following research questions (RQs):

⚫ RQ 1: How does the proposed DGASN perform in the

CNHHEC problem compared with the baselines?

⚫ RQ 2: How do model variants affect the performance of

DGASN?

⚫ RQ 3: How do the hyper-parameters affect the performance

of DGASN?

A. Experimental Setup

1) Datasets

We adopted three real-world benchmark datasets [16] widely

used for the cross-network classification tasks, including

ACMv9, Citationv1 and DBLPv7. These three datasets

inherently have varied data distributions. Each dataset is

modeled as an undirected citation network, where each node

represents a paper and each edge represents a citation relation

between two papers. The sparse bag-of-words features

extracted from the paper title are utilized as node attributes.

Each paper can have multiple labels, belonging to some of the

following five categories, including “Databases”, “Artificial

Intelligence”, “Computer Vision”, “Information Security”, and

“Networking”, according to the relevant research topics. After

removing self-loops, all edges in a network can be labeled as

either homophilous or heterophilous, depending on the label

agreement between two nodes on each edge. The statistics of

the datasets are shown in Table Ⅱ. Six CNHHEC tasks can be

conducted among the three networks, i.e., C→A, D→A, A→C,

D→ C, A→D, C→D, where A, C, D denote ACMv9,

Citationv1 and DBLPv7 respectively.

2) Baselines

The proposed DGASN was competed against two families of

baselines, including 1) the GNNs designed for link prediction

or noisy edge detection, and 2) the CNNC algorithms.

Graph Neural Networks: VGAE [44] employs a GCN

encoder for node embedding learning. AGE [45] designs an

adaptive encoder to iteratively strengthen the filtered features

for better node embedding learning. Both VGAE and AGE use

an inner product decoder for link prediction. SuperGAT [25]

adopts GAT for node embedding learning and employs a

self-supervised task of link prediction to directly supervise

attention weights to distinguish connected node pairs from

disconnected ones. LAGCN [11] learns node embeddings by

SGC [27] and builds an edge classifier with MLP to classify

edges into positive (homophilous) or negative (heterophilous).

RS-GNN [12] learn an MLP-based link predictor based on

node attributes and leverages the link predictor to down-weight

noisy (heterophilous) edges.

Cross-network Node Classification: CDNE [16], ACDNE

[19], AdaGCN [17], UDAGCN [20] and ASN [18] are

state-of-the-art CNNC algorithms. CDNE employed two SAEs

to learn node embeddings for the source network and the target

network respectively. ACDNE adopts dual feature extractors to

learn self-embeddings and neighbor-embeddings respectively.

TABLE Ⅱ

STATISTICS OF THE REAL-WORLD NETWORKED DATASETS.

Dataset # Nodes # Node Attributes # Node Labels # Edges # Homophilous Edges # Heterophilous Edges # Self-loop Edges

ACMv9 9,360

6,775 5

15,602 13,883 1,673 46

Citationv1 8,935 15,113 13,159 1,939 15

DBLPv7 5,484 8,130 6,666 1,451 13

TABLE Ⅲ

HYPER-PARAMETERS OF DGASN ON DIFFERENT TASKS.

Task # GAT Layers: 𝐿 # Attention Heads: 𝐾 # Embedding Dimensions of Each Head: 𝕕 Weight of ℒ𝑛: 𝜂 Weight of ℒ𝑎: 𝜉 Weight Decay

C→A 8 8 64 1 1e-1 1e-3

D→A 3 8 64 1e-2 1e-1 1e-3

A→C 7 8 64 1 1e-3 5e-4

D→C 8 8 32 1 1e-4 1e-3

A→D 8 8 64 1 1e-2 1e-3

C→D 7 8 64 1 1e-1 5e-4

AdaGCN, UDAGCN and ASN utilize GCN or GCN variants to

learn node embeddings. To mitigate domain discrepancy,

CDNE utilizes MMD-based domain adaptation [35]. AdaGCN

adopts the Wasserstein distance guided adversarial domain

adaptation [36]. UDAGCN, ACDNE and ASN employ the

GRL-based adversarial domain adaptation [26].

It is worth noting that the GNN baselines [11, 12, 25, 44, 45]

were designed for a single-network scenario. To tailor them to

CNHHEC, we integrated the source and target networks into a

single large network with the first |𝒱𝑠| nodes from the source

and the last |𝒱𝑡| nodes from the target, and then employed the

single network as the input network to the GNNs to learn node

embeddings. While for the CNNC baselines [17, 19, 20]

inherently developed for cross-network scenario, the node

embeddings across networks can be learned directly. Then, for

all the GNN and CNNC baselines, the edge embeddings were

constructed based on the embeddings of two nodes on each

edge, by adopting the same operator in Eq. (7) as the proposed

DGASN. Next, given the edge embeddings as the input, an

MLP (with the same setting of edge classifier 𝑓𝑧 in DGASN)

was adopted to build an edge classifier to train on the source

labeled edges and then predict the target edge labels.

However, it is infeasible to compare the proposed DGASN

with the early cross-network edge classification algorithms

[38-42], since the definitions of edge features and edge labels

in such works are totally different from ours.

3) Implementation Details

The proposed DGASN1 was implemented in PyTorch 1.10.2

[46] and Deep Graph Library (DGL) 0.8.2 [47]. DGASN was

trained by the Adam optimizer. Following [26], the learning

rate was decayed as 𝜇𝑝 =
𝜇0

(1+10𝑝)0.75
 , where the initial learning

rate 𝜇0 was set to 0.001, the training progress 𝑝 was linearly

1 Our code is released at https://github.com/Qqqq-shao/DGASN.

TABLE Ⅳ
AUC AND AP OF THE CNHHEC TASKS WITH THE CONCATENATE OPERATOR TO CONSTRUCT EDGE EMBEDDINGS. THE HIGHEST AUC AND AP AMONG ALL

COMPARING ALGORITHMS ARE SHOWN IN BOLDFACE. (THE NUMBERS IN PARENTHESES ARE THE STANDARD DEVIATIONS OVER 5 RANDOM INITIALIZATIONS)

Task
Metrics

(%)

Graph Neural Networks Cross-network Node Classification DGASN

(Ours) VGAE AGE SuperGAT LAGCN RS-GNN CDNE ACDNE ASN UDAGCN AdaGCN

A→C

AUC
50.5

(0.1)

64.8

(0.6)

59.3

(2.9)

65.8

(0.9)

67.7

(0.7)

59.6

(0.2)

68.0

(1.8)

69.2

(3.2)

68.8

(3.8)

65.0

(4.1)

76.8

(0.4)

AP
13.6

(0.0)

22.8

(0.3)

16.8

(1.5)

21.1

(0.6)

21.8

(0.6)

18.2

(0.1)

25.1

(0.8)

23.1

(1.9)

24.9

(2.8)

23.1

(3.1)

30.9

(0.4)

A→D

AUC
51.1

(0.1)

55.2

(0.9)

55.4

(1.5)

57.7

(1.3)

63.5

(1.6)

55.0

(0.1)

60.04

(1.1)

58.9

(1.6)

63.8

(1.2)

58.4

(3.1)

67.5

(1.6)

AP
19.3

(0.0)

22.9

(0.3)

20.9

(0.9)

21.9

(1.2)

26.4

(1.6)

20.7

(1.7)

25.0

(1.1)

22.5

(0.9)

28.3

(0.9)

26.0

(1.2)

30.7

(2.2)

C→A

AUC
53.0

(0.1)

62.4

(0.3)

61.2

(1.4)

61.1

(0.9)

62.3

(1.4)

57.8

(0.1)

64.7

(1.0)

63.3

(0.9)

64.8

(1.5)

63.7

(1.4)

70.9

(0.7)

AP
13.2

(0.1)

15.1

(0.4)

15.2

(0.5)

14.2

(0.5)

15.9

(0.6)

13.7

(0.1)

18.1

(0.8)

15.5

(0.5)

16.7

(1.1)

17.9

(0.8)

23.8

(0.4)

C→D

AUC
56.2

(0.0)

60.9

(0.7)

57.6

(3.1)

52.9

(1.3)

60.6

(0.7)

58.4

(0.2)

61.8

(0.7)

64.1

(0.2)

66.1

(0.5)

62.0

(3.4)

66.1

(0.6)

AP
20.8

(0.0)

23.8

(0.5)

21.9

(1.5)

19.0

(0.4)

24.4

(0.3)

23.1

(0.3)

26.5

(0.8)

25.5

(0.7)

28.6

(0.9)

27.7

(4.2)

29.6

(0.7)

D→A

AUC
53.3

(0.1)

56.0

(1.4)

56.6

(2.3)

55.3

(1.2)

57.3

(0.4)

55.0

(0.5)

57.1

(0.4)

43.1

(2.1)

59.6

(0.5)

57.4

(2.7)

65.9

(0.4)

AP
13.0

(0.0)

13.4

(0.5)

13.6

(0.7)

12.3

(0.4)

13.7

(0.3)

13.1

(0.3)

15.0

(0.2)

9.3

(0.3)

15.2

(0.8)

14.7

(0.9)

18.0

(0.2)

D→C

AUC
54.8

(0.0)

67.1

(0.6)

58.8

(2.7)

60.1

(1.1)

63.4

(1.8)

60.0

(0.5)

66.0

(1.5)

54.3

(7.4)

60.1

(4.5)

64.0

(7.0)

73.1

(0.5)

AP
15.5

(0.0)

21.5

(0.7)

16.8

(1.4)

16.3

(0.6)

19.5

(1.2)

17.3

(0.2)

22.3

(0.9)

16.1

(2.4)

17.7

(2.1)

23.1

(4.0)

26.2

(0.8)

Average
AUC 53.2 61.1 58.2 58.8 62.5 57.6 62.9 58.8 63.9 61.8 70.1

AP 15.9 19.9 17.5 17.5 20.3 17.7 22.0 18.7 21.9 22.1 26.5

TABLE Ⅴ

AUC AND AP OF CNHHEC WITH DIFFERENT OPERATORS TO CONSTRUCT EDGE EMBEDDINGS ON THE EXAMPLE TASK A→C. FOR EACH OPERATOR, THE HIGHEST

AUC AND AP AMONG ALL COMPARING ALGORITHMS ARE SHOWN IN BOLDFACE.

Operator
Metrics

(%)
VGAE AGE SuperGAT LAGCN RS-GNN CDNE ACDNE ASN UDAGCN AdaGCN DGASN

Concatenate
AUC 50.5 64.8 59.3 65.8 67.7 59.6 68.0 69.2 68.8 65.0 76.8

AP 13.6 22.8 16.8 21.1 21.8 18.2 25.1 23.1 24.9 23.1 30.9

Average
AUC 49.7 66.2 60.9 65.3 67.3 61.9 68.0 69.2 64.8 64.7 72.4

AP 12.6 24.6 18.2 20.9 20.8 19.7 26.2 22.9 21.2 20.9 25.0

Hadamard
AUC 53.5 67.0 46.5 61.6 67.1 54.2 69.5 66.8 64.4 64.4 52.7

AP 15.0 24.1 12.1 20.5 21.5 16.4 26.3 21.3 21.9 21.3 16.4

L1
AUC 53.3 62.8 45.6 64.6 59.0 54.2 61.9 60.8 54.8 64.1 68.4

AP 14.4 19.6 11.6 20.8 18.6 15.2 20.5 18.8 17.2 23.4 27.2

L2
AUC 53.4 59.8 54.1 60.6 57.3 55.0 60.9 60.7 54.3 61.3 53.9

AP 14.3 18.5 15.2 17.8 17.6 15.7 19.9 18.6 16.3 21.5 14.8

increased from 0 to 1, and the domain adaptation weight 𝜆 was

progressively increased from 0 to 0.1 as (
2

1+exp (−10𝑝)
− 1) ×

0.1 . Both node classifier 𝑓𝑦 and edge classifier 𝑓𝑧 were

constructed by an MLP with one hidden layer, with the number

of hidden dimensions as 32 and 128 respectively. The domain

classifier 𝑓𝑑 is constructed by an MLP with two hidden layers,

and the hidden dimensions were set to 128 and 32 at the first

and second hidden layers respectively. The cost-sensitive

parameter 𝛾 in Eq. (11) was set to 5. The other

hyper-parameters, including the number of GAT layers 𝐿, the

number of attention heads in the GAT encoder 𝐾, the number

of embedding dimensions of each attention head 𝕕, the weights

of node classification loss 𝜂 and supervised attention loss 𝜉 ,

and the weight decay to prevent over-fitting, are specified for

each task in Table Ⅲ.

Following the literatures on link prediction or binary edge

classification [43, 45], we adopted two common metrics, i.e.,

the Area Under the ROC Curve (AUC) and Average Precision

(AP) to evaluate the performance of homophilous and

heterophilous edge classification on the target network. Each

comparing method was repeated five times with different

random initializations, and the averaged AUC and AP scores

are reported in Table Ⅳ.

B. Performance Comparison (RQ1)

From Table Ⅳ, we have three observations as follows:

Firstly, the proposed DGASN consistently outperforms all

baselines by a large margin on six tasks. On average, DGASN

improves over the second-best method, i.e., UDAGCN by an

absolute 6.2% and 4.6% in terms of AUC and AP.

Secondly, one can observe that the GNNs fail to achieve

satisfactory performance in CNHHEC. This is because AGE,

VGAE and SuperGAT are inherently developed for link

prediction rather than homophilous and heterophilous edge

classification. Similar to the proposed DGASN, SuperGAT

also applies direct supervision on graph attention learning.

However, SuperGAT guides the attention weights to

distinguish neighbors from non-neighbors, while our DGASN

guides the attention weights to distinguish homophilous

neighbors from heterophilous neighbors. In addition, although

LAGCN and RS-GNN employ a link predictor to discriminate

homophilous edges from heterophilous edges, they are

inherently designed for a single-network scenario without

considering the domain discrepancy across networks. Thus,

they would fail to learn network-invariant embeddings to

address the cross-network edge classification problem.

Thirdly, the state-of-the-art CNNC methods also fail to

succeed in the CNHHEC problem. This might be due to two

factors. On one hand, ACDNE, ASN, UDAGCN and AdaGCN

all utilize the GNNs with fixed edge weights for node

embedding learning, which fail to distinguish the neighbors

connected by homophilous edges from those connected by

heterophilous edges. While the proposed DGASN employs

multi-head GAT to learn adaptive edge weights during

neighborhood aggregation and further applies direct

supervision on graph attention learning, which can effectively

alleviate the negative effect of heterophilous edges during

neighborhood aggregation, and consequently yielding more

label-discriminative node and edge embeddings to distinguish

homophilous edges from heterophilous edges. On the other

hand, although the CNNC baselines can effectively reduce

domain discrepancy to learn network-invariant node

embeddings, they do not learn node embeddings and edge

embeddings jointly, thus, they fail to guarantee

network-invariant edge embeddings. While a key design of the

proposed DGASN is to jointly train node embeddings and edge

embeddings in an end-to-end manner, thus, yielding

label-discriminative and network-invariant edge embeddings to

effectively address the CNHHEC problem.

Next, we adopt different operators in Eq. (7) to construct

different types of edge embeddings. As shown in Table Ⅴ, the

proposed DGASN achieves the best performance among all

methods when the edge embeddings are constructed by the

concatenate, average and L1 operators. In addition, ACDNE

outperforms other methods when the Hadamard operator is

adopted, AdaGCN performs the best when the L2 operator is

employed. Besides, one can see that most methods yield their

best results when the concatenate operator is adopted to

construct edge embeddings.

C. Ablation Study (RQ2)

Next, we conduct extensive ablation studies to investigate

the contribution of each loss in the proposed DGASN. Firstly,

as shown in in Table Ⅵ, the model variants without either node

classification loss or edge classification loss would perform

significantly worse than DGASN. This reflects that it is indeed

necessary to jointly train node embeddings and edge

embeddings supervised by the node classification and edge

classification losses together. On one hand, the node

classification loss guides label-discriminative node

embeddings, which is essential to distinguish heterophilous

edges from homophilous edges. On the other hand, the edge

classification loss directly guides label-discriminative edge

embeddings, note that the edge embeddings are constructed

Fig. 6. Distributions of the source and target attention edge weights on the

representative task C→D, when direct attention supervision is applied on the

labeled source network or not (note that direct attention supervision is never
applied on the unlabeled target network).

(a) Source attention weights without

direct supervision

(b) Source attention weights with

direct supervision

(c) Target attention weights without

direct supervision on source

(d) Target attention weights with

direct supervision on source

based on node embeddings, thus this in turn yields more

label-discriminative node embeddings. In addition, without

domain classification loss significantly degenerates the

performance of DGASN. This reflects that reducing domain

discrepancy is essential for CNHHEC.

Moreover, as shown in Table Ⅵ, without supervised

attention loss would lead to significantly lower AUC and AP

scores on all tasks. In addition, as shown in Fig. 6(b), with the

supervised attention loss on the source network, the source

homophilous edges would have larger attention weights than

the source heterophilous edges. While without direct attention

supervision on the source network, some source homophilous

edges even have smaller attention weights than the source

heterophilous edges, as shown in Fig. 6(a). Note that in

DGASN, we only apply supervised attention loss on the fully

labeled source network based on the observed source edge

labels, while such supervised attention loss cannot be directly

applied to the unlabeled target network. However, as shown in

Fig. 6(d), with direct attention supervision on the source

network, then for the unlabeled target network even without

direct attention supervision, most target homophilous edges

still possess larger attention weights than the target

heterophilous edges. This is because by employing adversarial

domain adaptation, the network-invariant edge embeddings can

be learned by DGASN, i.e., the target network can have similar

distributions of edge embeddings with that of the source

network. The results on Fig. 6 and Table Ⅵ consistently verify

the effectiveness of direct supervision on graph attention

learning on discriminating homophilous edges from

heterophilous edges across networks.

D. Parameter Sensitivity (RQ3)

 Next, we study the sensitivity of DGASN to the

hyper-parameters 𝐾, 𝐿, 𝕕, 𝜉, 𝜂, 𝛾 on the representative task C

→A.

The hyper-parameter K represents the number of attention

heads. As shown in Fig. 7(a), K=8 improves on K=1 by a large

margin in terms of AUC and AP. This reflects that the

multi-head attention mechanism is indeed beneficial for

learning robust embeddings. While too many heads (i.e. K=16)

would significantly degenerate the performance. Such

performance drop might be due to two folds. On one hand,

since different attention heads utilize unshared learnable

parameters, too many heads would induce a lot of learnable

parameters for attention learning, which increases the learning

difficulty and easily causes over-fitting. On the other hand, in

multi-head GAT, the final node embedding vector is generated

by concatenating the embeddings learned by multiple heads

with the dimension of 𝐾𝕕(𝑙). Thus, a large number of heads 𝐾

results in too large dimensions for both node embeddings and

edge embeddings, which again increases the difficulty for

model learning.

The hyper-parameter 𝐿 denotes the number of GAT layers.

As shown in Fig. 7(b), DGASN performs better by increasing

the depth of GAT when 𝐿 ≤ 8. Note that each GAT layer only

TABLE Ⅵ
AUC AND AP OF DGASN VARIANTS. THE HIGHEST AUC AND AP AMONG ALL MODEL VARIANTS ARE SHOWN IN BOLDFACE.

Model Variants
 Metrics

(%)
A→C A→D C→A C→D D→A D→C

DGASN
AUC 76.8 67.5 70.9 66.1 65.9 73.1

AP 30.9 30.7 23.8 29.6 18.0 26.2

w/o Node Classification Loss
AUC 68.3 59.3 68.0 60.3 66.1 57.5

AP 24.5 24.5 19.3 21.6 17.9 13.8

w/o Edge Classification Loss
AUC 75.0 65.1 69.7 63.1 50 71.6

AP 29.8 30.3 22.1 27.4 10.8 24.0

w/o Domain Classification Loss
AUC 70.7 67.1 64.4 57.2 62.2 58.8

AP 25.3 29.1 17.9 24.6 17.7 20.4

w/o Supervised Attention Loss
AUC 76.2 65.8 68.3 64.3 64.7 72.9

AP 30.3 30.0 21.0 28.4 16.8 25.9

Fig. 7. Parameter sensitivity of DGASN on the representative task C→A.

4

20

22

24

1 3 5 7 10

A
P

Value of

16

20

24

1 2 4 8 16

A
P

Value of K

16

20

24

1 2 3 4 5 6 7 8 9

A
P

Value of L

20

22

24

0.0001 0.001 0.01 0.1 1

A
P

Value of

16

20

24

0.001 0.01 0.1 1 10

A
P

Value of

66

69

72

1 2 4 8 16

A
U

C

Value of K

68

70

72

0.0001 0.001 0.01 0.1 1

A
U

C

Value of

64

68

72

0.001 0.01 0.1 1 10

A
U

C

Value of

60

64

68

72

1 2 3 4 5 6 7 8 9

A
U

C

Value of L

66

69

72

8 16 32 64 128

A
U

C

Value of

18

21

24

8 16 32 64 128

A
P

Value of

68

70

72

1 3 5 7 10

A
U

C

Value of

(a) # Attention heads: K

(b) # GAT layers: L

(c) # Embedding dimensions of each head:

(d) Weight of supervised attention loss:

(f) Cost-sensitive parameter:

(e) Weight of node classification loss:

leverages the neighborhood information from one-hop

neighbors. To aggregate the information from 𝐿-hop neighbors,

it is required to stack 𝐿 layers. It has been widely

acknowledged that leveraging the information from high-order

neighborhood is beneficial for node classification [16, 19, 20].

Such label-discriminative node embeddings to effectively

separate different node classes can contribute to also

label-discriminative edge embeddings to discriminate

homophilous edges from heterophilous edges. However,

stacking too many GNN layers (i.e. 𝐿=9) has been proven to

easily cause over-smoothing [13, 48], i.e., making the node

embeddings of different classes indistinguishable. Such

over-smoothed node embeddings lead to indistinguishable edge

embeddings between homophilous and heterophilous edges,

consequently degrading the CNHHEC performance.

The hyper-parameter 𝕕 is the number of embedding

dimensions of each attention head. As shown in Fig. 7(c), both

higher AUC and AP can be obtained, as 𝕕 increases when 𝕕 ∈
{8,16,32,64}. While when 𝕕 is further increased to 128, both

AUC and AP exhibit a decreasing trend. Such performance

degradation might be because too large embedding dimensions

of node and edge embeddings would increase the number of

learnable parameters and yield high difficulty in model

learning.

The hyper-parameters 𝜉 and 𝜂 are the weight of supervised

attention loss and node classification loss, respectively. As

shown in Fig. 7(d) and 7(e), the performance of DGASN is

sensitive to the values of 𝜉 and 𝜂 . Specifically, 𝜉 = 0.1 and

𝜂 = 1 yield the best results on the task C→A.

 The hyper-parameter 𝛾 denotes the ratio of the penalty on

the error of attention learning for heterophilous edges over that

of homophilous edges. Specifically, 𝛾 > 1 means imposing

larger penalty on the error of the heterophilous edges. As shown

in Fig. 7(f), DGASN performs the best when 𝛾 = 5. In addition,

𝛾 > 1 all yields superior results than 𝛾 = 1. This is because for

the homophilic graphs studied in our work, the number of

heterophilous edges is much smaller than that of homophilous

edges, making the supervised attention learning bias towards

the homophilous edges. Setting 𝛾 > 1 makes the supervised

attention learning focus more on the scarce heterophilous edges,

which consequently yields better discrimination between

heterophilous and homophilous edges.

V. CONCLUSION

In this work, we make the pioneering attempt to study a

novel CNHHEC problem. A novel framework named DGASN

is proposed to effectively tackle the CNHHEC problem.

DGASN adopts multi-head GAT as the GNN encoder, and

employs a joint training strategy to train node embeddings and

edge embeddings together, thus yielding informative

embeddings to distinguish homophilous edges from

heterophilous edges. In addition, in original GAT, the

supervision on graph attention weights is limited and indirect.

To improve the expressive power of graph attention weights in

GAT, DGASN proposes to apply direct supervision on source

attention weights, according to the observed edge labels in the

source network. As a result, lower attention weights would be

assigned to heterophilous edges so as to alleviate negative

effect of the inter-class edges on neighborhood aggregation and

yield more label-discriminative embeddings to separate nodes

from different classes. Besides, DGASN employs the

adversarial domain adaptation technique to learn

network-invariant edge embeddings to facilitate knowledge

transfer across networks. Extensive experiments on benchmark

datasets demonstrate that the proposed DGASN can

consistently gain superior results compared to the

state-of-the-art GNNs and CNNC methods.

There are several directions for future research. Firstly, the

proposed DGASN only aims to detect whether an existing edge

in the target network is homophilous or heterophilous. It is

interesting to develop new models to predict potential (or

missing) homophilous and heterophilous edges between

disconnected nodes in the target network. Secondly, this work

focuses on the CNHHEC problem across undirected networks,

how to address CNHHEC for directed networks remains an

open challenging problem. Thirdly, recent

single-network-based GNNs [9-12, 14, 15] showed that

updating network topology based on the prediction of label

agreement between node pairs can significantly improve the

node classification performance. Thus, it is promising to make

more exploration to jointly study the CNHHEC and CNNC

problems. More research is needed to figure out how to take

advantage of the predicted edges labels of CNHHEC to

regularize the GNNs and improve the node classification

performance in the target network.

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, "A
Comprehensive Survey on Graph Neural Networks," IEEE Trans. Neural.

Netw. Learn. Syst., vol. 32, no. 1, pp. 4-24, 2020.

[2] T. N. Kipf and M. Welling, "Semi-supervised Classification with Graph
Convolutional Networks," in Proc. ICLR, 2017.

[3] W. Hamilton, Z. Ying, and J. Leskovec, "Inductive Representation

Learning on Large Graphs," in Proc. NeurIPS, 2017, pp. 1024-1034.
[4] X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, "A

Comprehensive Survey of Scene Graphs: Generation and Application,"

IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 1, pp. 1-26, 2021.
[5] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, "Heterogeneous

Graph Neural Networks for Malicious Account Detection," in Proc.

CIKM, 2018, pp. 2077-2085.
[6] C. Gao, X. Wang, X. He, and Y. Li, "Graph Neural Networks for

Recommender System," in Proc. WSDM, 2022, pp. 1623-1625.

[7] X. Shen, K.-S. Choi, and X. Zhou, "Dual Separated Attention-Based
Graph Neural Network," Available at SSRN 4245141.

[8] M. McPherson, L. Smith-Lovin, and J. M. Cook, "Birds of A Feather:

Homophily in Social Networks," Annual Review of Sociology, vol. 27, no.
1, pp. 415-444, 2001.

[9] C. Liu, J. Wu, W. Liu, and W. Hu, "Enhancing Graph Neural Networks by

a High-quality Aggregation of Beneficial Information," Neural Networks,
vol. 142, pp. 20-33, 2021.

[10] O. Stretcu, K. Viswanathan, D. Movshovitz-Attias, E. Platanios, S. Ravi,

and A. Tomkins, "Graph Agreement Models for Semi-supervised
Learning," in Proc. NeurIPS, 2019, pp. 8713-8723.

[11] H. Chen, Y. Xu, F. Huang, Z. Deng, W. Huang, S. Wang, P. He, and Z. Li,

"Label-aware Graph Convolutional Networks," in Proc. CIKM, 2020, pp.
1977-1980.

[12] E. Dai, W. Jin, H. Liu, and S. Wang, "Towards Robust Graph Neural
Networks for Noisy Graphs with Sparse Labels," in Proc. WSDM, 2022,

pp. 181-191.

[13] Q. Li, Z. Han, and X.-M. Wu, "Deeper Insights into Graph Convolutional
Networks for Semi-Supervised Learning," in Proc. AAAI, 2018, pp.

3538-3545.

[14] E. Dai, C. Aggarwal, and S. Wang, "Nrgnn: Learning a Label Noise
Resistant Graph Neural Network on Sparsely And Noisily Labeled

Graphs," in Proc. SIGKDD, 2021, pp. 227-236.

[15] H. Yang, X. Yan, X. Dai, Y. Chen, and J. Cheng, "Self-enhanced GNN:
Improving Graph Neural Networks Using Model Outputs," in Proc.

IJCNN, 2021, pp. 1-8.

[16] X. Shen, Q. Dai, S. Mao, F.-l. Chung, and K.-S. Choi, "Network Together:
Node Classification via Cross network Deep Network Embedding," IEEE

Trans. Neural. Netw. Learn. Syst., vol. 32, no. 5, pp. 1935-1948, 2021.

[17] Q. Dai, X.-M. Wu, J. Xiao, X. Shen, and D. Wang, "Graph Transfer
Learning via Adversarial Domain Adaptation with Graph Convolution,"

IEEE Trans. Knowl. Data Eng., 2022.

[18] X. Zhang, Y. Du, R. Xie, and C. Wang, "Adversarial Separation Network
for Cross-Network Node Classification," in Proc. CIKM, 2021, pp.

2618-2626.

[19] X. Shen, Q. Dai, F.-l. Chung, W. Lu, and K.-S. Choi, "Adversarial Deep
Network Embedding for Cross-network Node Classification," in Proc.

AAAI, 2020, pp. 2991-2999.

[20] M. Wu, S. Pan, C. Zhou, X. Chang, and X. Zhu, "Unsupervised Domain
Adaptive Graph Convolutional Networks," in Proc. WWW, 2020, pp.

1457-1467.

[21] X. Shen, S. Pan, K.-S. Choi, and X. Zhou, "Domain-adaptive Message
Passing Graph Neural Network," Neural Netw., vol. 164, pp. 439-454,

2023.
[22] Y. Mao, J. Sun, and D. Zhou, "Augmenting Knowledge Transfer across

Graphs," in Proc. ICDM, 2022, pp. 1101-1106.

[23] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio, "Graph Attention Networks," in Proc. ICLR, 2018.

[24] G. Wang, R. Ying, J. Huang, and J. Leskovec, "Improving graph attention

networks with large margin-based constraints," in Proc. NeurIPS, 2019.

[25] D. Kim and A. Oh, "How to Find Your Friendly Neighborhood: Graph

Attention Design with Self-supervision," in Proc. ICLR, 2021.

[26] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F.
Laviolette, M. Marchand, and V. Lempitsky, "Domain-adversarial

Training of Neural Networks," J. Mach. Learn. Res., vol. 17, no. 1, pp.

2096-2030, 2016.
[27] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger,

"Simplifying Graph Convolutional Networks," in Proc. ICML, 2019, pp.

6861-6871.
[28] J. Klicpera, A. Bojchevski, and S. Günnemann, "Predict Then Propagate:

Graph Neural Networks Meet Personalized PageRank," in Proc. ICLR,

2019.
[29] Z. Liu, C. Chen, L. Li, J. Zhou, X. Li, L. Song, and Y. Qi, "Geniepath:

Graph Neural Networks with Adaptive Receptive Paths," in Proc. AAAI,

2019, pp. 4424-4431.
[30] J. B. Lee, R. Rossi, and X. Kong, "Graph Classification Using Structural

Attention," in Proc. SIGKDD, 2018, pp. 1666-1674.

[31] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, "Attention-based
Graph Neural Network for Semi-supervised Learning," arXiv preprint

arXiv:1803.03735, 2018.

[32] L. Zhang, X. Chang, J. Liu, M. Luo, Z. Li, L. Yao, and A. Hauptmann,
"TN-ZSTAD: Transferable Network for Zero-Shot Temporal Activity

Detection," IEEE Trans. Pattern Anal. Mach. Intell., pp. 3848-3861,

2022.
[33] M. Li, P.-Y. Huang, X. Chang, J. Hu, Y. Yang, and A. Hauptmann,

"Video Pivoting Unsupervised Multi-modal Machine Translation," IEEE

Trans. Pattern Anal. Mach. Intell., pp. 3918-3932, 2022.
[34] C. Yan, X. Chang, Z. Li, W. Guan, Z. Ge, L. Zhu, and Q. Zheng, "Zeronas:

Differentiable Generative Adversarial Networks Search for Zero-shot

Learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 12, pp.
9733-9740, 2021.

[35] M. Long, J. Wang, G. Ding, J. Sun, and P. S. Yu, "Transfer Feature

Learning with Joint Distribution Adaptation," in Proc. ICCV, 2013, pp.
2200-2207.

[36] J. Shen, Y. Qu, W. Zhang, and Y. Yu, "Wasserstein Distance Guided

Representation Learning for Domain Adaptation," in Proc. AAAI, 2018.
[37] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan,

"Domain Separation Networks," in Proc. NeurIPS, 2016, pp. 343-351.

[38] J. Tang, T. Lou, and J. Kleinberg, "Inferring Social Ties across
Heterogenous Networks," in Proc. WSDM, 2012, pp. 743-752.

[39] J. Tang, T. Lou, J. Kleinberg, and S. Wu, "Transfer Iearning to Infer
Social Ties Across Heterogeneous Networks," ACM Trans. Inf. Syst., vol.

34, no. 2, pp. 1-43, 2016.

[40] G.-J. Qi, C. C. Aggarwal, and T. S. Huang, "Breaking The Barrier to
Transferring Link Information Across Networks," IEEE Trans. Knowl.

Data Eng., vol. 27, no. 7, pp. 1741-1753, 2014.

[41] X. Shen, S. Mao, and F.-l. Chung, "Cross-network Learning with Fuzzy
Labels for Seed Selection and Graph Sparsification in Influence

Maximization," IEEE Trans. Fuzzy Syst., vol. 28, no. 9, pp. 2195-2208,

2020.
[42] X. Shen, F.-l. Chung, and S. Mao, "Leveraging Cross-Network

Information for Graph Sparsification in Influence Maximization," in Proc.

SIGIR, 2017, pp. 801-804.
[43] X. Shen and F.-L. Chung, "Deep Network Embedding for Graph

Representation Learning in Signed Networks," IEEE Trans. Cybern., vol.

50, no. 4, pp. 1556-1568, 2020.
[44] T. N. Kipf and M. Welling, "Variational Graph Auto-encoders," in Proc.

NeurIPS Workshop, 2016.

[45] G. Cui, J. Zhou, C. Yang, and Z. Liu, "Adaptive Graph Encoder for
Attributed Graph Embedding," in Proc. SIGKDD, 2020, pp. 976-985.

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, and L. Antiga, "Pytorch: An Imperative
Style, High-performance Deep Learning Library," Proc. NeurIPS, vol. 32,

2019.

[47] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L.
Yu, and Y. Gai, "Deep graph library: A Graph-centric, Highly-performant

Package for Graph Neural Networks," arXiv preprint arXiv:1909.01315,
2019.

[48] M. Liu, H. Gao, and S. Ji, "Towards Deeper Graph Neural Networks," in

Proc. SIGKDD, 2020, pp. 338-348.

Xiao Shen received the double B.Sc.

degrees in e-commerce engineering from

Beijing University of Posts and

Telecommunications and Queen Mary

University of London in 2012, the M.Phil.

degree in advanced computer science from

University of Cambridge in 2013, and the

Ph.D. degree in computer science from

Hong Kong Polytechnic University, in

2019. She received the Hong Kong PhD Fellowship. She was a

Postdoc Fellow at the Centre for Smart Health, Hong Kong

Polytechnic University between 2019 and 2021. She is now an

Associate Professor with the School of Computer Science and

Technology, Hainan University, China. Her research interests

include graph neural networks, graph contrastive learning, and

cross-network classification. She has published in prestige

international journals and conferences, including IEEE TKDE,

TNNLS, TFS, TCyb, SIGIR, WWW and AAAI.

Mengqiu Shao received the bachelor’s

degree in computer science and technology

from Hefei University of Technology,

Anhui, China, in 2019. She is currently

pursuing the master’s degree in electronic

information with the School of Computer

Science and Technology, Hainan University.

Her research interests include graph neural

networks and cross-network classification.

Shirui Pan (Member, IEEE) received the

Ph.D. degree in information technology

from the University of Technology Sydney,

Ultimo, NSW, Australia. He is a Professor

and an ARC Future Fellow with the School

of Information and Communication

Technology, Griffith University, Australia.

Before joining Griffith in August, 2022, he

was with the Faculty of Information Technology, Monash

University between Feb 2019 and July 2022. His research

interests include data science and AI. He has authored or

coauthored more than 100 research papers in top-tier journals

and conferences, including the TPAMI, TKDE, TNNLS, ICML,

NeurIPS, KDD, AAAI, IJCAI, WWW, CVPR, and ICDM. He

was the recipient of the Best Student Paper Award of IEEE

ICDM 2020. He is recognized as one of the AI 2000

AAAI/IJCAI Most Influential Scholars in Australia, in 2021.

Laurence T. Yang (Fellow, IEEE)

received the B.E. degree in computer

science and technology and the B.Sc.

degree in applied physics both from

Tsinghua University, China, and the Ph.D.

degree in computer science from the

University of Victoria, Canada. He is a

Professor with the School of Computer

Science and Technology, Hainan University, China, and with

the Department of Computer Science, St. Francis Xavier

University, Canada. His research interests include

cyber-physical-social systems, parallel and distributed

computing, embedded and ubiquitous/pervasive computing,

and big data. His research has been supported by the National

Sciences and Engineering Research Council, Canada, and the

Canada Foundation for Innovation.

Xi Zhou received the B.Sc. degree in

Biotechnology from Fudan University in

2008, and the Ph.D. degree in

Bioinformatics from Zhejiang University

in 2013. He was a Research Fellow at the

Centre for Smart Health, Hong Kong

Polytechnic University. He is now an

Assistant Professor with College of

Tropical Crops, Hainan University, China. His research

interests include graph neural networks and protein-protein

interaction prediction.

