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Abstract— Network representation learning or embedding aims
to project the network into a low-dimensional space that can be
devoted to different network tasks. Temporal networks are an
important type of network whose topological structure changes
over time. Compared with methods on static networks, temporal
network embedding (TNE) methods are facing three challenges:
1) it cannot describe the temporal dependence across network
snapshots; 2) the node embedding in the latent space fails to
indicate changes in the network topology; and 3) it cannot avoid
a lot of redundant computation via parameter inheritance on a
series of snapshots. To overcome these problems, we propose a
novel TNE method named temporal network embedding method
based on the VAE framework (TVAE), which is based on
a variational autoencoder (VAE) to capture the evolution of
temporal networks for link prediction. It not only generates
low-dimensional embedding vectors for nodes but also preserves
the dynamic nonlinear features of temporal networks. Through
the combination of a self-attention mechanism and recurrent
neural networks, TVAE can update node representations and
keep the temporal dependence of vectors over time. We utilize
parameter inheritance to keep the new embedding close to the
previous one, rather than explicitly using regularization, and
thus, it is effective for large-scale networks. We evaluate our
model and several baselines on synthetic data sets and real-world
networks. The experimental results demonstrate that TVAE has
superior performance and lower time cost compared with the
baselines.

Index Terms— Link prediction, self-attention mechanism, tem-
poral network embedding (TNE), variational autoencoder (VAE).
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I. INTRODUCTION

AVARIETY of complex systems can be represented
as networks, e.g., protein–protein interaction net-

works [1], social networks [2], information networks [3],
and co-authorship networks [4]. Generally speaking, complex
networks have high-dimensional, isomorphism invariant, and
nonlinear features [5]. Hence, directly using the original
topological structure of the network in machine learning tasks
is inefficient and difficult [6]. Learning latent low-dimensional
representations (embeddings) of network nodes is an important
way in data mining and complex network analysis. Then, net-
work embeddings can be utilized in a variety of applications,
including node classification [7], community detection [8],
[9], link prediction [10], knowledge graphs [11], and rec-
ommendation system [6]. Thus, how to find low-dimensional
embeddings that capture the essential features and properties
of the network is an important and essential challenge.

Recently, various approaches for network embedding have
been developed, including methods based on a random walk,
matrix factorization, and deep learning methods. Random
walk-based methods usually approximate many properties
in the network by obtaining co-occurrence probabilities,
including node centrality and similarity [12]–[14]. Matrix
factorization-based methods usually decompose the adjacency
or the higher order similarity matrix of the network into a
low-dimensional space [15], [16]. Deep learning-based meth-
ods are adopted for capturing the nonlinear structure of the
network [17], [18]. There are also some surveys on the network
embedding in [6] and [19]–[21]. To sum up, these methods
and models are only designed for static networks which do
not undergo structural changes over time.

In the real world, however, the topological structure of
the network is always varying with time, which is referred
to as a temporal network [22]. Compared with static net-
works, temporal networks always present diverse evolution-
ary mechanisms [23], [24], which makes embeddings more
complicated and difficult. For instance, in communication
networks, complex interactions are ubiquitous, which gives
rise to a dramatic change of the topology structure due to
certain events. The temporal network is usually represented
as a sequence of snapshots at different time steps [25], there
are some complex and intrinsic associations and transforma-
tions across the snapshots [26]. Static embedding methods
can only handle these network snapshots separately, and
they cannot discover the dependencies between snapshots as
they ignore historical information. Therefore, these methods
fail to model the evolution of temporal networks and the
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Fig. 1. Three continuous network snapshots and their representation in the
latent space. Different arrows are used to express the three challenges for
the temporal network embedding (TNE) task: 1) the dependence between
consecutive snapshots should be captured into the embeddings; 2) the varying
network structure needs to be reflected and predicted with the embeddings;
and 3) with many consecutive snapshots might be input, the number of model
parameters need be limited for scalability.

prediction performance of temporal networks is not good.
In addition, they are difficult to deal with large-scale networks
due to the independent and repetitive calculations for all the
snapshots.

Although some embedding methods for the temporal or
dynamic networks have been proposed [27]–[29], there are
still several unfathomed challenges in existing researches:
1) Embeddings should effectively characterize and describe
the dependence across the temporal networks. Since the for-
mation of networks in the real world is usually sequential and
organized, a TNE method should sniff out a ligament among
the snapshots and reveal the evolution patterns. 2) Embeddings
should be able to reflect and predict the changing network
structure. In essence, the evolution of temporal networks is
mainly reflected in the birth and death of links between
nodes. Hence, the evolution of temporal networks can be
considered as a generative process, and a temporal embedding
method should appropriately reflect the underlying principle
of network topology development. 3) Redundant calculations
should be avoided in the embedding of temporal networks.
There are usually stable and abrupt changes in temporal
networks; therefore, the embedding vectors of some transitory
snapshots are stable to a certain extent.

As an illustration, Fig. 1 shows a temporal social network,
in which there are three consecutive snapshots. We consider
that the embedding vector and topological structure between
successive snapshots should have certain dependencies. For
example, node V4 has some familiar friends at time t .
We have greater assurance that his friends will maintain
a close relationship with him in the next snapshot. Since
low-dimensional embedding has the ability to describe the
original network, we consider that the evolution of embedding
should reflect the evolution of the network. When one node
in the low-dimensional space is sufficiently similar to some
disconnected nodes, we can infer that they will establish
connections in the next snapshot, e.g., the link between nodes
V3 and V7. Similarly, when one node is far enough from
some neighbors, they will lose connection. The continuous
evolution process determines that the network evolution should
remain stable at short notice. An incremental update is not
only to keep embedding steady but also to reduce superfluous

computation for efficiency. Therefore, one method should
effectively and efficiently model dynamic information and
predict changes in temporal networks.

To cope with these challenges, we try to come up with an
end-to-end TNE method for link prediction. It can generate
the node embeddings at each snapshot, which combines the
generation of links and the dynamic changes of the network
and can be used for link prediction.

To learn the essential features of the temporal network,
we employ variational autoencoder (VAE) [30] to produce the
representations of each snapshot for the prediction of the tem-
poral network. In detail, we deem that the generation of links
in the network follows a nonlinear rule. Accordingly, the node
embedding in the latent space may follow a Gaussian or more
complex distribution. We then reconstruct the topology of the
next network snapshot. Therefore, the temporal embedding
vectors can be generated which reflect the change of network
topology. Furthermore, to overcome the fuzzification of VAE,
we import a self-attention mechanism [31] to guide the embed-
ding toward a more reasonable direction. This is because the
attention mechanism can extract key structural information in
networks [32]. In the meantime, we try to preserve the implicit
temporal dependence of the network in the latent space. In the
proposed model, we utilize a network embedding sequence
with the long short term memory (LSTM) architecture [33] to
preserve significant features of the temporal network. We take
advantage of the forget gate and the output gate to conserve
essential relationships and drop disturbance information in
a network. In this way, we can learn the dependence on
the nodes across the snapshots. These are solutions designed
specifically for challenges 1 and 2. In addition, we employ
parameter inheritance to maintain the stability of network
embedding and avoid redundancy computing. More detailed,
we formalize the current snapshot of the proposed model with
the former parameters which are trained on the previous time
step and it has the ability to reconstruct the current snapshot
structure. With this trick, the model only needs to learn the
changes between two snapshots and can be easily extended
to different dynamic patterns of the temporal network. This is
the solution designed for the last challenge.

In general, we have constructed a well-designed tempo-
ral network embedding method based on the VAE frame-
work (TVAE) that can effectively solve the above-mentioned
challenges. Besides, our proposed model shows an intuitive
and interpretable mechanism to integrate the aforementioned
means. Experimental results show that it has a convincing
performance on the temporal link prediction task with a lower
time cost than other methods. The key contributions of this
article are summarized as follows.

1) We propose TVAE, a TNE method based on the VAE
framework, which utilizes the representations in the
latent space to describe the evolution of the network
topology.

2) To handle the embedding orientation and snapshot
sequence dependence, we combine a self-attention
mechanism and LSTM, which stand for spatial depen-
dence and temporal dependence of embedding, respec-
tively. We also adopt a parameter inheritance mechanism
to keep a time-friendly algorithm.
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3) We compare our model on some synthetic and real-world
networks with baselines. Experimental results demon-
strate that our model has superior performance on link
prediction and lower time cost than others.

II. RELATED WORK

In this section, we will introduce the embedding methods for
both the static network (one snapshot) and temporal network,
as well as some related work for link prediction in dynamic
or temporal networks.

A. Static Network Embedding

Network embedding methods usually represent the nodes
of the network at a single point in time. In general, static
embedding methods mainly fall into three categories: random
walk, matrix factorization, and deep learning.

1) Random Walk-Based Methods: These methods are suit-
able for a partially observable network or large entirety.
DeepWalk [13] considered a set of short truncated random
walks as its own corpus while the network node had its
own vocabulary. Furthermore, node2vec [12] defined a flexible
notion of a node’s network neighborhood whose embeddings
organize nodes based on their network roles. On the whole,
these methods can capture the context similarity of nodes in
an unsupervised way. Matrix decomposition-based methods:
these methods project the similarity matrix of the network
to obtain the node embeddings. Grarep [15] concatenated
the k-step representation as a global feature for each node,
and hence, different local information was implied in each
different step representation. Higher order proximity embed-
ding [16] preserved asymmetric transitivity by approximating
high-order proximity. Modularized nonnegative matrix factor-
ization (M-NMF) [34] preserved the microscopic structure
(first- and second-order proximities) and mesoscopic structure
(community). In summary, this type of method mainly uses
one certain similarity or a combination of several similari-
ties or some combinations of kinds of proximity to repre-
sent the network structure. Deep learning-based methods:
deep learning techniques have been recently exploited for
learning network representations [19], [35], [36]. Structural
deep network embedding (SDNE) [37] optimized first-order
and second-order proximities to capture the highly nonlinear
network structure by utilizing deep autoencoder architecture.
Kipf and Welling [38] first proposed graph convolutional net-
works (GCNs) for network embedding and node classification
and extended it to achieve network reconstruction in an unsu-
pervised way [30]. GraphSAGE [25] stacked the aggregation
layers to generate node embeddings, whose features can be
sampled and aggregated from their local neighborhood.

B. Temporal Network Embedding

TNE methods need to consider a series of network snapshots
and excavate the internal evolution mechanism. The embed-
dings should have the ability to generate the observed snapshot
and predict the network changes. In recent years, the existing
temporal embedding methods are generally divided into two
categories: snapshot-based [39] and timestamped graph-based
methods [40].

1) Snapshot-Based Methods: These methods treat the tem-
poral network as a series of network sequences. Based on
skip-gram, Du et al. [28] designed a decomposable objective
function and node adjustment mechanism to update embedding
selectively. Some deep autoencoder models reveal nice perfor-
mance at the temporal scene. To generate stable embeddings,
DynGEM [29] was proposed, which inherited the parameters
of the last time step to initialize the model. It designed a
heuristic to expand the layers automatically when the size
of the ancient was unsuitable. NetWalk [41] can be used
to detect anomalies in the dynamic network based on node
embedding. DySAT [42] employed joint self-attention along
with the two aspects of the structural neighborhood and tempo-
ral dynamics. DynGAN [43] leveraged generative adversarial
networks and recurrent networks to capture temporal and
structure information. The model utilized GAN to generate
a raw embedding vector and push it into several stacked
LSTM layers to reconstruct and predict original or unseen
networks. Through multihead attention, they endowed their
model with expressivity to capture dynamic graph evolution
from different latent perspectives. Spatio-temporal attentive
recurrent neural network model (STAR) [44] was designed
for temporal attributed graphs based on the spatio–temporal
gated recurrent unit (GRU) and a dual-attention module.
Transformer-style relational reasoning network (TRRN) [45]
took the transformer-style self-attention and policy network
to update the node vector and further devoted it to node
classification and link prediction.

2) Timestamped Graph-Based Methods: These methods
endow the record for every event (the temporal network
could be denoted as a series of events, including the varying
nodes and edges [39]). CTDNE [46] considered the temporal
network as a timestamped graph, which imposed the tem-
poral sequence constraint on a random walk to improve the
accuracy. M2DNE [47] defined microdynamics and macrody-
namics. Specifically, for microdynamics, the model designed
a temporal attention point process for chronological events,
while for macrodynamics, the inherent evolution pattern was
captured by a parameterized dynamic equation. Unfortunately,
most of these methods have observed changes in temporal
networks, but have ignored the connotative factor of variation.
Joint dynamic user-item embeddings (JODIE) [48] focused on
modeling the sequential interaction patterns of users and items.
Temporal graph attention (TGAT) [49] recognized the node
embeddings with temporal feature and used for transductive
and inductive tasks. TGNs [50] was an efficient framework
with memory modules for dynamic events in the network.
Temporal dependency interaction graph (TDIG)-message pass-
ing neural network (MPNN) [51] captured the fine-grained
global and local information on the temporal dependence
interaction graph.

Overall, these methods designed for temporal networks only
focus on describing the changes of the network structure but
ignore its prediction.

C. Temporal Link Prediction

The link prediction of the temporal network is incredi-
bly challenging. Naturally, the link prediction task becomes
a trustworthy metric for evaluating the embedding models
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TABLE I

NOTATIONS AND THEIR DEFINITIONS

whether they reflect the intrinsic to the network itself [52].
Dunlavy et al. [53] introduced a weight-based algorithm for
collapsing multiyear data into a single matrix. They extended
the Katz method to bipartite graphs and used truncated singular
value decomposition. E-LSTM-D [54] utilized LSTM layers
to filtrate the embedding in latent space which was aggre-
gated by GCN, although it was similar to the prediction
part of our model, it could not deal with a slightly larger
network. Hisano [55] employed both supervised and unsuper-
vised losses to learn the embedding that reflects information
from both the temporal and cross-sectional network structures.
Zhu et al. [56] proposed a temporal latent space model, which
preferred smoothly evolving by penalizing frequent changes in
latent positions for each node. The model assumes that two
nodes will establish links in the future if they have propinquity
in the latent space. These methods are somewhat limited
because they require more information, such as inherent topol-
ogy structure or attributes.

III. PRELIMINARIES AND PROBLEM DEFINITION

In general, we represent a network as G = (V , E), where
V = {v1, v2, . . . , vn} is a set of vertices representing the
nodes in the network and E is a set of relationships between
nodes, and n is the number of nodes in the network. Network
embeddings are a set of low-dimensional and appropriate
vectors for the nodes that can preserve the essential feature
and properties of the original network. To get straight to the

point, we discuss the temporal network, its embedding, and
link predication in Section III-A. In Table I, we summarize
the terms and notations in this article.

A. Temporal Network

A temporal network is usually considered a series of
snapshots in a dynamic environment with time information.
We denote it as G = (G1, G2, . . . , GT ), where T is the number
of snapshots. In general, we assume that the network is undi-
rected and unweighted, the number of nodes in the network is
constant n, and the links are varying over time (but our method
can handle both directed and undirected networks, as well as
adding and removing nodes). We denote the adjacency matrix
of network G as A = (A1, A2, . . . , AT ), and the edge set
across the snapshots as E = (E1, E2, . . . , ET ). At

i j = 1 means
that nodes vi and v j have an edge at the snapshot t , otherwise
At

i j = 0.

B. Temporal Network Embedding

Traditionally, network embedding is contraposing a
single-autocephalous network. In a temporal scenario,
we define this problem as follows. Given the sequence
of snapshots G in the form of adjacency matrix sequence
A = (A1, A2, . . . , AT ), we need to obtain the representations
of every node vi for each snapshot t in a low-dimensional
vector space (d-dimensional) as z1

i , z2
i , . . . , zT

i , where zt
i is the

embedding of node vi at time t . We also denote Z t ∈ Rn×d

as the embedding matrix of nodes in the snapshot t . The TNE
is reflected by a mapping function: Z t = f (A≤t), where A≤t

denotes some adjacency matrices at time less than t , such that
Z t is able to capture the temporal evolution of the network and
be used to predict Z t+1. More specifically, we wish to predict
the structure of At+1 based on the historical structure A≤t .
In summary, the mapping function at every time step employs
network evolution information to explore the network temporal
development mechanism.

We need to restate, for the TNE, the design of f , the tempo-
ral prediction, and the optimization correspond to the previous
three challenges.

C. Temporal Network Embedding for Link Prediction

For a temporal network, link prediction is aiming to predict
the links of the network snapshot t based on the observed
structure of snapshots 1 to t − 1. Therefore, in this article,
we consider training a model that receives a series of previous
network snapshots (A1, . . . , At−1) as input and generates the
network structure in the next snapshots (A2, . . . , At) as output.
It allows the model to predict the structure of the next
snapshot because the latent embedding vectors can capture
the temporal evolution of the network. For the temporal link
prediction, we take the A≤t as input and predict the links of
snapshot t + 1.

IV. PROPOSED MODEL

In this section, we introduce the proposed TNE framework
TVAE in detail, which can effectively obtain the befitting
representations of the temporal network. Moreover, it can
preserve structural properties, analyze dynamic evolution, and
predict future links of the network.
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Fig. 2. Architecture of TVAE: a TNE model. At each snapshot t , it includes a VAE projecting each node into a latent embedding vector, a self-attention
updating its embedding, an LSTM with h historical snapshots describing the dependencies, and a decoder generating the topological structure of snapshot
t + 1.

As shown in Fig. 2, the components of our model consist of
four parts: 1) VAE, for each snapshot t , we take a conventional
VAE with parameter-sharing as the encoder to obtain the initial
node embeddings. 2) A self-attention mechanism to enhance
the embeddings and maintain the diversity of each node. 3) An
effective LSTM layer to model the dynamic evolution in the
latent space and generate predictive embeddings. 4) Parameter
inheritance to speed up the training of the model and deal with
larger scale networks.

In the rest of this section, we will introduce our model
particularly to demonstrate the feasibility of the proposed
model.

A. VAE for Generating Embedding

To capture the network structure in snapshot t , according
to the VAE framework, we take the adjacency matrix At as
the input data and formalize it as Xt . We represent the part
of input corresponding to a node as x t . Use zt (or Z t ) to
denote the latent variable of x t (or Xt ). In this framework,
we take Pφ(x t |zt) to model the dependence between the latent
variables and input data. The overall likelihood of Xt can be
defined as follows:

P�
Xt

� =
�
xt

P�
x t

� =
�
xt

�
Pφ

�
x t

��zt
�Pθ

�
zt

�
dzt (1)

where φ and θ are the parameters of distributions Pφ(x t |zt)
and Pθ (zt ). zt is assumed to be distributed according to a
standard normal distribution. The key intuition is that any com-
plex distribution can be modeled as several arbitrary Gaussian

distributions stacked. Thus, Pφ(x t |zt) is parameterized by the
function fφ(zt ), which represents arbitrary unknown trans-
formation expressing such a dependence. However, P(Xt )
is usually too tanglesome to be computed directly. Thus,
we also introduce variational inference to find an approxi-
mation. The theory devises a proposal distribution Q(zt |x t),
which approximates the true posterior P(zt |x t), to handle
this approximation. Therefore, we can obtain the relationship
between the likelihood and the proposal distribution in (1)

logP�
x t

� − KL
�Q�

zt
��x t

� � P�
zt

��x t
��

= Ezt ∼Q
�
logP�

x t
��zt

�� − KL
�Q�

zt
��x t

� � P�
zt

��
. (2)

For simplification, we introduce the ELBO Lb; therefore,
the objective function can be represented as

Lb =
�

zt
Q�

zt |x t
�

logP�
x t |zt

�
dzt − KL

�Q�
zt |x t

� � P�
zt

��
.

(3)

The two terms in the equation represent the reconstruction
error and KL-divergence loss. From the perspective of neural
networks, e.g., autoencoder, the modeling process can resort
to two steps. The first is the encoder, which converts the input
original network adjacencies into latent variables. The second
is the decoder, which generates new representations of the
network, which is referred to as the reconstruction process.

We take a two-layer encoder; however, we set this process
for simplicity as follows:

żt
i = acte

�
Wext

i + be
�

(4)
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where x t
i is the transposed row of Xt corresponding to node vi .

acte is the activation function, such as ReLU, We, and be are
the weights and biases of the encoder network, respectively.
Especially, We ∈ R

d×n and be ∈ R
d .

In an actual application scene, the use of reparametrization
tricks [57] could strip the sampling process from stochastic
gradient descent. To be specific, we sample a ministrant noise
variable � according to a random fixed distribution P(�), and
then compute the new means and variances by �. Typically,
we sample Gaussian noise � ∼ N (0, 1) and compute the
output of this encoder Z̄ t

i as the raw embedding

z̄t
i = μi + σi � �i (5)

where μi and σi are the deriving parameters of node vi , which
are transformed from żt

i via another two single layers, and �
is the elementwise product. Based on (3), we get the following
objective:

L1 =
	

i j

1

2



− log

�
σi j

�2 + �
μi j

�2 + �
σi j

�2 − 1
�

(6)

where μi j and σi j are the j th elements of mean and variance
parameter vectors of node vi , respectively.

Based on z̄t
i , we then propose a self-attention mechanism

combined with LSTM to generate the final embedding zt
i or

Z t containing the signatures of snapshots from t − h to t
and take a decoder network with two layers to reconstruct the
next step structure At+1 of the temporal network. In this way,
we could achieve embeddings with good predictive ability.

B. Self-Attention on Topology Structure

The input of this self-attention layer is a raw embedding
vector z̄t

i generated by the encoder part. We devise structure
self-attention layer to make it concern about the immediate
neighbors of a node vi [32]. The key procedure is computing
attention coefficient from neighbors of each node in network.
Then we filter the raw embeddings with attention layers and
generate new embeddings with an aggregate function. To make
our learning process of self-attention stable, we introduce
the multihead attention mechanism. Then the operation of
topology structural attention layer can be defined as follows:

ekt
i j = acts

�
aT

k

�
W k

a z̄t
i ◦ W k

a z̄t
j

��
, ∀�

vi , v j
� ∈ Et (7)

αkt
i j =

exp



ekt
i j

�
�

vl ∈N t
i

exp
�
ekt

il

� , ∀v j ∈ Nt
i (8)

ẑt
i = acta

⎛
⎝ 1

K

K	
k=1

	
j∈Ni

αkt
i j W k

a z̄t
i

⎞
⎠ (9)

where Nt
i = {v j ∈ V |(vi , v j ) ∈ Et } is the set of immediate

neighbors of node vi in Gt , W k
a ∈ R

d×d is a shared weight
matrix of the kth attention head, ak ∈ R

2d is a weight vector
of the kth head to parameterize the attention function which
is implemented as a feed-forward layer, ◦ is concatenation
operation, and acts(·) and acta(·) are nonlinear activation
functions. αkt

i j is the computed attention coefficient for edge
(vi , v j ) ∈ Et by the kth head. K is the number of attention

heads and each head executes independent attention mech-
anisms. Inspired by [42], we utilize LeakyReLU and ReLU
activation functions to normalized attention weight and output,
respectively. Hence, we apply a structural attention layer on
the original embedding and obtain a new embedding vector,
which includes immediate neighbor information. We call it
spatial dependence.

C. LSTM for Modeling Temporal Information

To capture abundant temporal evolutionary patterns in
the temporal networks, we consider a recurrent neural net-
work (RNN) to preserve historical information. LSTM is a
preeminent RNN model of handling long-term dependence
problems. In the temporal scene, take ẑt

i in Section IV-B
as input, we import the hidden state representation of a
single-LSTM layer to fuse the information of previous con-
tinuous h snapshots in final embedding zt

i . The updating rules
of LSTM in our model are listed as follows:

ot
i = actl



Wo

�
ẑt

i ◦ z(t−1)
i

�
+ bo

�
(10)

ut
i = actl



Wu

�
ẑt

i ◦ z(t−1)
i

�
+ bu

�
(11)

f t
i = actl



W f

�
ẑt

i ◦ z(t−1)
i

�
+ b f

�
(12)

�Ct
i = tanh



Wc

�
ẑt

i ◦ z(t−1)
i

�
+ bc

�
(13)

Ct
i = f t

i � Ct−1
i + ut

i � �Ct
i (14)

zt
i = ot

i � tanh
�
Ct

i

�
(15)

where Ct
i represents the cell states of LSTM layer, f t

i is the
forget gate vector, ot

i is the output gate vector, ut
i is update

gate vector, weight matrices W f , Wo, W f , and Wc and biases
b f , bo, b f , and bc are parameters for computing them. �Ct

i is
the new cell states, and the Sigmoid function is used for the
activation function.

As of now, given the input sequences (x t−h
i , . . . , x t

i ),
we have got the embedding zt

i which is used for reconstructing
the adjacency relations Āt+1

i of vi at time t+1. Then, we devise
a fully connected decoder with two layers to generate recon-
struction network with the hidden representation as follows:�

Āt+1
i

�T = x̄ t
i = actd

�
Wd zt

i + bd
�

(16)

where actd , Wd , and bd are the activation function, the weights,
and bias of the decoder part of our model, respectively. Written
in matrix form, the reconstructed output is Āt+1 = X̄ t .

D. Parameter Inheritance

A key intuition of maintaining the stability and low time cost
of the TNE model is the parameter inheritance mechanism.
We train our deep learning model on G1 using random initial-
ization of parameters. Then, for the remaining part of subse-
quent snapshots, we initialize the model parameters on time t
by using the parameters on the previous time t − 1 directly.
Inspired by the time smoothness constraint, the model is only
requested to learn the changes between two snapshots. We uti-
lize specific parameter initialization procedures to endow our
model more flexibility if the network snapshots at continu-
ous time differ significantly, rather than appending the time
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smoothness constraint to obliterate these changes. Although it
is an intuitive and simple way, this parameter inheritance can
achieve considerable computing speed in our model.

E. Loss and Optimization

From the overall framework, we have the loss function
including two parts, one is L1 for VAE, and the other is
reconstruction. Therefore, we provide an entirety loss function
for the snapshot t as follows:
Lt = ���

Āt+1 − At
� � B��2

F

+α
	

i j

1

2



− log

�
σ t

i j

�2 + �
μt

i j

�2 + �
σ t

i j

�2 − 1
�

(17)

where B is a penalty matrix to impose more punishment to
the reconstruction error of nonzero elements than the opposite
one [37], such that Bi j = β > 1 if At

i j > 0, else Bi j = 1. μ and
σ are the learned mean and variance of latent embedding. The
first term is reconstruction loss which preserves the original
network structure and temporal information. The second term
is the KL-divergence loss, which makes it approximate to the
real distribution as much as possible. α is a balance parameter
(penalty factor), which controls the importance of VAE.

To be flexible and effective, we implement our model in
Keras and use RMSProp for training. The RMSProp algorithm
introduces the damping coefficient to increase the convergence
rate. With the help of the proposed parameter inheritance
mechanism, we devise an early stopping method to accelerate
the training speed of (17).

V. EXPERIMENTS

In this section, we employ real-world networks and syn-
thetic data sets to verify the effectiveness of the model.
In detail, we compare the performance of link prediction in
dynamic networks with the baselines on network embedding,
dynamic network embedding, and temporal link prediction.
We also analyze the running time of representative methods
and the ablation and parameter sensitively analysis of the
TVAE.

A. Data Sets

1) Synthetic: We employ a stochastic block model (SBM)
to generate a virtual network. We generate two synthetic data
sets with 1000 and 5000 nodes in the network. We design
two communities for one snapshot. The lock connectivity
probability is set to 0.1 and 0.01, while the cross-block
connectivity probability is 0.01 and 0.005, respectively. The
probability difference between intrablock connectivity and
cross-block connectivity controls the number of edges in the
network. We migrate ten nodes to other communities randomly
for each generation process. Then, we generate eight snapshots
for this experiment.

2) Bitcoin OTC and Bitcoin Alpha [58]: Bitcoin over-the-
counter (OTC) (BC-OTC)1 and Bitcoin Alpha (BC-Alpha)2

are data sets of bitcoin trades on different platforms. We build
dynamic trust networks of bitcoin users with 12 snapshots.

1http://www.bitcoin-otc.com
2http://www.btc-alpha.com

TABLE II

STATISTICAL DETAILS OF THE DATA SETS

3) Hep-th [4]: This data set is the collaboration graph of
authors in the High Energy Physics Theory conference. We
get the abstracts of articles and then split data by month.
Hence, every month’s snapshot contains the coauthor network
information.

4) Autonomous Systems [59]: The graph of routers com-
prising the Internet can be organized into subgraphs named
autonomous systems (AS). We establish a communication net-
work of who-talks-to-whom from the border gateway protocol
logs.

The details of data sets are summarized in Table II. It con-
tains the number of nodes, edges, and snapshots of each tem-
poral network, respectively. The symbol ∼ indicates its value
range of the number of nodes and edges. For the synthetic
temporal networks, we construct two temporal networks of
different sizes.

B. Baselines

We employ several static network embedding methods and
TNE methods to compare with our model. For static network
embedding methods, we provide access to the entire history
of snapshots by constructing an aggregated graph up to time t .

1) DeepWalk [13]: A representative embedding method
for static networks that performs random walk and
skip-gram model.

2) LINE [14]: A network embedding method that considers
first-order and second-order proximities and also designs
an objective function that preserves both the local and
global network structures.

3) GAT-AE [60]: It constructs an autoencoder net-
work based on masked self-attentional layers for link
prediction.

Furthermore, we compare several TNE methods with our
model that operate on discrete snapshots.

1) DynamicTriad [26]: A dynamic graph embedding
model that employs triadic closure theory on commu-
nication networks.

2) DynAERNN [61]: A deep neural network combined
with autoencoders and RNN to handle temporal graph
evolution.

3) TNE [56]: This is a dynamic network embedding
method based on matrix factorization which presents a
global optimization algorithm.

4) DySAT [42]: It employs both structure and temporal
self-attention mechanisms to learn graph representations.
We adopt a single-step link prediction experimental
method and the node embedding of the last graph for
evaluation.
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TABLE III

AVERAGE LINK PREDICTION RESULTS OF TEMPORAL NETWORKS OF FOUR DATA SETS BASED ON THE MAP AND AUC, EACH
VALUE IS THE AVERAGE OF ALL THE PREDICTED SNAPSHOTS

5) Evolve-GCN [58]: A GCN for dynamic graphs, which
uses RNN to regulate the GCN model at each time
step. We consider two methods involved in the article:
EvolveGCN-H and EvolveGCN-O and calculate the
average result for evaluation.

For all these methods, we use the default parameter settings,
as well as mean average precision (MAP) and area under the
ROC curve (AUC) as our metrics. We train the models on
networks from time t − h to t − 1, where h is the length of
history and we predict links of the network at time t .

C. Overall Evaluation for Link Prediction

In this subsection, we use MAP and AUC to evaluate all
methods on the aforementioned temporal networks. To be
specific, we set the history value to 2, the value of the
embedding dimension d to 128, and evaluate the models at
all the snapshots. Then, we get results as shown in Table III.
The link prediction results show that our model has significant
performance advantages on both synthetic and real-world
networks. The experimental results on different scale networks
also prove the favorable extensibility of the proposed model.

First, all the methods for temporal networks have better
performance on the link prediction than the static models.
It shows that considering the varying patterns can help predict
the structure. Second, in addition to our TVAE, DynAERNN
and Evolve-GCN are the second-best methods among sev-
eral candidates, the former learns the temporal transitions
in the network with a deep neural network composed of
recurrent layers, while the latter adopts the GCN along the
temporal dimension; however, they all ignore the nonlinear
evolution patterns. However, DynamicTriad and DySAT are
slightly worse because they focus more on modeling dynamic
networks. Third, although TNE is specifically designed for
link prediction in temporal networks, it takes the nonnegative
matrix factorization but ignores the nonlinear characteristics of
the network. In addition, compared with the static methods,
the methods used for dynamic networks achieve more than
30% and 3% gains of MAP and AUC metrics on average,
respectively, and our method is superior to the best baseline
on the whole.

D. Results on Synthetic Data Sets

The MAP and AUC values for different methods and mul-
titime steps with SBM (1000) data set are shown in Fig. 3(a).

Both MAP and AUC values display that our method TVAE
has higher performance compared with the baselines, including
three static and five dynamic embedding methods. For quan-
titative, our model TVAE has more than 10% precision gains,
while 5% accuracy gains than the second-best method between
these candidates on SBM (1000) data set. It demonstrates that
our model can handle temporal networks with implicit feature
sniffing. It is also significant that the curve tendency reveals
the splendid stability of our model. To put it another way,
TVAE is capable of excavating the essential evolution mecha-
nism of temporal networks. It is relatively stable of temporal
networks when there is over a short period of time. Therefore,
the performance of the same model on continuous temporal
network snapshots should show a glossy curve gradient on the
line chart.

On the other hand, we also evaluate our model with base-
lines on the SBM (5000) data set to verify the scalability
of these methods. Fig. 3(b) describes the performance across
all concerned methods on a network scale of 5000 nodes.
An obvious phenomenon is that large-scale information net-
work embedding (LINE) tears the gap with other baselines
due to its scalability on large-scale networks. TVAE still
keeps nice precision and accuracy within the error range. One
possible reason is that TVAE is based on a VAE model. The
weight of KL-divergence in loss function leads to improving
the performance of our model. By the way, TVAE displays
excellent stability among the network snapshots yet. Compared
with our TVAE, DynAERNN has achieved competitive results.

E. Results on Real Temporal Networks

In this section, we evaluate TVAE with all the baselines on
four temporal networks on the link prediction task.

1) BC-OTC Data Set: The link prediction results at multi-
time steps on the BC-OTC data set are shown in Fig. 3(c).
The MAP and AUC values of our TVAE are better than
all the other baselines. The runner-ups on the MAP metric
are DynAERNN, DynamicTriad, DySAT, and TNE, while
DynAERNN and DySAT show closer results to ours on the
AUC metric. The results of EvolveGCN are lower but still
better than the static methods, including DeepWalk, LINE,
and graph attention network (GAT).

2) BC-Alpha Data Set: Fig. 3(d) demonstrates the results
of link prediction at multitime steps on the BC-Alpha data set.
Our TVAE shows the best results at most snapshots and lower
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Fig. 3. Link prediction results based on the MAP and AUC values of our TVAE and the baseline methods on synthetic networks (a) SBM (1000).
(b) SBM (5000). (c) BC-OTC. (d) BC-Alpha. (e) Hep-th. (h) AS.

results at a few snapshots than only DySAT. The ranks of the
other baselines are basically like their results on BC-OTC.

3) Hep-th Data Set: The multitime steps link prediction
results for the Hep-th data set are shown in Fig. 3(e) with
MAP and AUC metrics. Our algorithm TVAE outperforms all
other state-of-the-art models, whether static or TNE methods
on a macroscopic promotion. As for MAP values, DynAERNN
and TNE still have the second-best performance among these
methods. Another TNE method DynamicTriad has a some-
what higher elevation than the previous manifestation. This
algorithm is based on the closer triad theory, which may
have more rationalization on coauthor network data sets.
The triad closure process is able to describe the evolution
of the relationship between social networks. DySAT has an
acceptable result and GAT also has a better performance than
the other static methods DeepWalk and LINE because different
attention coefficients represent the distance among the global
topology structure, which is the main governing factor of
temporal network evolution.

4) AS Data Set: The MAP and AUC values for multitime
steps link prediction with the results of various algorithms
on the AS data set are displayed in Fig. 3(f). Although
the multitime steps link prediction stability of all these can-
didates has decreased slightly, TVAE shows more smooth-
ness on curve tendency than other baselines. Our model
achieves consistent gains of 10%–20% in comparison to the

state-of-the-art baselines. From the peaks and troughs of the
curve in Fig. 3(f), we can discover that communication is more
inconstant than social networks. In other words, traditional
network embedding methods often utilize a single mechanism
to generate the representations of networks which may lead
to a lack of flexibility of models. As a result, we employ
several constraints to improve our model and increase the
accuracy of the link prediction task. It is worth mentioning
that EvolveGCN has almost the same performance as our
TVAE because its convolution neural network can capture the
dynamic changes of the network.

As we have discussed earlier, for the four temporal net-
works, although one of the baselines has a comparable or
competitive performance based on the MAP or AUC on a
network, such as the DySAT on BC-Alpha, or the EvolveGCN
on the AS network, our method has obvious advantages on the
whole.

F. Ablation Analysis of TVAE

To verify the motivation of our proposed TVAE, we further
conduct ablation experiments. We conduct a link prediction
task at multitime steps on both a synthetic network SBM
(1000) and a real-world network BC-OTC. Our TVAE is
compared with three models degraded by removing the LSTM
part (denoted as VAE+attention), the self-attention mechanism
part (denoted as VAE+LSTM), or both of the two parts
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Fig. 4. Ablation experiments of our TVAE and its parts VAE, VAE+attention on two different networks (a) SBM(1000). (b) BC-OTC.

Fig. 5. Cumulative time cost of different algorithms. We compute the time cost of Deepwalk, DynamicTriad, and TVAE on different data sets. We choose
six continuous snapshots for evaluation and obtain the cumulative time cost curves of different algorithms. TVAE* is our proposed model without applying
the parameter inheritance mechanism. (a) SBM (1000). (b) SBM (5000). (c) Hep-th. (d) AS.

Fig. 6. Single-snapshot time cost of different algorithms. We compute the time cost of Deepwalk, DynamicTriad, and TVAE on different data sets. We choose
six continuous snapshots for evaluation and obtain the time cost curves of every snapshot of different algorithms. TVAE* is our proposed model without
applying the parameter inheritance mechanism. (a) SBM (1000). (b) SBM (5000). (c) Hep-th. (d) AS.

(denoted as VAE) from TVAE. The MAP and AUC values
of these models are shown in Fig. 4. All the results support
the following observations.

1) Compared with VAE, all other models achieve better
results, indicating that it is feasible to use LSTM to
model temporal dependencies and use the self-attention
mechanism to capture structural information.

2) TVAE outperforms the other models, indicating that the
self-attention mechanism and LSTM can jointly improve
the information capture.

3) VAE+LSTM outperforms VAE+attention, which shows
that the information of temporal dependencies has a
greater impact on the results than static structures.

G. Time Cost

In this section, we discuss the time cost among our model
and some baselines. Different from static network embedding

methods, with the complex evolution and the serried data
sets of temporal networks, the model is requested more time
efficiency in the temporal scenario. As mentioned earlier,
we design the experiment about embedding learning efficiency
on two baselines, DeepWalk and DynamicTriad, which rep-
resent static embedding methods and temporal embedding
methods, respectively. Besides, to analyze the effectiveness of
the parameter inheritance mechanism, we calculate its time
of each snapshot separately and denote it as the TVAE*. The
experimental results of the time cost of our model and the
mentioned baselines are shown in Figs. 5 and 6. We record
ten times the training cost on the same snapshot with every
algorithm and compute the average of them. Then, we con-
duct six continuous snapshots with the same procedure and
generate the experimental result. All the methods run on a
Dell workstation. The operating system is a 64 bit Ubuntu
16.04 with Intel Xeon CPU E5-2680 V3@2.5-GHz processor
and 128 Gbytes of main memory.
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Fig. 7. Influence of balance factor α on MAP and AUC values. For every data set, we set the balance factor α from 0 to 0.5 to explore whether different α
can control the precision of experimental results. (a) SBM (1000). (b) SBM (5000). (c) Hep-th. (d) AS.

Fig. 8. Influence of embedding dimension for MAP and AUC values. For every data set, we set the number of embedding dimensions as 8, 16, 32, 64, 128,
and 256, respectively, to explore the significance of hidden features learned by TVAE. (a) SBM (1000). (b) SBM (5000). (c) Hep-th. (d) AS.

From Fig. 5, we can discover the distinct superiority of TNE
methods in multiple time steps data sets at a first impression.
To be specific, we focus on the DeepWalk and DynamicTriad
algorithms. The former oversteps about 2–2.5 times than the
latter of time cost. On the one hand, the experimental result
demonstrates the tremendous discrepancy between traditional
static network embedding methods and TNE methods explic-
itly in evolutionary link prediction tasks. On the other hand,
our model TVAE has a little bit of inefficiency compared
with DynamicTriad at the first time step. This is because
DynamicTriad utilizes all of the temporal edges to generate
one embedding, while our model generates a series of embed-
dings. TVAE also has a lower time cost rate of increase at
the rest of the time steps. The curve tendency shows that
DynamicTriad is increasing as a linear growth process, while
TVAE is likely a parabola. With the experimental results of a
single-snapshot time cost in Fig. 6, we can see that as time
goes by, our model will bring lower time costs. Compared
with the TVAE*, the parameter inheritance mechanism of our
model not only endows the model more stability but also
extends the scalability when network snapshots are growing
along with time.

H. Parameter Sensitivity Analysis

Here, we analyze the sensitivity of the balance factor α,
the number of embedding dimensions, and historical snapshots
on the performance of link prediction in the TVAE model.

1) Balance Factor α: In this section, we consider the para-
meter sensitivity of our model. The most important parameter
of TVAE is the KL-divergence factor α. This balancing factor
controls that the embeddings in latent space may represent
different properties of original afferent networks. We employ
α to constrain the randomness of the generative module. The
parameter balance experimental result is shown in Fig. 7. And
for every value of α, we conduct ten times experiments and
compute the average for justification.

We discover that the MAP and AUC values are maximal
above this curve when factor α is set to 0.01–0.1. And their
tendencies are both descending whether factor α increases or
decreases except for the Hep-th data set. From two points of
view for this experimental result, we have different opinions
on it. When we set factor α to 0, our VAE will cast off
KL-divergence loss and kick over the traces. The model is too
lazy to learn the exclusive Gaussian distribution and chooses
the onefold means. In other words, the model will not have
the flexibility to generate polyphyletic embedding vectors.
When we heighten factor α from zero, we can discover the
performance of the model for MAP and AUC values rising
to some extent at first. However, when the curve crosses the
wave crest, it is difficult for the model to learn plenty of
varied Gaussian distribution for every representation of the
original network in the latent space. We adjust the factor α to
make TVAE nimble and be capable of miscellaneous data sets.
As for the Hep-th data set, we consider that reconstruction
and KL loss happen to keep a balance which results in the
robustness of experimental results.

2) Embedding Dimension: We compare the performance of
TVAE at different embedding dimensions. The experimental
result is shown in Fig. 8. Be consistent with our intuition,
the better precision and accuracy performance is often appear-
ing at higher embedding dimensions. This is because a lower
dimensional vector can have more information loss than a
higher one. From Fig. 8, we can see that AS data set displays
a little bit smoother than other data sets. This is because AS is
a communication network and has better compression radio at
different embedding dimensions. In the meantime, our model
TVAE shows excellent performance since the 32 embedding
size. This phenomenon demonstrates that TVAE has been
captured the essential features of the original network so that
it can predict unknown networks commendably with highly
compressed embeddings.

3) Number of Historical Snapshots: To analyze the depen-
dence of the embedding on historical snapshots, we design this
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Fig. 9. Influence of history based on MAP and AUC values on two different
networks, and we set the number of history snapshots from 1 to 6. (a) SBM
(1000). (b) Hep-th.

experiment on the SBM (1000) and Hep-th dynamic networks.
In detail, we set h, i.e., the number of historical snapshots Zt

depends on, from 1 to 6, we train the model and compute
the MAP and AUC on the last snapshot T . From the results
shown in Fig. 9, it is easy to know that h is important for
the temporal link prediction, as it increases, the result tends
to be better and stable. However, the larger h means more
parameters and calculation time. In other experiments, we all
set h = 2 as a compromise, and it also shows that depen-
dence is very important in dynamic networks and TVAE can
capture it.

VI. CONCLUSION AND FUTURE WORK

The complex network has a lot of evolution tendencies
in the real world. It can be hardly described by the static
network embedding method because of various changes and
amount of time costs. In this article, we propose TVAE
to capture the evolution of the network topology with the
representation in latent space. The model learns not only
the low-dimensional embedding vectors and nonlinearity but
the time dependencies between continuous network snapshots.
To be specific, we design a deep autoencoder framework as a
basis. Then, we impose the structure and temporal restriction
with a self-attention mechanism and LSTM, respectively.
We also utilize the parameter inheritance technique to keep
embedding stable and scalable. To verify the effectiveness of
our model, we conduct several experiments on both artificial
and real data sets. The experimental results show that our
model is capable to exploit the temporal network patterns and
outperforms other baselines on link prediction precision and
accuracy, and has a lower time cost.

In the future, we have several research directions on this
basis: 1) in temporal networks, there are many important tasks,
e.g., node classification and community detection. We will
assess the model on these metrics. 2) We take two synthetic
and two real data sets for experiments. We will attempt
more kinds of data sets, and simultaneously increase the
effectiveness and efficiency of large-scale data sets ulteriorly.
3) We have found some effects of different hyperparameters
in the experiment. We will explore more essential reasons for
the impact of hyperparameters.
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