
  

Abstract—Graph neural networks (GNNs) have shown great 

ability in modeling graphs, however, their performance would 

significantly degrade when there are noisy edges connecting nodes 

from different classes. To alleviate negative effect of noisy edges 
on neighborhood aggregation, some recent GNNs propose to 

predict the label agreement between node pairs within a single 

network. However, predicting the label agreement of edges across 

different networks has not been investigated yet. Our work makes 

the pioneering attempt to study a novel problem of cross-network 

homophilous and heterophilous edge classification (CNHHEC), 

and proposes a novel domain-adaptive graph attention-supervised 

network (DGASN) to effectively tackle the CNHHEC problem. 

Firstly, DGASN adopts multi-head GAT as the GNN encoder, 

which jointly trains node embeddings and edge embeddings via 

the node classification and edge classification losses. As a result, 

label-discriminative embeddings can be obtained to distinguish 

homophilous edges from heterophilous edges. In addition, 

DGASN applies direct supervision on graph attention learning 

based on the observed edge labels from the source network, thus 

lowering the negative effects of heterophilous edges while 

enlarging the positive effects of homophilous edges during 

neighborhood aggregation. To facilitate knowledge transfer 

across networks, DGASN employs adversarial domain adaptation 

to mitigate domain divergence. Extensive experiments on 

real-world benchmark datasets demonstrate that the proposed 

DGASN achieves the state-of-the-art performance in CNHHEC. 

Index Terms—Graph Neural Network, Cross-network Edge 

Classification, Graph Domain Adaptation, Intra-class and 

Inter-class Neighbors 

I. INTRODUCTION 

Graph Neural Networks (GNNs) [1] have made remarkable 

achievements on graph representation learning in various 
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domains, such as social networks [2], protein-protein 

interaction networks [3], scene graphs [4], financial system [5], 

recommendation system [6], and healthcare [7]. The success of 

GNNs relies on a recursive neighborhood aggregation scheme, 

where the embedding of each node is updated by aggregating 

the embeddings of its neighbors. The neighborhood 

aggregation is based on the homophily assumption of networks 

[8] that suggests connected nodes generally have the same 

labels or similar features. With perfect homophily, aggregating 

the information from similar neighbors is indeed helpful for 

learning informative embeddings for various downstream 

tasks.  

However, not all the information aggregated from the 

neighborhood is beneficial [9-12], since the real-world graphs 

usually contain structure noises, i.e., the noisy edges 

connecting nodes of different labels or features. Aggregating 

information through such noisy inter-class edges makes the 

information of different classes get mixed and consequently 

causes the over-smoothing issue [13], i.e., the embeddings of 

nodes from different classes become indistinguishable. Then, 

the performance of GNNs on downstream tasks can 

significantly degrade. To alleviate the negative effect of noisy 

edges, some recent GNNs [9-12, 14, 15] propose to predict the 

label agreement between node pairs, and then utilize the 

predicted output to filter out or down-weight the noisy 

inter-class edges during neighborhood aggregation. However, 

all these work [9-12, 14, 15] are conducted within a single 

network. To the best of our knowledge, predicting noisy edges 
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Fig. 1.  An illustration of the CNHHEC problem. The source network has 

observed node and edge labels, while the target network is completely 

unlabeled. A node can be associated with multiple labels. The edges are labeled 

according to the label agreement between two nodes on each edge.  
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across different networks has not been investigated yet.  

To fill in this gap, in this work, we study a novel problem of 

cross-network homophilous and heterophilous edge 

classification (CNHHEC). Fig. 1 illustrates the CNHHEC 

problem, where each edge is labeled as either homophilous or 

heterophilous, according to the label agreement between two 

nodes on the edge. Specifically, a homophilous edge indicates 

that the two connected nodes share at least one common 

class-label. On the contrary, a heterophilous edge reflects that 

the two connected nodes have totally different class-labels. In 

CNHHEC, we have a fully labeled source network and a 

completely unlabeled target network, where the inherent 

domain discrepancy exists between the two networks. The goal 

is to accurately classify edges in the target network into either 

homophilous or heterophilous, by transferring the knowledge 

from the source network. For example, for cross-domain social 

recommendation, given a mature online social network (OSN) 

where many users have annotated tags indicating their interests, 

and a newly formed OSN where users are without labels, one 

can conduct CNHHEC to transfer the knowledge from the 

mature source network to predict homophilous and 

heterophilous edges in the new target network. Then, based on 

the predicted edge labels, one can recommend new connections 

(i.e. homophilous edges) between users who share similar 

interests, and also filter out noisy existing connections (i.e., 

heterophilous edges) between users with opposite hobbies.  

In recent few years, cross-network node classification 

(CNNC) has gained increasing attention, which aims to transfer 

the knowledge from a fully labeled source network to 

accurately classify nodes in an unlabeled target network. The 

existing CNNC literatures [16-22] adopt a typical paradigm to 

integrate GNNs with domain adaptation to yield 

domain-adaptive GNNs. However, such domain-adaptive 

GNNs only focus on learning network-invariant node 

embeddings to address the downstream node classification task. 

While there is no existing domain-adaptive GNNs aiming to 

tackle the CNHHEC problem. 

To fill in this gap, this work aims to propose the first 

domain-adaptive GNN to address the CNHHEC problem. In 

essence, we need to solve three challenges as follows: 1) Most 

existing GNNs focus on learning node embeddings, while how 

to learn informative edge embeddings to discriminate 

heterophilous edges from homophilous edges is not clear. 2) 

Due to message-passing among neighborhood, GNNs are 

vulnerable to noisy edges that connect nodes from different 

classes. How to alleviate negative effect of noisy heterophilous 

edges on neighborhood aggregation is a key issue we must 

address in the CNHHEC problem. 3) The source and target 

networks inherently have domain discrepancy, which hinders 

the GNN trained on the source to be directly applied to the 

target. How to reduce domain discrepancy across networks to 

learn network-invariant edge embeddings is an important issue 

should be tackled in CNHHEC.  

To address the aforementioned challenges, we propose a 

novel domain-adaptive graph attention-supervised network 

(DGASN). Firstly, a multi-head graph attention network (GAT) 

[23] is adopted as the GNN encoder to learn node embeddings. 

Then, we construct edge embeddings based on the embeddings 

of two nodes on each edge. A key design of DGASN is to 

jointly train node embeddings and edge embeddings via both 

node classification and edge classification losses. As a result, 

not only label-discriminative node embeddings can be learned 

to separate nodes from different classes, but also 

label-discriminative edge embeddings can be learned to 

distinguish homophilous edges from heterophilous edges. 

Secondly, real-world graphs are usually noisy with connections 

between unrelated nodes, directly utilizing the adjacency 

matrix with fixed edge weights for neighborhood aggregation 

would inevitably introduce noises to node embeddings. Thus, 

instead of utilizing fixed edge weights, the proposed DGASN 

adopts GAT to automatically learn adaptive edge weights to 

capture various degree of importance of each neighbor, which 

can alleviate the negative effect of noisy heterophilous edges to 

some extent. However, in original GAT [23], the supervision 

on graph attention weights is limited and indirect [24, 25]. To 

improve the expressive power of graph attention weights, 

DGASN proposes to apply direct supervision on the attention 

weights learned by each GAT layer. Specifically, given the 

observed edge labels in the source network, a supervised 

attention loss is devised to guide the attention weights to be 

smaller for heterophilous edges while be larger for 

homophilous edges. As a result, the noisy heterophilous edges 

with smaller attention weights would have less effect during 

neighborhood aggregation. Thirdly, to learn network-invariant 

edge embeddings, DGASN adopts the representative 

adversarial domain adaptation method [26] to make the GNN 

encoder compete against the domain discriminator in an 

adversarial training manner. The proposed DGASN is trained 

in an end-to-end fashion to yield both label-discriminative and 

network-invariant edge embeddings to effectively address 

CNHHEC.  

The contributions of this work are summarized as follows:  

1) We are the first to formulate and study a novel problem of 

cross-network homophilous and heterophilous edge 

classification.  

2) To effectively tackle CNHHEC, we propose a novel 

framework named DGASN, which jointly trains node 

embeddings and edge embeddings to distinguish heterophilous 

edges from homophilous edges, applies direct supervision on 

graph attention learning to lower negative effect of 

heterophilous edges, and learns network-invariant edge 

embeddings via adversarial domain adaptation.  

3) Extensive experiments and ablation studies on benchmark 

datasets demonstrate the effectiveness of the proposed DGASN 

on the challenging CNHHEC problem.   

II. RELATED WORK 

A. Graph Neural Networks 

The success of GNNs relies on recursive neighborhood 

aggregation, which iteratively updates the embedding of each 

central node by aggregating the embeddings among its 

neighborhood. Graph convolution network (GCN) [2] is the 

most representative GNN, which generalizes convolution 



operation in computer vision to graph data. Inspired by GCN, 

many GNNs [3, 27, 28] have been proposed. Instead of treating 

all neighbors equally, the attention-based GNNs propose to 

learn adaptive attention weights to capture various degree of 

importance of each neighbor to represent the center node. GAT 

[23] is the most representative attention-based GNN, which 

adopts a masked self-attention mechanism to learn adaptive 

edge weights in neighborhood aggregation. Inspired by GAT, 

various attention-based GNNs [29-31] have been proposed. 

However, these attention-based GNNs lack direct supervision 

on the learning of attention weights, which easily causes 

over-fitting and over-smoothing [25], especially when graphs 

are noisy. To remedy this limitation, SuperGAT [25] employs a 

self-supervised task of link prediction to directly supervise 

attention weights. Inspired by SuperGAT, the proposed 

DGASN also applies direct supervision on graph attention 

learning so as to improve the expressive power of attention 

weights. However, our work is inherently different from 

SuperGAT in that instead of supervising the attention weights 

to distinguish connected nodes (i.e. edges) from disconnected 

nodes (i.e. non-edges) within a single network, our DGASN 

supervises the attention weights to distinguish homophilous 

edges from heterophilous edges across different networks with 

distribution shifts.  

Real-world graphs usually contain structure noises, and 

aggregating neighborhood information through such noisy 

inter-class edges would be harmful to the downstream tasks 

[9-12, 14, 15]. To address this, some GNNs propose to predict 

the label agreement between node pairs. LAGCN [11] employs 

a label-aware edge classifier to filter out existing neighbors 

with different labels and add new edges between disconnected 

but the same labeled nodes. GAM [10] proposes an auxiliary 

model to predict the probability of two nodes sharing the same 

label, and used the predicted output to regularize the node 

classification model. EGAI [9] proposes to remove inter-class 

edges so as to achieve a high-quality neighborhood aggregation. 

NRGNN [14] adopts a GNN-based edge predictor to link 

unlabeled nodes with similar labeled nodes. RS-GNN [12] 

employs a link predictor to down-weight noisy edges and 

densify graph by adding new edges that connect nodes with 

high similarity. All these work focus on predicting the label 

agreement between node pairs within a single network. In 

contrast, our work aims to predict the label agreement of edges 

across different networks.  

B. Cross-network Node Classification 

Motivated by the significant achievements of knowledge 

transfer [32-34] in Computer Vision (CV) and Natural 

Language Processing (NLP), recently, a line of work proposes 

to transfer the knowledge across graph-structured data. 

Cross-network node classification (CNNC) [16-22] aims to 

transfer the node classification knowledge from a labeled 

source network to classify unlabeled nodes in a target network.  

CDNE [16] is a pioneering CNNC algorithm, which employs 

two stacked auto-encoders (SAEs) to reconstruct the 

topological proximity matrix of the source and target networks 

respectively. Then, it minimizes MMD and class-conditional 

MMD [35] to learn network-invariant node representations. 

AdaGCN [17] leverages GCN [2] to learn node representations 

and employs the Wasserstein distance guided adversarial 

domain adaptation [36] to mitigate domain discrepancy. 

ACDNE [19] employs dual feature extractors with different 

learnable parameters to separately learn node representations 

from neighbor representations so as to jointly capture 

homophily and heterophily between nodes. UDAGCN [20] 

employs dual GCN to jointly capture local and global 

consistency for neighborhood aggregation. Similar to 

UDAGCN, ASN [18] also employs a dual GCN for graph 

representation learning, and further adopts Domain Separation 

Networks (DSN) [37] to separate domain-private and 

domain-shared representations.  

The most representative adversarial domain adaptation 

method, which inserts a gradient reversal layer (GRL) [26] 

between domain discriminator and generator, has been adopted 

in [18-20] to guide network-invariant node representations.  

Our work is related to the recent CNNC algorithms [16-20], 

since we also integrate GNN with domain adaptation to yield 

domain-adaptive GNN. However, our work is inherently 

different from the CNNC literatures since we study a new 

problem of CNHHEC.  

C. Cross-network Edge Classification 

The cross-network edge classification problem has been 

studied in some early literatures. Tang et al. [38, 39] proposed 

a TranFG model to classify social relationships in a target 

network by borrowing the knowledge from a source network. 

Qi et al. [40] proposed a cross-network link prediction model 

to predict unseen links in the target network by transferring 

the link information from the source network. Shen et al. [41, 

42] proposed a cross-network learning model to predict 

inactive edges for influence maximization in the target 

network by leveraging the knowledge learned from the source 

network.  

Our work is inherently different from the early 

cross-network edge classification literatures [38-42] in three 

aspects. Firstly, the early literatures adopted the feature 

engineering approach to manually define explicit edge 

features based on social theories [38, 39] or topological 

features [40-42]. Instead, our DGASN employs the 

attention-supervised GNN to automatically learn latent edge 

embeddings in an end-to-end manner. Secondly, previous 

cross-network edge classification algorithms adopted the 

early domain adaptation methods, such as re-sampling [40] or 

self-training [41, 42]. While our DGASN adopts more 

powerful adversarial domain adaptation method. Thirdly, the 

definition of edge labels is different between our work and 

previous literatures. Specifically, [38, 39] define edge labels 

as the type of social relationships, [40] defines edge labels as 

links or non-links, [41, 42] defines edge labels as active or 

inactive for influence maximization. In contrast, we define 

edge labels as homophilous or heterophilous, according to the 

label agreement between two connected nodes. 



III. PROPOSED MODEL 

In this section, we firstly formulate the CNHHEC problem, 

and then elaborate on the proposed DGASN. Fig. 2 shows the 

model architecture of DGASN, which contains a multi-head 

GAT encoder, a node classifier, an edge classifier, and a 

domain discriminator. 

A. Problem Definition  

Let 𝒢 = (𝒱, ℰ, 𝑨,𝑿, 𝒀, 𝒛) denote an undirected network with 

a set of nodes 𝒱, a set of undirected edges ℰ, an adjacency 

matrix 𝑨 ∈ ℝ|𝒱|×|𝒱| , a node attribute matrix 𝑿 ∈ ℝ|𝒱|×𝒲 , a 

node label matrix 𝒀 ∈ ℝ|𝒱|×𝒞𝒱 , and an edge label vector 𝒛 ∈

ℝ|ℰ|, where |𝒱|, |ℰ|,𝒲, 𝒞𝒱 denote the number of nodes, edges, 

node attributes, and node label categories in 𝒢  respectively. 

Specifically, if there is an edge connecting 𝑣𝑖  and 𝑣𝑗 , i.e., 

(𝑣𝑖 , 𝑣𝑗) ∈ ℰ , then 𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 1; otherwise, i.e., (𝑣𝑖 , 𝑣𝑗) ∉ ℰ , 

𝐴𝑖𝑗 = 𝐴𝑗𝑖 = 0. 𝑋𝑖𝑘 = 1 if node 𝑣𝑖  is associated with the k-th 

node attribute, otherwise 𝑋𝑖𝑘 = 0 . 𝑌𝑖𝑐 = 1  if node 𝑣𝑖  is 

associated with node label 𝑐, otherwise 𝑌𝑖𝑐 = 0. Note that for 

multi-label node classification, a node can be associated with 

multiple labels. 𝑧(𝑣𝑖,𝑣𝑗)  is the edge label of (𝑣𝑖 , 𝑣𝑗) , where 

𝑧(𝑣𝑖,𝑣𝑗) = 1 if (𝑣𝑖 , 𝑣𝑗) is a homophilous edge and 𝑧(𝑣𝑖,𝑣𝑗) = 0 if 

(𝑣𝑖 , 𝑣𝑗) is a heterophilous edge. Specifically, 𝑧(𝑣𝑖,𝑣𝑗) = 1 if 𝑣𝑖 

and 𝑣𝑗  share at least one common node label, i.e., ∃𝑐 ∈

{1,2,⋯ , 𝒞𝒱}, 𝑌𝑖𝑐 = 𝑌𝑗𝑐 = 1. On the contrary, if 𝑣𝑖 and 𝑣𝑗 have 

totally different node labels, then 𝑧(𝑣𝑖,𝑣𝑗) = 0. 

In the CNHHEC problem, we have a fully labeled source 

network 𝒢𝑠 = (𝒱𝑠, ℰ𝑠 , 𝑨𝑠, 𝑿𝑠 , 𝒀𝑠, 𝒛𝑠)  where all nodes and 

edges have observed labels, and a completely unlabeled target 

network 𝒢𝑡 = (𝒱𝑡 , ℰ𝑡 , 𝑨𝑡 , 𝑿𝑡) where all nodes and edges do not 

have labels. Note that 𝒢𝑠 and 𝒢𝑡 have different distributions of 

network topology and node attributes, while 𝒢𝑠 and 𝒢𝑡  share 

the common label space. The goal of CNHHEC is to take 

advantage of the fully labeled source data and unlabeled target 

data to accurately predict edge labels of 𝒢𝑡 in an end-to-end 

manner. For clarity, the frequently used notations are 

summarized in Table I. 

B. Joint Training of Node and Edge Embeddings 

The GCN-like models [2, 3, 27, 28] are vulnerable to noisy 

inter-class edges, since all neighbors are treated equally with 

the fixed edge weights during neighborhood aggregation. 

While GAT [23] can alleviate negative effects of noisy edges, 

by automatically assigning adaptive attention edge weights to 

different neighbors to reflect their important degree to the target 

node. Thus, in the proposed DGASN, we opt for GAT as the 

GNN encoder for node embedding learning.  

1) Node Embeddings and Node Classification 

Each 𝑙-th GAT layer learns the node embedding of 𝑣𝑖  by 

adaptively aggregating the embeddings of itself and its 

neighbors at previous layer and then applies an ELU nonlinear 

activation function, which is expressed as: 

 𝒉𝑖
(𝑙)

= ELU(∑ �̂�(𝑣𝑖,𝑣𝑗)
(𝑙)

𝑗∈𝒩𝑖∪{𝑖}
𝑾(𝑙)𝒉𝑗

(𝑙−1)
) , ∀1 ≤ 𝑙 ≤ 𝐿  (1) 

where 𝒉𝑖
(𝑙)

∈ ℝ𝕕(𝑙) is the node embedding of 𝑣𝑖 at the 𝑙-th GAT 

layer, 𝕕(𝑙) is the number of embedding dimensions at the 𝑙-th 

TABLE I 
FREQUENTLY USED NOTATIONS. 

Notations Descriptions 

𝒢 A network  

𝒢𝑠, 𝒢𝑡 Source network and target network 

|𝒱|, |ℰ| Number of nodes and edges in 𝒢 

𝒲 Number of node attributes in 𝒢 

𝑣𝑖 i-th node in 𝒢  

𝒙𝑖 Node attribute vector of 𝑣𝑖 

𝒚𝑖 Node label vector of 𝑣𝑖 

𝒉𝑖 Node embedding vector of 𝑣𝑖  

𝕕(𝑙) Node embedding dimensions at l-th GAT layer 

(𝑣𝑖 , 𝑣𝑗) An edge connecting 𝑣𝑖 and 𝑣𝑗  in 𝒢 

𝑧(𝑣𝑖,𝑣𝑗) Edge label of (𝑣𝑖 , 𝑣𝑗) 

𝒆(𝑣𝑖,𝑣𝑗) Edge embedding vector of (𝑣𝑖 , 𝑣𝑗) 

𝛼(𝑣𝑖,𝑣𝑗)
(𝑙)

 Attention edge weight of (𝑣𝑖 , 𝑣𝑗) at l-th GAT layer 

𝐾 Number of attention heads 

𝐿 Number of GAT layers 

𝑓ℎ , 𝑓𝑦, 𝑓𝑧, 𝑓𝑑 
GNN encoder, node classifier, edge classifier and domain 

discriminator  

𝜃ℎ , 𝜃𝑦, 𝜃𝑧, 𝜃𝑑 Learnable parameters of 𝑓ℎ , 𝑓𝑦, 𝑓𝑧, 𝑓𝑑 

 

 
Fig. 2. The model architecture of DGASN. A multi-head GAT is adopted as the GNN encoder to learn node embeddings for both 𝒢 𝑠 and 𝒢𝑡. The supervised 

attention loss is applied on the source attention weights at each layer of GAT, supervised by the observed edge labels in 𝒢𝑠. The node classification loss and edge 

classification loss are guided by the observed node and edge labels in 𝒢𝑠. The domain classification loss is guided by the domain labels of edges.  
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GAT layer, 𝒉𝑖
(0)

= 𝒙𝑖 ∈ ℝ𝒲 is the input node attribute vector 

of 𝑣𝑖, 𝑾
(𝑙) ∈ ℝ𝕕(𝑙)×𝕕(𝑙−1)  is the learnable weight matrix of the 

𝑙 -th layer, and 𝐿  is the number of GAT layers. 𝒩𝑖 =

{𝑗|𝐴𝑖𝑗 = 1} denotes the first-order neighbors of 𝑣𝑖.  

The key idea of GAT is to automatically learn adaptive edge 

weight �̂�(𝑣𝑖,𝑣𝑗)
(𝑙)

 by a self-attention mechanism. Specifically, by 

taking the embeddings of 𝑣𝑖  and 𝑣𝑗  at (𝑙 − 1)-th layer as the 

inputs, the l-th GAT layer learns adaptive edge weight of 

(𝑣𝑖 , 𝑣𝑗), as: 

 𝛼(𝑣𝑖,𝑣𝑗)
(𝑙)

= LeakyReLU (𝓪(𝑙)𝑇[𝑾(𝑙)𝒉𝑖
(𝑙−1)

‖𝑾(𝑙)𝒉𝑗
(𝑙−1)

])  (2) 

where 𝓪(𝑙) ∈ ℝ2𝕕(𝑙) is a learnable vector of the 𝑙-th layer, ·𝑇 is 

the transposition operation, and [∙ ‖ ∙] is the concatenation 

operation. To take network topology into account in graph 

attention learning, a masked attention mechanism is adopted to 

only compute 𝛼(𝑣𝑖,𝑣𝑗)
(𝑙)

 for 𝑗 ∈ 𝒩𝑖 ∪ {𝑖}. In addition, to make the 

attention edge weights in Eq. (2) easily comparable across 

different nodes, 𝛼(𝑣𝑖,𝑣𝑗)
(𝑙)

 is normalized across all choices of  𝑗 via 

the Softmax function, as: 

 �̂�(𝑣𝑖,𝑣𝑗)
(𝑙)

=
exp (𝛼(𝑣𝑖,𝑣𝑗)

(𝑙)
)

∑ exp (𝛼(𝑣𝑖,𝑣𝑘)
(𝑙)

)𝑘∈𝒩𝑖∪{𝑖}

  (3) 

where �̂�(𝑣𝑖,𝑣𝑗)
(𝑙)

 is the relative importance degree of 𝑣𝑗 among the 

neighborhood of 𝑣𝑖 (including 𝑣𝑖 itself) at the 𝑙-th GAT layer. 

To make the self-attention mechanism more stable, we 

employ the multi-head attention mechanism to adopt K 

independent attention heads to learn node embedding of 𝑣𝑖 in 

Eq. (1), and then concatenate the output embeddings of all 

attention heads as the node embedding of 𝑣𝑖. Then, the number 

of node embedding dimensions at the l-th GAT layer would 

become 𝐾𝕕(𝑙).  

For simplicity of notation, we denote the aforementioned 

multi-layer and multi-head GAT encoder as 𝑓ℎ(∙ ; 𝜃ℎ), where 

𝜃ℎ  represents the trainable parameters of node embedding 

learning. In the context of cross-network classification, we 

employ the shared learnable parameters 𝜃ℎ between  𝒢𝑠 and 𝒢𝑡 

to generate the cross-network node embeddings, as: 

 𝑯𝑠 = {𝒉𝑖
𝑠}𝑖=1

|𝒱𝑠|
= 𝑓ℎ(𝑨

𝑠, 𝑿𝑠; 𝜃ℎ)   

 𝑯𝑡 = {𝒉𝑗
𝑡}

𝑗=1

|𝒱𝑡|
= 𝑓ℎ(𝑨

𝑡 , 𝑿𝑡; 𝜃ℎ)  (4) 

where 𝒉𝑖
𝑠 , 𝒉𝑗

𝑡 ∈ ℝ𝐾𝕕(𝐿) are the final node embedding vectors of 

𝑣𝑖
𝑠 and 𝑣𝑗

𝑡  learned by the deepest layer of multi-head GAT.  

Then, a node classifier 𝑓𝑦(∙ ; 𝜃𝑦)  parameterized by 𝜃𝑦 

constructed by a multi-layer perceptron (MLP) is added on the 

final node embedding vector of each node 𝑣𝑖 ∈ 𝒱𝑠 ∪ 𝒱𝑡: 

 �̂�𝑖 = 𝑓𝑦(𝒉𝑖 ; 𝜃𝑦)  (5) 

where �̂�𝑖 ∈ ℝ𝒞𝒱  is the predicted node label vector of 𝑣𝑖  over 

𝒞𝒱  categories. Given the observed node labels in 𝒢𝑠 , the 

sigmoid cross-entropy loss is adopted to define the multi-label 

node classification loss, as: 

 ℒ𝑛 = −
1

|𝒱𝑠|
∑ ∑ (

𝑌𝑖𝑐
𝑠 log �̂�𝑖𝑐

𝑠 +

(1 − 𝑌𝑖𝑐
𝑠) log(1 − �̂�𝑖𝑐

𝑠)
)

𝒞𝒱
𝑐=1𝑣𝑖∈𝒱

𝑠   (6) 

where 𝑌𝑖𝑐
𝑠  is the ground-truth node label of 𝑣𝑖

𝑠, 𝑌𝑖𝑐
𝑠 = 1 if  𝑣𝑖

𝑠 is 

associated with label 𝑐; otherwise, 𝑌𝑖𝑐
𝑠 = 0. �̂�𝑖𝑐

𝑠  is the predicted 

probability of 𝑣𝑖
𝑠  belonging to category 𝑐 . Minimizing ℒ𝑛 

guides label-discriminative node embeddings, which are 

conducive to distinguish homophilous edges (connecting nodes 

of the same label) from heterophilous edges (connecting nodes 

with different labels).  

2) Edge Embeddings and Edge Classification 

Next, we generate the edge embeddings based on the 

embeddings of two nodes on each edge. Five operators can be 

adopted to construct edge embeddings, following [43]: 

Concatenate:  𝒆(𝑣𝑖,𝑣𝑗) = [𝒉𝑖‖𝒉𝑗] 

Hadamard:  𝒆(𝑣𝑖,𝑣𝑗) = 𝒉𝑖 ⊙ 𝒉𝑗  

Average:  𝒆(𝑣𝑖,𝑣𝑗) = (𝒉𝑖 + 𝒉𝑗) ∕ 2 

L1:  𝒆(𝑣𝑖,𝑣𝑗) = |𝒉𝑖 − 𝒉𝑗| 

 L2: 𝒆(𝑣𝑖,𝑣𝑗) = |𝒉𝑖 − 𝒉𝑗|
2
  (7) 

where 𝒆(𝑣𝑖,𝑣𝑗) denotes the edge embedding vector of (𝑣𝑖 , 𝑣𝑗), 

and ⊙ denotes the element-wise Hadamard product operator. 

In the proposed DGASN, we opt for the Concatenate operator 

to construct edge embeddings.  

An edge classifier 𝑓𝑧(∙ ; 𝜃𝑧)  parameterized by 𝜃𝑧 is 

constructed by an MLP. Given the edge embedding 𝒆(𝑣𝑖,𝑣𝑗) as 

the input, the edge classifier outputs: 

 �̂�(𝑣𝑖,𝑣𝑗) = 𝑓𝑧 (𝒆(𝑣𝑖,𝑣𝑗) ; 𝜃𝑧)  (8) 

where �̂�(𝑣𝑖,𝑣𝑗)  is the predicted probability of (𝑣𝑖 , 𝑣𝑗)  to be 

homophilous. Given observed edge labels of 𝒢𝑠 , the edge 

classification loss is defined as:  

 ℒ𝑒 = −
1

|ℰ𝑠|
∑ (

𝑧(𝑣𝑖,𝑣𝑗)
𝑠 log �̂�(𝑣𝑖,𝑣𝑗)

𝑠 +

(1 − 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 ) log (1 − �̂�(𝑣𝑖,𝑣𝑗)

𝑠 )
)(𝑣𝑖,𝑣𝑗)∈ℰ

𝑆   (9) 

where 𝑧(𝑣𝑖,𝑣𝑗)
𝑠  is the ground-truth edge label of (𝑣𝑖 , 𝑣𝑗) ∈ ℰ𝑠 , 

𝑧(𝑣𝑖,𝑣𝑗)
𝑠 = 1 if (𝑣𝑖 , 𝑣𝑗) is homophilous and 𝑧(𝑣𝑖,𝑣𝑗)

𝑠 = 0 if (𝑣𝑖 , 𝑣𝑗) 

is heterophilous. 

Fig. 3 illustrates the joint training process of node and edge 

embeddings in the proposed DGASN, where the node and edge 

embeddings are learned end-to-end by optimizing both node 

classification loss ℒ𝑛 and edge classification loss ℒ𝑒 together. 

 

Fig. 3. An illustration of the joint training of node and edge embeddings via 

optimizing both node classification loss ℒ𝑛 and edge classification loss ℒ𝑒 . 

Edge embedding is constructed based on the embeddings of two nodes on the 

edge. Label-discriminative edge embeddings can be implicitly learned by 

optimizing ℒ𝑛 and explicitly learned by optimizing ℒ𝑒.   
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It is worth noting that the edge embedding 𝒆(𝑣𝑖,𝑣𝑗)  is 

constructed based on the embeddings of two nodes 𝒉𝑖  and 𝒉𝑗 

connected by each edge, via various operators in Eq. (7). On 

one hand, by optimizing the node classification loss ℒ𝑛 , 

label-discriminative node embeddings separating different 

node classes can be learned. Then, a homophilous edge (e.g. 

𝒆(𝑣0,𝑣1) in Fig. 3) connecting two nodes from the same class 

would construct an edge embedding given two similar node 

embeddings as the inputs, whereas, a heterophilous edge (e.g. 

𝒆(𝑣0,𝑣2) in Fig. 3) connecting two nodes from different classes 

would construct an edge embedding given two dissimilar node 

embeddings as the inputs. As a result, label-discriminative edge 

embeddings to distinguish homophilous edges from 

heterophilous edges can be implicitly learned upon such 

label-discriminate node embeddings. On the other hand, by 

directly optimizing the edge classification loss ℒ𝑒 supervised 

by the ground-truth edge labels, label-discriminative edge 

embeddings can be explicitly learned. Since the node and edge 

embeddings are jointly learned end-to-end, such explicitly 

label-discriminative edge embeddings can in turn yield more 

label-discriminative node embeddings. The ablation study in 

Section Ⅳ. C verifies that both node classification loss ℒ𝑛 and 

edge classification loss ℒ𝑒  are indispensable in the proposed 

DGASN to tackle the CNHHEC problem.  

C. Direct Supervision on Graph Attention Learning 

GAT easily causes overfitting in graph attention learning, 

due to the limited and indirect supervision on learnable 

attention parameters [25]. In original GAT [23], the supervision 

on attention weights only comes from the node classification 

loss. In addition, it has been theoretically and empirically 

shown that if there are noisy edges connecting nodes from 

different classes, then by increasing the depth of GAT, the 

over-smoothing issue easily arises, where the embeddings of 

nodes from different classes become indistinguishable [24, 25]. 

The over-smoothing of node embeddings would severely 

impede the identification of heterophilous edges which connect 

nodes from different classes.  

To go beyond the limits of original GAT, the proposed 

DGASN gives more supervision on the learnable parameters of 

graph attention, where the supervised signals come from not 

only the node classification loss, but also the edge classification 

loss, the supervised attention loss and the domain classification 

loss (will be introduced later). Actually, the ideal attention 

mechanism should assign larger weights to the intra-class 

neighbors linked by homophilous edges, while smaller weights 

to the inter-class neighbors linked by heterophilous edges. To 

this end, the proposed DGASN applies direct supervision on 

graph attention learning, according to the observed edge labels 

in 𝒢𝑠. 

Fig. 4 illustrates the idea of direct attention supervision on 

𝒢𝑠 at each l-th GAT layer. Firstly, for each source edge 

(𝑣𝑖 , 𝑣𝑗) ∈ ℰ𝑠, we compute the attention weight by averaging 

over 𝐾  attention heads, i.e., 𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

=
1

𝐾
∑ 𝛼(𝑣𝑖,𝑣𝑗)

𝑠(𝑙)(𝑘)𝐾
𝑘=1 , where 

𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)(𝑘)

 is the unnormalized attention edge weight of (𝑣𝑖 , 𝑣𝑗) in 

Eq. (2) learned by the 𝑘-th head at the l-th GAT layer. In 

addition, note that for an undirected edge (𝑣𝑖 , 𝑣𝑗) , two 

asymmetric attention weights 𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

 and 𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

 are learned by 

GAT, i.e., 𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

≠ 𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

, where 𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

 reflects the 

importance of 𝑣𝑗 to 𝑣𝑖 during the node embedding learning of 

𝑣𝑖 , while 𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

 indicates the importance of 𝑣𝑖  to 𝑣𝑗  when 

learning the node embedding of 𝑣𝑗 . Given the ground-truth 

edge labels in 𝒢𝑠, we devise the supervised attention loss to 

guide larger (lower) asymmetric attention weights on each 

homophilous (heterophilous) edge. Accordingly, the 

supervised attention loss at each l-th GAT layer is defined as:  

ℒ𝑎
(𝑙) = 

−
1

2|ℰ𝑠|
∑

(

  
 

𝑧(𝑣𝑖,𝑣𝑗)
𝑠 (log 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)

𝑠(𝑙)
) + log 𝜎 (𝛼(𝑣𝑗 ,𝑣𝑖)

𝑠(𝑙)
))

+ (1 − 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 )(

log (1 − 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙) ))

+log (1 − 𝜎 (𝛼(𝑣𝑗 ,𝑣𝑖)
𝑠(𝑙) ))

)

)

  
 

(𝑣𝑖,𝑣𝑗)∈ℰ
𝑠  (10) 

where 𝜎 is a sigmoid activation function. Minimizing Eq. (10) 

guides both 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

) and 𝜎 (𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

) to be 1, if (𝑣𝑖 , 𝑣𝑗) is a 

homophilous edge, i.e., 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 = 1 ; in contrast, both 

𝜎 (𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

) and 𝜎 (𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

) would be optimized to 0 for each 

heterophilous edge, i.e., 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 = 0. 

In addition, note that the number of homophilous edges is 

much larger than that of heterophilous edges in networks with 

homophily. Thus, directly minimizing Eq. (10) makes the 

supervised attention learning bias towards the homophilous 

edges. To address this, we incorporate a cost-sensitive 

parameter 𝛾 > 1 to modify Eq. (10) to impose the supervised 

attention learning focus more on the scarce heterophilous edges, 

which is expressed as: 

ℒ𝑎
(𝑙) = 

−
1

2|ℰ𝑠|
∑

(

  
 

𝑧(𝑣𝑖,𝑣𝑗)
𝑠 (log 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)

𝑠(𝑙)
) + log𝜎 (𝛼(𝑣𝑗 ,𝑣𝑖)

𝑠(𝑙)
))

+γ (1 − 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 )(

log (1 − 𝜎 (𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙) ))

+log (1 − 𝜎 (𝛼(𝑣𝑗 ,𝑣𝑖)
𝑠(𝑙) ))

)

)

  
 

(𝑣𝑖,𝑣𝑗)∈ℰ
𝑠 (11) 

 

Fig. 4. An illustration of direct supervision on graph attention learning on 𝒢𝑠 at 

the l-th GAT layer. Firstly, asymmetric attention weights are learned for each 
undirected edge by averaging over multiple attention heads. Then, given the 

ground-truth edge labels of 𝒢𝑠, the supervised attention loss is devised to guide 

larger (lower) asymmetric attention weights for each homophilous 
(heterophilous) edge. 
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By applying Eq. (11) on all the 𝐿  GAT layers, the total 

supervised attention loss is defined as: 

 ℒ𝑎 = ∑ ℒ𝑎
(𝑙)𝐿

𝑙=1   (12) 

Minimizing ℒ𝑎  directly supervises GAT to learn more 

expressive attention weights, i.e., larger weights for 

homophilous edges while smaller weights for heterophilous 

edges. 

D. Adversarial Domain Adaptation 

The source and the target networks inherently have different 

data distributions, which hinders the edge classifier 𝑓𝑧 trained 

on the source to be directly applied to the target. To mitigate the 

domain discrepancy between 𝒢𝑠 and 𝒢𝑡, the proposed DGASN 

employs the adversarial domain adaptation method [26] by 

training the GNN encoder 𝑓ℎ and the domain discriminator 𝑓𝑑 

in an adversarial manner. The domain discriminator 𝑓𝑑(∙ ; 𝜃𝑑) 
parameterized by 𝜃𝑑 is constructed by an MLP, taking the edge 

embedding 𝒆(𝑣𝑖,𝑣𝑗) as the input, it outputs: 

 �̂�(𝑣𝑖,𝑣𝑗) = 𝑓𝑑 (𝒆(𝑣𝑖,𝑣𝑗) ; 𝜃𝑑)  (13) 

where �̂�(𝑣𝑖,𝑣𝑗)
 is the predicted probability of (𝑣𝑖 , 𝑣𝑗)  coming 

from 𝒢𝑡 . Then, given the ground-truth domain labels of all 

edges in 𝒢𝑠 and  𝒢𝑡, the domain classification loss is defined 

as: 

ℒ𝑑 = 

−
1

|ℰ𝑠|+|ℰ𝑡|
∑ (

𝑑(𝑣𝑖,𝑣𝑗) 𝑙𝑜𝑔 �̂�(𝑣𝑖,𝑣𝑗) +

(1 − 𝑑(𝑣𝑖,𝑣𝑗)) 𝑙𝑜𝑔 (1 − �̂�(𝑣𝑖,𝑣𝑗))
)(𝑣𝑖,𝑣𝑗)∈ℰ

𝑠∪ℰ𝑡 (14) 

where 𝑑(𝑣𝑖,𝑣𝑗)
 is the ground-truth domain label of (𝑣𝑖 , 𝑣𝑗) , 

𝑑(𝑣𝑖,𝑣𝑗) = 1 if (𝑣𝑖 , 𝑣𝑗) ∈ ℰ𝑡  and 𝑑(𝑣𝑖,𝑣𝑗) = 0 if (𝑣𝑖 , 𝑣𝑗) ∈ ℰ𝑠.  

In adversarial domain adaptation, the domain discriminator 

𝑓𝑑 and the GNN encoder 𝑓ℎ act as two players in a min-max 

game. On one hand, 𝑚𝑖𝑛
𝜃𝑑 

{ℒ𝑑} guides 𝑓𝑑 to accurately predict 

which network an edge comes from. On the other hand, 

𝑚𝑎𝑥
𝜃ℎ 

{ℒ𝑑} guides 𝑓ℎ  to learn network-invariant edge 

embeddings to deceive 𝑓𝑑 . That is, 𝑓𝑑  and 𝑓ℎ  are competing 

against each other by minimizing and maximizing the domain 

classification loss ℒ𝑑  in an adversarial way. In order to 

simultaneously update the learnable parameters of 𝑓𝑑 and 𝑓ℎ, 

we follow [26] to insert a GRL between 𝑓𝑑  and 𝑓ℎ  during 

back-propagation. Note that the GRL is not associated with any 

learnable parameters and does not perform during 

forward-propagation. However, during back-propagation, as 

shown in Fig. 5, the GRL reverses the partial derivative of the 

domain classification loss ℒ𝑑 w.r.t. the learnable parameters of 

the GNN encoder 𝑓ℎ (i.e. 
𝜕ℒ𝑑

𝜕𝜃ℎ
) by multiplying it by −𝜆, where 

𝜆 > 0 is the weight of the domain classification loss in the 

overall loss of DGASN. That is, after inserting the GRL,  
𝜕ℒ𝑑

𝜕𝜃ℎ
  is 

effectively replaced with −𝜆
𝜕ℒ𝑑

𝜕𝜃ℎ
  during back-propagation. As 

a result, maximizing the domain classification loss ℒ𝑑 w.r.t. the 

GNN encoder 𝑓ℎ  (i.e. 𝑚𝑎𝑥
𝜃ℎ 

{ℒ𝑑}) can be optimized together 

with the minimization of ℒ𝑑 w.r.t. the domain discriminator 𝑓𝑑 

(i.e. 𝑚𝑖𝑛
𝜃𝑑 

{ℒ𝑑}), during each back-propagation. 

E. Model Optimization 

In the proposed DGASN, the GNN encoder 𝑓ℎ , node 

classifier 𝑓𝑦, edge classifier 𝑓𝑧 and domain discriminator 𝑓𝑑 are 

trained end-to-end by optimizing the overall minimax objective 

Algorithm 1: DGASN 

Input: Fully labeled Source network 𝒢𝑠 =
(𝒱𝑠, ℰ𝑠, 𝑨𝑠, 𝑿𝑠 , 𝒀𝑠, 𝒛𝑠) , completely unlabeled target 

network 𝒢𝑡 = (𝒱𝑡 , ℰ𝑡 , 𝑨𝑡 , 𝑿𝑡). 

1 Initialize learnable parameters 𝜃ℎ, 𝜃𝑦, 𝜃𝑧 , 𝜃𝑑; 

2 while not max epoch do: 

3 
Learn cross-network node embeddings {𝒉𝑖

𝑠}𝑖=1
|𝒱𝑠|

 

and {𝒉𝑗
𝑡}

𝑗=1

|𝒱𝑡|
 by GNN encoder 𝑓ℎ  in Eq. (4);   

4 
Compute node classification loss ℒ𝑛  based on 

{(𝒉𝑖
𝑠 , 𝒚𝑖

𝑠)}𝑖=1
|𝒱𝑠|

 in Eq. (6); 

5 

Generate cross-network edge embeddings 

{𝒆(𝑣𝑖,𝑣𝑗)
𝑠 }

(𝑣𝑖,𝑣𝑗)∈ℰ
𝑠
 and {𝒆(𝑣𝑖,𝑣𝑗)

𝑡 }
(𝑣𝑖,𝑣𝑗)∈ℰ

𝑡
 in Eq. (7); 

6 

Compute edge classification loss ℒ𝑒  based on 

{(𝒆(𝑣𝑖,𝑣𝑗)
𝑠 , 𝑧(𝑣𝑖,𝑣𝑗)

𝑠 )}
(𝑣𝑖,𝑣𝑗)∈ℰ

𝑠 
 in Eq. (9); 

7 

Compute supervised attention loss ℒ𝑎  based on 

{{𝛼(𝑣𝑖,𝑣𝑗)
𝑠(𝑙)

}
𝑙=1

𝐿

, {𝛼(𝑣𝑗,𝑣𝑖)
𝑠(𝑙)

}
𝑙=1

𝐿

, 𝑧(𝑣𝑖,𝑣𝑗)
𝑠 }

(𝑣𝑖,𝑣𝑗)∈ℰ
𝑠 

 in Eq. 

(12); 

8 

Compute domain classification loss ℒ𝑑  based on 

{(𝒆(𝑣𝑖,𝑣𝑗)
𝑠 , 𝑑(𝑣𝑖,𝑣𝑗))}(𝑣𝑖,𝑣𝑗)∈ℰ𝑠 

 and 

{(𝒆(𝑣𝑖,𝑣𝑗)
𝑡 , 𝑑(𝑣𝑖,𝑣𝑗))}(𝑣𝑖,𝑣𝑗)∈ℰ𝑡 

 in Eq. (14); 

9 
Backpropagate and update 𝜃ℎ, 𝜃𝑦 , 𝜃𝑧 , 𝜃𝑑  to 

optimize overall loss in Eq. (15); 

10 end while 

11 

Apply optimized parameters 𝜃ℎ
∗  to generate 

cross-network node and edge embeddings in Eq. (4) 

and (7); 

12 
Apply optimized parameters 𝜃𝑧

∗ to predict target edge 

labels in Eq. (8). 

Output: Optimized parameters 𝜃ℎ
∗ , 𝜃𝑦

∗, 𝜃𝑧
∗, 𝜃𝑑

∗ . 

 

 

Fig. 5. An illustration of the adversarial domain adaptation. The domain 

discriminator 𝑓𝑑 and the GNN encoder 𝑓ℎ are trained in an adversarial manner, 

by minimizing and maximizing the domain classification loss ℒ𝑑 respectively. 

A gradient reversal layer (GRL) is inserted between 𝑓𝑑  and 𝑓ℎ  during 

back-propagation to reverse the partial derivative of the domain classification 

loss w.r.t. the GNN encoder (i.e. 
𝜕ℒ𝑑

𝜕𝜃ℎ
) by multiplying it by −𝜆. Then, 𝑚𝑎𝑥

𝜃ℎ 
{ℒ𝑑} 

and 𝑚𝑖𝑛
𝜃𝑑 

{ℒ𝑑} can be simultaneously undated during each back-propagation.  
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function:  

 ℒ = 𝑚𝑖𝑛
𝜃ℎ,𝜃𝑦,𝜃𝑧 

{ℒ𝑒+𝜂ℒ𝑛 + 𝜉ℒ𝑎 + 𝜆𝑚𝑎𝑥
𝜃𝑑 

{−ℒ𝑑}}  (15) 

where 𝜂 , 𝜉  and 𝜆  are all the trade-off hyper-parameters to 

balance the effect of different loss terms.  

Algorithm 1 shows the training process of DGASN. The 

cross-network node embeddings are learned in Line 3, and the 

node classification loss is computed in Line 4. The 

cross-network edge embeddings are generated in Line 5 and the 

edge classification loss is computed in Line 6. The supervised 

attention loss is computed in Line 7. The domain classification 

loss is computed in Line 8. The proposed DGASN is trained 

end-to-end by optimizing the overall objective function in Line 

9. After training convergence or reaching a maximum training 

epoch, the optimized learnable parameters are employed to 

generate cross-network node and edge embeddings in Line 11, 

and then predict the target edge labels in Line 12.  

F. Time Complexity  

The time complexity of the GNN encoder constructed by 

multi-head GAT is 𝑂 (((|𝒱𝑠| + |𝒱𝑡|)𝒲𝕕 + (|ℰ𝑠| +

|ℰ𝑡|)𝕕)𝐾), where 𝕕 is the number of embedding dimensions 

of each head, 𝐾 is the number of attention heads, |𝒱𝑠| and |𝒱𝑡| 
are the number of nodes in 𝒢𝑠  and 𝒢𝑡  respectively, |ℰ𝑠| and 

|ℰ𝑡| are the number of edges in 𝒢𝑠 and 𝒢𝑡 respectively, 𝒲 is 

the number of node attributes. The node classifier, edge 

classifier, and domain discriminator are all constructed as an 

MLP respectively. The time complexity of node classifier is 

linear to the number of nodes, and the time complexity of edge 

classifier and domain discriminator are both linear to the 

number of edges. Thus, the overall time complexity of DGASN 

is linear to number of nodes and edges in 𝒢𝑠 and 𝒢𝑡.  

IV. EXPERIMENTS 

We conducted extensive experiments to investigate the 

following research questions (RQs):  

⚫ RQ 1: How does the proposed DGASN perform in the 

CNHHEC problem compared with the baselines?  

⚫ RQ 2: How do model variants affect the performance of 

DGASN? 

⚫ RQ 3: How do the hyper-parameters affect the performance 

of DGASN? 

A. Experimental Setup 

1) Datasets 

We adopted three real-world benchmark datasets [16] widely 

used for the cross-network classification tasks, including 

ACMv9, Citationv1 and DBLPv7. These three datasets 

inherently have varied data distributions. Each dataset is 

modeled as an undirected citation network, where each node 

represents a paper and each edge represents a citation relation 

between two papers. The sparse bag-of-words features 

extracted from the paper title are utilized as node attributes. 

Each paper can have multiple labels, belonging to some of the 

following five categories, including “Databases”, “Artificial 

Intelligence”, “Computer Vision”, “Information Security”, and 

“Networking”, according to the relevant research topics. After 

removing self-loops, all edges in a network can be labeled as 

either homophilous or heterophilous, depending on the label 

agreement between two nodes on each edge. The statistics of 

the datasets are shown in Table Ⅱ. Six CNHHEC tasks can be 

conducted among the three networks, i.e., C→A, D→A, A→C, 

D→ C, A→D, C→D, where A, C, D denote ACMv9, 

Citationv1 and DBLPv7 respectively. 

2) Baselines 

The proposed DGASN was competed against two families of 

baselines, including 1) the GNNs designed for link prediction 

or noisy edge detection, and 2) the CNNC algorithms.  

Graph Neural Networks: VGAE [44] employs a GCN 

encoder for node embedding learning. AGE [45] designs an 

adaptive encoder to iteratively strengthen the filtered features 

for better node embedding learning. Both VGAE and AGE use 

an inner product decoder for link prediction. SuperGAT [25] 

adopts GAT for node embedding learning and employs a 

self-supervised task of link prediction to directly supervise 

attention weights to distinguish connected node pairs from 

disconnected ones. LAGCN [11] learns node embeddings by 

SGC [27] and builds an edge classifier with MLP to classify 

edges into positive (homophilous) or negative (heterophilous). 

RS-GNN [12] learn an MLP-based link predictor based on 

node attributes and leverages the link predictor to down-weight 

noisy (heterophilous) edges.  

Cross-network Node Classification: CDNE [16], ACDNE 

[19], AdaGCN [17], UDAGCN [20]  and  ASN [18] are 

state-of-the-art CNNC algorithms. CDNE employed two SAEs 

to learn node embeddings for the source network and the target 

network respectively. ACDNE adopts dual feature extractors to 

learn self-embeddings and neighbor-embeddings respectively. 

TABLE Ⅱ 

STATISTICS OF THE REAL-WORLD NETWORKED DATASETS. 

Dataset # Nodes # Node Attributes # Node Labels # Edges # Homophilous Edges # Heterophilous Edges # Self-loop Edges 

ACMv9 9,360 

6,775 5 

15,602 13,883 1,673 46 

Citationv1 8,935 15,113 13,159 1,939 15 

DBLPv7 5,484 8,130 6,666 1,451 13 

TABLE  Ⅲ 

HYPER-PARAMETERS OF DGASN ON DIFFERENT TASKS. 

Task # GAT Layers: 𝐿 # Attention Heads: 𝐾 # Embedding Dimensions of Each Head: 𝕕 Weight of ℒ𝑛: 𝜂 Weight of ℒ𝑎: 𝜉 Weight Decay 

C→A 8 8 64 1 1e-1  1e-3 

D→A 3 8 64  1e-2 1e-1  1e-3 

A→C 7 8 64 1 1e-3 5e-4 

D→C 8 8 32 1 1e-4 1e-3 

A→D 8 8 64 1 1e-2 1e-3 

C→D 7 8 64 1 1e-1 5e-4 

 



AdaGCN, UDAGCN and ASN utilize GCN or GCN variants to 

learn node embeddings. To mitigate domain discrepancy, 

CDNE utilizes MMD-based domain adaptation [35]. AdaGCN 

adopts the Wasserstein distance guided adversarial domain 

adaptation [36]. UDAGCN, ACDNE and ASN employ the 

GRL-based adversarial domain adaptation [26].  

It is worth noting that the GNN baselines [11, 12, 25, 44, 45]  

were designed for a single-network scenario. To tailor them to 

CNHHEC, we integrated the source and target networks into a 

single large network with the first |𝒱𝑠| nodes from the source 

and the last |𝒱𝑡| nodes from the target, and then employed the 

single network as the input network to the GNNs to learn node 

embeddings. While for the CNNC baselines [17, 19, 20] 

inherently developed for cross-network scenario, the node 

embeddings across networks can be learned directly. Then, for 

all the GNN and CNNC baselines, the edge embeddings were 

constructed based on the embeddings of two nodes on each 

edge, by adopting the same operator in Eq. (7) as the proposed 

DGASN. Next, given the edge embeddings as the input, an 

MLP (with the same setting of edge classifier 𝑓𝑧 in DGASN) 

was adopted to build an edge classifier to train on the source 

labeled edges and then predict the target edge labels.  

However, it is infeasible to compare the proposed DGASN 

with the early cross-network edge classification algorithms 

[38-42], since the definitions of edge features and edge labels 

in such works are totally different from ours.  

3) Implementation Details 

The proposed DGASN1 was implemented in PyTorch 1.10.2 

[46]  and Deep Graph Library (DGL) 0.8.2 [47]. DGASN was 

trained by the Adam optimizer. Following [26], the learning 

rate was decayed as 𝜇𝑝 =
𝜇0

(1+10𝑝)0.75
 , where the initial learning 

rate 𝜇0 was set to 0.001, the training progress 𝑝 was linearly 

 
1 Our code is released at https://github.com/Qqqq-shao/DGASN. 

TABLE  Ⅳ 
AUC AND AP OF THE CNHHEC TASKS WITH THE CONCATENATE OPERATOR TO CONSTRUCT EDGE EMBEDDINGS. THE HIGHEST AUC AND AP AMONG ALL 

COMPARING ALGORITHMS ARE SHOWN IN BOLDFACE. (THE NUMBERS IN PARENTHESES ARE THE STANDARD DEVIATIONS OVER 5 RANDOM INITIALIZATIONS) 

Task 
Metrics 

(%) 

Graph Neural Networks Cross-network Node Classification  DGASN 

(Ours) VGAE AGE SuperGAT LAGCN RS-GNN CDNE ACDNE ASN UDAGCN AdaGCN 

A→C 

AUC 
50.5 

(0.1) 

64.8 

(0.6) 

59.3 

(2.9) 

65.8 

(0.9) 

67.7 

(0.7) 

59.6 

(0.2) 

68.0 

(1.8) 

69.2 

(3.2) 

68.8 

(3.8) 

65.0 

(4.1) 

76.8 

(0.4) 

AP 
13.6 

(0.0) 

22.8 

(0.3) 

16.8 

(1.5) 

21.1 

(0.6) 

21.8 

(0.6) 

18.2 

(0.1) 

25.1 

(0.8) 

23.1 

(1.9) 

24.9 

(2.8) 

23.1 

(3.1) 

30.9 

(0.4) 

A→D 

AUC 
51.1 

(0.1) 

55.2 

(0.9) 

55.4 

(1.5) 

57.7 

(1.3) 

63.5 

(1.6) 

55.0 

(0.1) 

60.04 

(1.1) 

58.9 

(1.6) 

63.8 

(1.2) 

58.4 

(3.1) 

67.5 

(1.6) 

AP 
19.3 

(0.0) 

22.9 

(0.3) 

20.9 

(0.9) 

21.9 

(1.2) 

26.4 

(1.6) 

20.7 

(1.7) 

25.0 

(1.1) 

22.5 

(0.9) 

28.3 

(0.9) 

26.0 

(1.2) 

30.7 

(2.2) 

C→A 

AUC 
53.0 

(0.1) 

62.4 

(0.3) 

61.2 

(1.4) 

61.1 

(0.9) 

62.3 

(1.4) 

57.8 

(0.1) 

64.7 

(1.0) 

63.3 

(0.9) 

64.8 

(1.5) 

63.7 

(1.4) 

70.9 

(0.7) 

AP 
13.2 

(0.1) 

15.1 

(0.4) 

15.2 

(0.5) 

14.2 

(0.5) 

15.9 

(0.6) 

13.7 

(0.1) 

18.1 

(0.8) 

15.5 

(0.5) 

16.7 

(1.1) 

17.9 

(0.8) 

23.8 

(0.4) 

C→D 

AUC 
56.2 

(0.0) 

60.9 

(0.7) 

57.6 

(3.1) 

52.9 

(1.3) 

60.6 

(0.7) 

58.4 

(0.2) 

61.8 

(0.7) 

64.1 

(0.2) 

66.1 

(0.5) 

62.0 

(3.4) 

66.1 

(0.6) 

AP 
20.8 

(0.0) 

23.8 

(0.5) 

21.9 

(1.5) 

19.0 

(0.4) 

24.4 

(0.3) 

23.1 

(0.3) 

26.5 

(0.8) 

25.5 

(0.7) 

28.6 

(0.9) 

27.7 

(4.2) 

29.6 

(0.7) 

D→A 

AUC 
53.3 

(0.1) 

56.0 

(1.4) 

56.6 

(2.3) 

55.3 

(1.2) 

57.3 

(0.4) 

55.0 

(0.5) 

57.1 

(0.4) 

43.1 

(2.1) 

59.6 

(0.5) 

57.4 

(2.7) 

65.9 

(0.4) 

AP 
13.0 

(0.0) 

13.4 

(0.5) 

13.6 

(0.7) 

12.3 

(0.4) 

13.7 

(0.3) 

13.1 

(0.3) 

15.0 

(0.2) 

9.3 

(0.3) 

15.2 

(0.8) 

14.7 

(0.9) 

18.0 

(0.2) 

D→C 

AUC 
54.8 

(0.0) 

67.1 

(0.6) 

58.8 

(2.7) 

60.1 

(1.1) 

63.4 

(1.8) 

60.0 

(0.5) 

66.0 

(1.5) 

54.3 

(7.4) 

60.1 

(4.5) 

64.0 

(7.0) 

73.1 

(0.5) 

AP 
15.5 

(0.0) 

21.5 

(0.7) 

16.8 

(1.4) 

16.3 

(0.6) 

19.5 

(1.2) 

17.3 

(0.2) 

22.3 

(0.9) 

16.1 

(2.4) 

17.7 

(2.1) 

23.1 

(4.0) 

26.2 

(0.8) 

Average  
AUC 53.2 61.1 58.2 58.8 62.5 57.6 62.9 58.8 63.9 61.8 70.1 

AP 15.9 19.9 17.5 17.5 20.3 17.7 22.0 18.7 21.9 22.1 26.5 

 

TABLE  Ⅴ 

AUC AND AP OF CNHHEC WITH DIFFERENT OPERATORS TO CONSTRUCT EDGE EMBEDDINGS ON THE EXAMPLE TASK A→C. FOR EACH OPERATOR, THE HIGHEST 

AUC AND AP AMONG ALL COMPARING ALGORITHMS ARE SHOWN IN BOLDFACE. 

Operator 
Metrics 

(%) 
VGAE AGE SuperGAT LAGCN RS-GNN CDNE ACDNE ASN UDAGCN AdaGCN DGASN 

Concatenate 
AUC 50.5 64.8 59.3 65.8 67.7 59.6 68.0 69.2 68.8 65.0 76.8 

AP 13.6 22.8 16.8 21.1 21.8 18.2 25.1 23.1 24.9 23.1 30.9 

Average 
AUC 49.7 66.2 60.9 65.3 67.3 61.9 68.0 69.2 64.8 64.7 72.4 

AP 12.6 24.6 18.2 20.9 20.8 19.7 26.2 22.9 21.2 20.9 25.0 

Hadamard 
AUC 53.5 67.0 46.5 61.6 67.1 54.2 69.5 66.8 64.4 64.4 52.7 

AP 15.0 24.1 12.1 20.5 21.5 16.4 26.3 21.3 21.9 21.3 16.4 

L1 
AUC 53.3 62.8 45.6 64.6 59.0 54.2 61.9 60.8 54.8 64.1 68.4 

AP 14.4 19.6 11.6 20.8 18.6 15.2 20.5 18.8 17.2 23.4 27.2 

L2 
AUC 53.4 59.8 54.1 60.6 57.3 55.0 60.9 60.7 54.3 61.3 53.9 

AP 14.3 18.5 15.2 17.8 17.6 15.7 19.9 18.6 16.3 21.5 14.8 

 



increased from 0 to 1, and the domain adaptation weight 𝜆 was 

progressively increased from 0 to 0.1 as (
2

1+exp (−10𝑝)
− 1) ×

0.1 . Both node classifier 𝑓𝑦  and edge classifier 𝑓𝑧  were 

constructed by an MLP with one hidden layer, with the number 

of hidden dimensions as 32 and 128 respectively. The domain 

classifier 𝑓𝑑 is constructed by an MLP with two hidden layers, 

and the hidden dimensions were set to 128 and 32 at the first 

and second hidden layers respectively. The cost-sensitive 

parameter 𝛾 in Eq. (11) was set to 5. The other 

hyper-parameters, including the number of GAT layers 𝐿, the 

number of attention heads in the GAT encoder 𝐾, the number 

of embedding dimensions of each attention head 𝕕, the weights 

of node classification loss 𝜂 and supervised attention loss 𝜉 , 

and the weight decay to prevent over-fitting, are specified for 

each task in Table Ⅲ. 

Following the literatures on link prediction or binary edge 

classification [43, 45], we adopted  two common metrics, i.e., 

the Area Under the ROC Curve (AUC) and Average Precision 

(AP) to evaluate the performance of homophilous and 

heterophilous edge classification on the target network. Each 

comparing method was repeated five times with different 

random initializations, and the averaged AUC and AP scores 

are reported in Table Ⅳ. 

B. Performance Comparison (RQ1) 

From Table Ⅳ, we have three observations as follows: 

Firstly, the proposed DGASN consistently outperforms all 

baselines by a large margin on six tasks. On average, DGASN 

improves over the second-best method, i.e., UDAGCN by an 

absolute 6.2% and 4.6% in terms of AUC and AP.  

Secondly, one can observe that the GNNs fail to achieve 

satisfactory performance in CNHHEC. This is because AGE, 

VGAE and SuperGAT are inherently developed for link 

prediction rather than homophilous and heterophilous edge 

classification. Similar to the proposed DGASN, SuperGAT 

also applies direct supervision on graph attention learning. 

However, SuperGAT guides the attention weights to 

distinguish neighbors from non-neighbors, while our DGASN 

guides the attention weights to distinguish homophilous 

neighbors from heterophilous neighbors. In addition, although 

LAGCN and RS-GNN employ a link predictor to discriminate 

homophilous edges from heterophilous edges, they are 

inherently designed for a single-network scenario without 

considering the domain discrepancy across networks. Thus, 

they would fail to learn network-invariant embeddings to 

address the cross-network edge classification problem. 

Thirdly, the state-of-the-art CNNC methods also fail to 

succeed in the CNHHEC problem. This might be due to two 

factors. On one hand, ACDNE, ASN, UDAGCN and AdaGCN 

all utilize the GNNs with fixed edge weights for node 

embedding learning, which fail to distinguish the neighbors 

connected by homophilous edges from those connected by 

heterophilous edges. While the proposed DGASN employs 

multi-head GAT to learn adaptive edge weights during 

neighborhood aggregation and further applies direct 

supervision on graph attention learning, which can effectively 

alleviate the negative effect of heterophilous edges during 

neighborhood aggregation, and consequently yielding more 

label-discriminative node and edge embeddings to distinguish 

homophilous edges from heterophilous edges. On the other 

hand, although the CNNC baselines can effectively reduce 

domain discrepancy to learn network-invariant node 

embeddings, they do not learn node embeddings and edge 

embeddings jointly, thus, they fail to guarantee 

network-invariant edge embeddings. While a key design of the 

proposed DGASN is to jointly train node embeddings and edge 

embeddings in an end-to-end manner, thus, yielding 

label-discriminative and network-invariant edge embeddings to 

effectively address the CNHHEC problem.  

Next, we adopt different operators in Eq. (7) to construct 

different types of edge embeddings. As shown in Table Ⅴ, the 

proposed DGASN achieves the best performance among all 

methods when the edge embeddings are constructed by the 

concatenate, average and L1 operators. In addition, ACDNE 

outperforms other methods when the Hadamard operator is 

adopted, AdaGCN performs the best when the L2 operator is 

employed. Besides, one can see that most methods yield their 

best results when the concatenate operator is adopted to 

construct edge embeddings.   

C. Ablation Study (RQ2) 

Next, we conduct extensive ablation studies to investigate 

the contribution of each loss in the proposed DGASN. Firstly, 

as shown in in Table Ⅵ, the model variants without either node 

classification loss or edge classification loss would perform 

significantly worse than DGASN. This reflects that it is indeed 

necessary to jointly train node embeddings and edge 

embeddings supervised by the node classification and edge 

classification losses together. On one hand, the node 

classification loss guides label-discriminative node 

embeddings, which is essential to distinguish heterophilous 

edges from homophilous edges. On the other hand, the edge 

classification loss directly guides label-discriminative edge 

embeddings, note that the edge embeddings are constructed 

 
Fig. 6. Distributions of the source and target attention edge weights on the 

representative task C→D, when direct attention supervision is applied on the 

labeled source network or not (note that direct attention supervision is never 
applied on the unlabeled target network). 

(a) Source attention weights without 

direct supervision

(b) Source attention weights with 

direct supervision

(c) Target attention weights without 

direct supervision on source

(d) Target attention weights with 

direct supervision on source



based on node embeddings, thus this in turn yields more 

label-discriminative node embeddings. In addition, without 

domain classification loss significantly degenerates the 

performance of DGASN. This reflects that reducing domain 

discrepancy is essential for CNHHEC.  

Moreover, as shown in Table Ⅵ, without supervised 

attention loss would lead to significantly lower AUC and AP 

scores on all tasks. In addition, as shown in Fig. 6(b), with the 

supervised attention loss on the source network, the source 

homophilous edges would have larger attention weights than 

the source heterophilous edges. While without direct attention 

supervision on the source network, some source homophilous 

edges even have smaller attention weights than the source 

heterophilous edges, as shown in Fig. 6(a). Note that in 

DGASN, we only apply supervised attention loss on the fully 

labeled source network based on the observed source edge 

labels, while such supervised attention loss cannot be directly 

applied to the unlabeled target network. However, as shown in 

Fig. 6(d), with direct attention supervision on the source 

network, then for the unlabeled target network even without 

direct attention supervision, most target homophilous edges 

still possess larger attention weights than the target 

heterophilous edges. This is because by employing adversarial 

domain adaptation, the network-invariant edge embeddings can 

be learned by DGASN, i.e., the target network can have similar 

distributions of edge embeddings with that of the source 

network. The results on Fig. 6 and Table Ⅵ consistently verify 

the effectiveness of direct supervision on graph attention 

learning on discriminating homophilous edges from 

heterophilous edges across networks.  

D. Parameter Sensitivity (RQ3) 

 Next, we study the sensitivity of DGASN to the 

hyper-parameters 𝐾, 𝐿, 𝕕, 𝜉, 𝜂, 𝛾 on the representative task C

→A. 

The hyper-parameter K represents the number of attention 

heads. As shown in Fig. 7(a), K=8 improves on K=1 by a large 

margin in terms of AUC and AP. This reflects that the 

multi-head attention mechanism is indeed beneficial for 

learning robust embeddings. While too many heads (i.e. K=16) 

would significantly degenerate the performance. Such 

performance drop might be due to two folds. On one hand, 

since different attention heads utilize unshared learnable 

parameters, too many heads would induce a lot of learnable 

parameters for attention learning, which increases the learning 

difficulty and easily causes over-fitting. On the other hand, in 

multi-head GAT, the final node embedding vector is generated 

by concatenating the embeddings learned by multiple heads 

with the dimension of 𝐾𝕕(𝑙). Thus, a large number of heads 𝐾 

results in too large dimensions for both node embeddings and 

edge embeddings, which again increases the difficulty for 

model learning.  

The hyper-parameter 𝐿 denotes the number of GAT layers. 

As shown in Fig. 7(b), DGASN performs better by increasing 

the depth of GAT when 𝐿 ≤ 8. Note that each GAT layer only 

TABLE  Ⅵ 
AUC AND AP OF DGASN VARIANTS. THE HIGHEST AUC AND AP AMONG ALL MODEL VARIANTS ARE SHOWN IN BOLDFACE. 

Model Variants 
 Metrics 

(%) 
A→C A→D C→A C→D D→A D→C 

DGASN 
AUC 76.8 67.5  70.9  66.1  65.9  73.1 

AP 30.9 30.7  23.8  29.6  18.0  26.2  

w/o Node Classification Loss 
AUC 68.3 59.3 68.0  60.3  66.1  57.5  

AP 24.5 24.5  19.3  21.6  17.9  13.8  

w/o Edge Classification Loss 
AUC 75.0 65.1  69.7  63.1 50  71.6  

AP 29.8  30.3  22.1 27.4 10.8  24.0 

w/o Domain Classification Loss 
AUC 70.7  67.1 64.4 57.2  62.2 58.8  

AP 25.3  29.1  17.9 24.6  17.7  20.4  

w/o Supervised Attention Loss 
AUC 76.2 65.8 68.3  64.3  64.7  72.9  

AP 30.3 30.0  21.0  28.4  16.8  25.9  

 

 
Fig. 7. Parameter sensitivity of DGASN on the representative task C→A. 
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leverages the neighborhood information from one-hop 

neighbors. To aggregate the information from 𝐿-hop neighbors, 

it is required to stack 𝐿  layers. It has been widely 

acknowledged that leveraging the information from high-order 

neighborhood is beneficial for node classification [16, 19, 20]. 

Such label-discriminative node embeddings to effectively 

separate different node classes can contribute to also 

label-discriminative edge embeddings to discriminate 

homophilous edges from heterophilous edges. However, 

stacking too many GNN layers (i.e. 𝐿=9) has been proven to 

easily cause over-smoothing [13, 48], i.e., making the node 

embeddings of different classes indistinguishable. Such 

over-smoothed node embeddings lead to indistinguishable edge 

embeddings between homophilous and heterophilous edges, 

consequently degrading the CNHHEC performance.  

The hyper-parameter 𝕕  is the number of embedding 

dimensions of each attention head. As shown in Fig. 7(c), both 

higher AUC and AP can be obtained, as 𝕕 increases when  𝕕 ∈
{8,16,32,64}. While when 𝕕 is further increased to 128, both 

AUC and AP exhibit a decreasing trend. Such performance 

degradation might be because too large embedding dimensions 

of node and edge embeddings would increase the number of 

learnable parameters and yield high difficulty in model 

learning.  

The hyper-parameters 𝜉 and 𝜂 are the weight of supervised 

attention loss and node classification loss, respectively. As 

shown in Fig. 7(d) and 7(e), the performance of DGASN is 

sensitive to the values of 𝜉  and 𝜂 . Specifically, 𝜉 = 0.1 and 

𝜂 = 1 yield the best results on the task C→A.  

 The hyper-parameter 𝛾 denotes the ratio of the penalty on 

the error of attention learning for heterophilous edges over that 

of homophilous edges. Specifically, 𝛾 > 1  means imposing 

larger penalty on the error of the heterophilous edges. As shown 

in Fig. 7(f), DGASN performs the best when 𝛾 = 5. In addition, 

𝛾 > 1 all yields superior results than 𝛾 = 1. This is because for 

the homophilic graphs studied in our work, the number of 

heterophilous edges is much smaller than that of homophilous 

edges, making the supervised attention learning bias towards 

the homophilous edges. Setting 𝛾 > 1  makes the supervised 

attention learning focus more on the scarce heterophilous edges, 

which consequently yields better discrimination between 

heterophilous and homophilous edges.  

V. CONCLUSION 

In this work, we make the pioneering attempt to study a 

novel CNHHEC problem. A novel framework named DGASN 

is proposed to effectively tackle the CNHHEC problem. 

DGASN adopts multi-head GAT as the GNN encoder, and 

employs a joint training strategy to train node embeddings and 

edge embeddings together, thus yielding informative 

embeddings to distinguish homophilous edges from 

heterophilous edges. In addition, in original GAT, the 

supervision on graph attention weights is limited and indirect. 

To improve the expressive power of graph attention weights in 

GAT, DGASN proposes to apply direct supervision on source 

attention weights, according to the observed edge labels in the 

source network. As a result, lower attention weights would be 

assigned to heterophilous edges so as to alleviate negative 

effect of the inter-class edges on neighborhood aggregation and 

yield more label-discriminative embeddings to separate nodes 

from different classes. Besides, DGASN employs the 

adversarial domain adaptation technique to learn 

network-invariant edge embeddings to facilitate knowledge 

transfer across networks. Extensive experiments on benchmark 

datasets demonstrate that the proposed DGASN can 

consistently gain superior results compared to the 

state-of-the-art GNNs and CNNC methods. 

There are several directions for future research. Firstly, the 

proposed DGASN only aims to detect whether an existing edge 

in the target network is homophilous or heterophilous. It is 

interesting to develop new models to predict potential (or 

missing) homophilous and heterophilous edges between 

disconnected nodes in the target network. Secondly, this work 

focuses on the CNHHEC problem across undirected networks, 

how to address CNHHEC for directed networks remains an 

open challenging problem. Thirdly, recent 

single-network-based GNNs [9-12, 14, 15] showed that 

updating network topology based on the prediction of label 

agreement between node pairs can significantly improve the 

node classification performance. Thus, it is promising to make 

more exploration to jointly study the CNHHEC and CNNC 

problems. More research is needed to figure out how to take 

advantage of the predicted edges labels of CNHHEC to 

regularize the GNNs and improve the node classification 

performance in the target network.    
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