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Abstract—Deep learning-based video segmentation methods
can offer good performance after being trained on the large-
scale pixel labeled datasets. However, pixel-wise manual labeling
of animal images is challenging and time consuming due to
irregular contours and motion blur. To achieve desirable trade-
offs between accuracy and speed, a novel one-shot learning-
based approach is proposed to segment animal video with only
one labeled frame. The proposed approach consists of three
main modules: (1) Guidance Frame Selection (GFS) utilizes
”BubbleNet" to choose one frame for manual labeling, which
can leverage the fine-tuning effects of the only labeled frame; (2)
Xception-based Fully Convolutional Network (XFCN) localizes
dense prediction using depthwise separable convolutions based
on one single labeled frame; (3) Post-processing (POST) is
used to remove outliers and sharpen object contours, which
consists of two sub-modules—Test Time Augmentation (TTA) and
Conditional Random Field (CRF). Extensive experiments have
been conducted on the DAVIS 2016 animal dataset. Our proposed
video segmentation approach achieved mean intersection-over-
union score of 89.5% on the DAVIS 2016 animal dataset with less
run-time, and outperformed the state-of-art methods (OSVOS
and OSMN). The proposed one-shot learning-based approach
achieves real-time and automatic segmentation of animals with
only one labeled video frame. This can be potentially used
further as a baseline for intelligent perception-based monitoring
of animals and other domain specific applications. The source
code, datasets, and pre-trained weights for this work are pub-
licly available at https://github.com/tengfeixue-victor/One-Shot-
Animal-Video-Segmentation.

Index Terms—One-shot learning, Video segmentation, Deep
learning, Convolutional neural network, Animal monitoring

I. INTRODUCTION

Video segmentation aims to separate objects from the
background in all frames of a given video, and is of great
significance for pixel-level precision demanded applications
such as autonomous robots, unmanned vehicles, environmental
monitoring and surveillance, and so on [1, 2, 3, 4]. Some well-
known semantic image segmentation models, including Fully
Convolutional Network (FCN) [5], DeepLab [6], PSPNet [7],
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etc., usually incorporate extra layers (e.g. spatial pyramid pool-
ing, multi-scale dilated convolution, multi-scale input paths,
and conditional random field) for boosting accuracy. However,
these models rely on large-scale pixel-level labelled datasets
(e.g. PASCAL [8]) to train models and obtain desirable seg-
mentation results. Therefore, there is an increasing demand for
high segmentation accuracy with minimum data labeling costs.
Recently, methods such as one-shot learning [9, 10] have been
applied to video segmentation. One-shot learning methods
can generalize the neural network to new tasks with one
annotated sample by utilizing prior knowledge such as data,
model, and algorithm [11, 12]. Wang et al. [13] unified object
tracking and video segmentation to estimate the bounding
boxes and segmentation masks for the rest of the frames with
only the initial bounding box. OSVOS [14] implemented the
skip connection network architecture to learn the appearance
feature of the first frame and look for the matching appearance
on the follow-ups. Yang et al. [15] established two modules
which utilize the information in the one labeled frame and the
previous frame’s spatial information to adjust the segmentation
results.

However, most of the above video segmentation paradigms
label the first frame of video and then automatically seg-
ment object from the remaining frames. Actually, for video
segmentation, the best single labeling frame is not always
the first one [16]. In addition, methods like [14] achieved
object segmentation based on complex networks, which is not
feasible for real-time video segmentation tasks due to long
computing time.

Moreover, despite the wide applicability of existing ap-
proaches, there are little research focusing on animal video
segmentation. Animals are widespread in nature and the anal-
ysis of their shape and motion is important in many fields and
industries [17, 18]. For example, segmenting animals from
video and tracking their motion is a prerequisite for body
condition scoring and behaviour analysis in precision livestock
farming [19]. However, animals present unique challenges,
compared to humans or other moving objects such as vehicles.
First, the shape variation and motion blur is usually larger than
humans or other moving objects [19]. Second, the amount
of available data for training is usually limited, particularly
for endangered animals, in contrast to public datasets related
to humans or autonomous vehicles. Thus the lack of training
data will inevitably lead to the performance degradation of
the state of art deep learning methods when implemented on
animals [20]. Last but not the least, animals such as cows
and sheep often live in outdoor field environments where their
appearance is camouflaged, making automatic segmentation

Authorized licensed use limited to: Monash University. Downloaded on October 02,2021 at 23:47:45 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-3871-2321
https://orcid.org/0000-0003-2142-0154
https://orcid.org/0000-0001-7395-5367
 https://github.com/tengfeixue-victor/One-Shot-Animal-Video-Segmentation
 https://github.com/tengfeixue-victor/One-Shot-Animal-Video-Segmentation


1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3117020, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, SEPTEMBER 2021 2

even more challenging.

Motivated by the above observations, in this paper, we pro-
pose a novel one-shot learning-based real-time animal video
segmentation approach in order to achieve high segmentation
accuracy with one labeled image in complex background
environments. As demonstrated in Fig. 1, the proposed ap-
proach consists of three main modules: BubbleNets-based
guidance frame selection, XFCN, and post-processing. More
specifically, the BubbleNet-based guidance frame selection
module uses the deep bubble sorting framework to choose
single best frame across the video for manual labeling, and
then this labeled frame is used for the follow-up model fine-
tuning; XFCN is deployed to accurately localize dense predic-
tion through one-shot learning based on CNN feature fusion;
the post-processing module comprises of two sub-modules,
namely, test time augmentation and conditional random field,
which are helpful to remove outliers and sharpen the animal
contours.

In our work, we have introduced a lightweight and one-
shot learning-based deep learning architecture for animal video
segmentation. The main contributions of this work are: (1) The
proposed lightweight and power-efficient network architecture,
XFCN, encodes and decodes the images features for video
segmentation, which significantly improved computation ef-
ficiency and segmentation accuracy. In our XFCN encoding
part, the proposed 20 layers’ Xception-lite uses depthwise
separable convolutions to extract CNN features with fewer pa-
rameters. Although it looks similar to Xception, the proposed
Xception-lite significantly increases representational efficiency
and reduces over-fitting. In the XFCN decoding part, five
different level feature maps were upsampled to the same size
of the frame and concatenated into the final feature map for
segmentation. Here dilated convolutions were implemented
with different dilated rates to increase the receptive field for
video segmentation. (2) An effective GFS was utilized to
select one guidance frame from the video, which leverages
the fine-tuning effects of the only labeled frame. In addition,

in order to further improve the segmentation performance, the
POST module (consists of Test Time Augmentation (TTA) and
Conditional Random Field (CRF)) was used to reduce some
noises and edge blurring. (3) Systemic experiments were con-
ducted on DAVIS 2016 animal [21]. The proposed approach
achieved 89.5% mIoU and 93.2% F (Mean) with a running
speed of 1.16s per frame, which outperformed the state-of-
art methods (OSVOS, OSVOS + GFS, and OSMN). We also
studied the effects of pre-training on segmentation accuracy.
Experimental results show that pre-training can moderately
enhance segmentation accuracy.

The remainder of this paper is organized as follows. Section
II illustrates the our proposed video segmentation approach.
Section III presents the experimental setup, including dataset,
training details and evaluation methods. Evaluations of the
proposed method on the DAVIS 2016 animal dataset and
discussions of the performance are presented in Section IV.
Section V contains ablation study. Finally, conclusions and
areas for future research are given in Section VI.

II. METHODOLOGY

A. Overview of proposed approach

As illustrated in Fig. 1, the proposed approach has three
main modules: Guidance Frame Selection (GFS), Xception-
based Fully Convolutional Network (XFCN), post-processing
(POST). In our proposed approach, a given video with one
of its labeled frame is used to fine-tune a pre-trained network
for the video segmentation. In addition, in order to remove
the outliers from segmented results and refine animal con-
tours, post-processing (it has two sub-modules: Test Time
Augmentation and Conditional Random Field) is implemented
to further improve the segmentation performance.

Denote the video sequence F with n frames as F = [ f1, f2,
· · · , fn]. In our proposed one-shot learning-based approach,
GFS utilizes ‘BubbleNet’ [16] to select one guidance frame
fguide from one video sequence F (see Section II.B). The
selected one frame will be labeled manually to get the ground

Fig. 1: The overall flowchart for one-shot learning based animal video segmentation.

Authorized licensed use limited to: Monash University. Downloaded on October 02,2021 at 23:47:45 UTC from IEEE Xplore.  Restrictions apply. 



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3117020, IEEE
Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, SEPTEMBER 2021 3

truth mask sgt . The only labeled frame sgt with video sequence
F will be fed into XFCN for network fine-tuning. Here XFCN
is pre-trained offline with large dataset Dpretrain before the
fine-tuning process. After XFCN is fine-tunned with the only
label frame fguide, model M is obtained and segmentation
results are denoted as Y = [y1, y2, · · · , yn]. Considering
the fact that the segmentation results Y may have some
outliers and blurring edges, TTA and CRF post-processing are
implemented to obtain the final results Yf = [y f 1, y f 2, · · · , y f n]
(Section II.D). The details of each step are discussed below.

B. Guidance frame selection (GFS)
In one-shot learning-based video segmentation approaches,

the model needs to be fine-tuned with one labeled frame in the
test video sequence. The state of the art video segmentation
models and benchmark datasets always use a single labeling
in the first frame to segment objects in the video sequence.
However, as it has been illustrated in [16], the first frame
is usually not the optimum selection for the video sequence.
Therefore, in our work, the BubbleNet [16] was utilized to
select one guidance frame from the video, then the selected
frame was labeled for fine-tuning to leverage the model effects.

BubbleNet is an unsupervised deep sorting network based
on loss functions without the need of labels. It compares the
performance of using each frame as a guide, and swaps frames
until the corresponding frame giving the best-predicted result
is selected [16]. Then the selected frame was manually labeled
for the subsequent model fine-tuning. By this, BubbleNet
can effectively improve the performance of one-shot learning-
based video segmentation.

The process of how BubbleNet chooses the guidance frame
is illustrated in Algorithm 1. Our later experiments will
confirm that the fine-tuning process with the selected labeled
frame can boost the segmentation accuracy effectively.

Algorithm 1 BubbleNet guidance frame selection

Inputs:
Fre f = [ f1, f2, · · · , fn] {The video sequence};
K = [1, 2, · · · , i, · · · , n] {Frame indexes of the video
sequence};

Outputs:
fguide {The guidance frame of the video sequence};

Algorithm:
for i ← 1 to N do

fi , fi+1, Fre f , K← relative loss computation;
p ← The predicted relative loss by neural network;
if p > 0 then

swap fi , fi+1;
end if

end for
return fguide←The selected frame in the video sequence
after the iteration;

C. XFCN architecture
Although OSVOS [14], with its VGG backbone and the

skip-connection architecture, showed good feature represen-
tation for segmentation, it can be further improved in terms

of computation efficiency and segmentation accuracy. Aiming
at finding an effective network that can output accurate seg-
mentation results with less computation time, and inspired by
Xception65 backbone [22] of DeeplabV3+ [23], in this paper,
we propose XFCN to encode and decode the extracted CNN
features for video segmentation. The overall architecture of
the network can be seen in Fig. 1.

In DeeplabV3+, the original Xception-65 backbone has 65
layers to extract visual features, which is time-consuming
during the training or fine-tuning phrases. In our work, after
experimenting on different layer-length backbone, a 20 layers’
Xception-lite was proposed to extract features in XFCN, which
incorporates residual connections and separable convolutions
can achieve best trade-off between the accuracy and speed.

As demonstrated in Fig. 2, the proposed Xception-lite
comprises five stages, the first three stages mainly focus on
spatial feature extraction (e.g. edge, texture, shape) whilst the
last two stages pay more attention to the semantic information
extraction. Between different stages, MaxPooling operation is
used to downsample the feature maps.

Generally, the texture information with high spatial resolu-
tion are represented in those front layers. With the layers going
deeper, the semantic and abstract information are extracted.
Leveraging features from different levels is significantly ben-
eficial to video segmentation. According to our experimental
comparison, five outputs (feature maps) from shallow layers to
deep layers were selected and concatenated together for video
segmentation.

As these five outputs have different sizes, they were firstly
upsampled to the same size as the video frame and then con-
catenated to a feature map Xf inal with multiple dimensional
information:

Xf inal =U{X5}↑4++U{X8}↑8++U{X11}↑16++U{X17}↑16

++U{X20}↑32
(1)

where X5,· · · ,X20 are feature maps from five stages and their
subscripts indicate the corresponding layer numbers; U{X}↑4,
· · · , U{X}↑32 are the upsampling operation with corresponding
rate (i.e. 4, 8, 16, 32); ++ means concatenation. Subsequently,
multiple dimensional of Xf inal will be linearly fused by convo-
lution with 1×1 kernel to form a one-dimensional probability
map as the final result.

D. Post-processing

Although the proposed one-shot learning-based approach
can segment the animals from videos, there are some noises
and edge blurring problems. In order to further improve
the segmentation performance, two popular post-processing
methods, namely, TTA and CRF were used. TTA relies on
augmenting test datasets, then performs the prediction both
on the original and on the augmented versions of the image,
followed by merging the predictions [24]. CRF is a discrimi-
native statistical modelling method that is used when the class
labels for different inputs are not independent [25], which is
also a useful post-processing tool to improve the performance
of segmentation.
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Fig. 2: Architecture of the proposed Xception-lite.

For the TTA method, flip data augmentation was imple-
mented on testing videos, and segmentation was then per-
formed on the original and augmented data. The final seg-
mentation results were obtained from averaging all predictions
of augmented videos, which can remove some outliers and
slightly improve the segmentation performance.

In terms of CRF, fully connected CRF was used to refine
the coarse output based on the label at each location itself, and
their neighboring positions’ labels and locations. The CRF is
characterized by Gibbs distribution of a form:

P(X = x | f ) =
1

Z( f )
e−E(x | f ) (2)

where x is the segmentation results for one frame; f is the
original frame; E(x) is the energy function, which is composed
of unary potential and pairwise potential; Z( f ) is the partition

function which is just the sum of all e−E(x | f ). The energy
function is calculated as the following equation:

E(X | f ) =
∑
i

ψu(xi)+
∑
i, j

ψp(xi, yj) (3)

where
∑

i ψu(xi) and
∑

i, j ψp(xi, yj) are unary and pairwise
potential, respectively; xi, yj are segmentation results for pixels
of the frame f .

E. One-shot learning-based animal video segmentation

In our proposed one-shot learning-based animal video seg-
mentation, the selected guidance frame is manually labeled and
fed into the XFCN for fine-tuning. The XFCN is pre-trained
on ImageNet [26], extended PASCAL VOC 2012 [8], and
DAVIS 2016 [21] training datasets before fine-tuning. After
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fine-tuning, CNN features were extracted from XFCN. Then
five different layers’ features were fused for animal video
segmentation. In the final step, the obtained segmentation
results from XFCN were post-processed by using TTA and
CRF to further improve the segmentation accuracy.

Considering that there are usually a larger number of
background pixels than that of foreground (i.e. animal) pixels
in animal videos, in our model training, a class-balanced loss
function [27] was used to solve the problem of imbalance
between the foreground and background. The loss function
equation was listed as below:

Lmod = −β
∑
j∈Y+

log P
(
yj = 1 | f

)
−(1− β)

∑
j∈Y−

log P
(
yj = 0 | f

)
(4)

where f is the input frame, yi∈{0, 1}, Y+ and Y− represent
pixels with positive and negative labels respectively; Y repre-
sents all pixels and Y=Y++Y−; β = |Y− |

|Y | is the key weighting
factor for balancing the pixels.

III. EXPERIMENTAL SETUP

A. The used dataset

To validate the proposed one-shot learning-based animal
video segmentation approach, experiments were conducted on
DAVIS 2016 animal dataset. The DAVIS 2016 animal dataset
was constructed by selecting the animal-related videos from
public-opened DAVIS 2016 validation dataset [21], which
includes seven different animal videos (i.e. blackswan, camel,
cows, dog, goat, horse and libby). Each video has different
frame numbers varying from 49 to 104 with the resolution
854×480 (Table I). The segmentation for these animal videos
is challenging considering that the complex background, oc-
clusions, motion blur, and shadow influence.

TABLE I: Description of the dataset used in the experiments

Animal video No. frames Resolution Description

Blackswan 50

854×480

Dynamic background
Complicated shape

Camel 90 Confusing background
Complicated shape

Cow 104 Complex background
Occlusions

Dog 60 Blurry video
Confusing background

Goat 90 Complicated shape
Confusing background

Horse 50 Fast motion
Occlusions

Libby 49 Blurry background
Strong occlusions

B. Network training and fine-tuning details

In our work, all experiments were conducted on a computer
equipped with NVIDIA RTX 2080Ti GPU and Ryzen 5
3600 CPU@3.6 GHz. The proposed one-shot learning-based
approach was firstly pre-trained on several open datasets,
then fine-tuned with the labeled guidance frame for the video
segmentation. According to the datasets used, the pre-training

process can be classified as base training and objectness
training.
• Base training: XFCN was trained on the PASCAL VOC

2012 dataset [8] with 632 images and an extended dataset
with 11,208 training images [28]. For the base training
on these two datasets, flipping and zooming in data
augmentation were used. The used optimization algorithm
was Stochastic Gradient Descent (SGD) with learning
rate of 1e-6, and 25000 iterations occurred at this stage.
After base training on these two large image segmentation
datasets, the network has ability to segment foreground
objects from the background.

• Objectness training: Although the network can segment
objects from the background after base training, it still has
some noise and blurry contour in the segmented images.
Therefore, the XFCN is further pre-trained using DAVIS
2016 training dataset for pixel objectness. Noticeably,
animal types in the test videos are not included in the
training videos. Due to the relatively small size of used
dataset (30 videos), a data augmentation (i.e. random
flipping, zooming in, cropping, brightness and contrast
change) was implemented to avoid over-fitting. For the
objectness training, SGD optimization algorithm with
momentum 0.9 was adopted, and the learning rate was
gradually decreased from 10−6 to 2.5×10−7. The whole
objectness training process had 20000 iterations.

After pre-training, the proposed network was fine-tuned using
the guidance frame (manually labeled) from testing videos.
Here, data augmentation–random flipping, zooming, cropping,
brightness and contrast change were implemented. The learn-
ing rate was set to 10−7. As the fine-tuning time has a large
influence on efficiency, our proposed XFCN uses light-weight
architecture and separable convolution to accelerate the fine-
tuning process. In addition, different fine-tuning iterations
were also investigated. According to our experiments, 200
iterations can achieve the best trade-off between speed and
accuracy for DAVIS 2016 animal dataset.

C. Metrics

In our experiments, three popular metrics from DAVIS video
segmentation competition, namely, region similarity regarding
intersection over union J , contour accuracy F and temporal
instability of the masks T were used in the measures of our
experimental results.

Given Y is an output segmentation and G is the correspond-
ing ground-truth mask, J is defined as J = Y∩G

|Y∪G | , which
measures the how well the pixels of ground truth and predic-
tion match. The contour accuracy F contains contour-based
precision Pc and recall Rc , which is define as F = 2PcRc

Pc+Rc
.

The temporal instability T is used to estimate the deformation
between frames. The occlusions and very strong deformations
will lead to high temporal instability.

In our experiments, the values of mean and recall were
calculated for both J and F . Here, mean is the average results
of all frames in the video; recall is to calculate the average
results only for frames with a high score over a threshold (0.5
in our experiments).
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IV. EXPERIMENTAL RESULTS

A. Animal video segmentation results

Our proposed approach was firstly compared with the state-
of-art OSVOS and OSMN methods on DAVIS 2016 animal
dataset [21]. Here, the evaluation measures of OSVOS and
OSMN were directly computed from their published segmen-
tation video results [14, 15]. For OSVOS + GFS, we integrated
the same GFS module as our method to OSVOS. As illustrated
in Table II, the achieved J (Mean) of our proposed approach
was 89.5%, which is 0.8%, 2.2%, and 10.5% higher than that
of the OSVOS + GFS, OSVOS and OSMN respectively; the
F (Mean) of our method is 93.2%, which is 3.2% higher than
OSVOS + GFS, 1.7% over the OSVOS, and 12.0% better
than the OSMN. In addition, our one-shot learning-based video
segmentation achieves 100% recall of J and F with the lower
T (8.3%), which outperforms the OSVOS + GFS, OSVOS and
OSMN. Compared to OSVOS + GFS, OSVOS and OSMN, our
approach achieves better overall performance in the animal
video segmentation task. As the run-time of CRF module
accounts for the large proportion in the total computing time,
our proposed approach can work in two modes: the fast mode
can be applied in real-time by removing the CRF from the
POST module; the slow mode (complete model) can achieve
the highest accuracy with more fine-tuning iterations, which
is suitable for the scenario that the object to be segmented is
known beforehand.

In terms of time efficiency, according to Table II, in fast
mode (Ours-CRF), our approach achieves an J(Mean) of
88.7% and an F (Mean) 92.6% with a speed of 0.57 s/frame,
which outperforms OSVOS (87.3% J and 91.5% F with
roughly 9 seconds per frame). With shorter running time, it
also obtains 2.6% higher F (Mean) and lower T (7.4%) than
OSVOS + GFS. In terms of OSMN, although it is slightly
faster than our model, the J(Mean) and F (Mean) of OSMN
are 9.7% and 11.4% below our approach.

Fig. 3 shows the qualitative segmentation samples of our
proposed approach on libby, goat and cows sequences. It
can be seen that animals are segmented with high accuracy,
even when they are walking or heavily occluded by trees.

TABLE II: Comparison of video segmentation results (%)

Metrics
Methods OSMN OSVOS OSVOS+GFS Ours Ours-CRF

(Fast mode)

J(Mean)↑ 79.0 87.3 88.7 89.5 88.7

J(Recall)↑ 90.7 99.1 99.0 100.0 100.0

F(Mean)↑ 81.2 91.5 90.0 93.2 92.6

F(Recall)↑ 90.2 100.0 96.3 100.0 100.0

T↓ 9.3 13.8 8.5 8.3 7.4

Time/frame (s) 0.14 9.00 1.17 1.16 0.57

* Ours is the complete model (slow mode).
** Ours-CRF means the approach without CRF module (fast mode).
*** In OSVOS+GFS, the used post processing is CRF. Note that since the
code of OSVOS with its original post-processing module is not publicly
available, here we use CRF instead for comparison purposes.

Additionally, Fig. 4 demonstrates the comparison of different
methods’ qualitative results on four sequences in DAVIS
2016 animal dataset. Our approach has fewer outliers, false
predictions and sharper contours than OSVOS, OSMN in
terms of the occlusion, fast movement and confusion colors
in the scene.

V. ABLATION STUDY

Our approach contains several vital modules, namely, GFS,
XFCN, and POST, which contribute to improving the video
segmentation results. For analyzing and quantifying the signif-
icance and effects of each module in our approach, comparison
experiments were conducted by removing some modules, and
those ablated versions were applied to the DAVIS 2016 animal
dataset [21].

A. The influence of GFS and POST

We firstly investigated the influence of GFS and POST for
video segmentation performance. Table III illustrates the seg-
mentation results with and without GFS and POST modules.

It can be seen that an J(Mean) of 87.7% and an F (Mean)
of 91.1% are achieved without GFS, which is 1.8% and
2.1% lower than that of complete model respectively. When

Fig. 3: Qualiative segmentation samples of the proposed one-shot learning based video segmentation.
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Fig. 4: Comparison of segmentation results among OSVOS, OSMN and our proposed approach.

the POST module is removed, the achieved J(Mean) and
F (Mean) are 88.0% and 92.0%, which is 1.5% and 1.2%
lower than that of the complete model, respectively. It demon-
strates that GFS plays a more important role in our video
segmentation approach than POST. GFS and POST modules
contribute 4.6% accuracy on J(Mean). In addition, the lowest
time instability occur at the complete model. Therefore, the
segmentation stability in video sequences has been enhanced
with these two extended modules as well.

TABLE III: Comparison with pipelines without some sub-
blocks (%)

Metrics
Methods Ours -GFS -POST -GFS-POST

J(Mean)↑ 89.5 87.7 88.0 84.9

F(Mean)↑ 93.2 91.1 92.0 87.6

T ↓ 8.3 9.7 8.5 9.6

> ‘-GFS’ means the proposed approach without GFS module; ‘-POST’
means the proposed approach without POST module; ‘-GFS-POST’ means
the proposed approach without GFS and POST modules.

B. The influence of pre-training and fine-tuning

In order to further analyze the influence of pre-training and
fine-tuning, the performance of our approach without base
training (BT), objectness-training (OT) and fine-tuning (FT)
were investigated. Note that GFS and POST were implemented
for all cases in Table IV. As shown in Table IV, for DAVIS
2016 animal dataset, BT, OT and FT improve the performance
2.0%, 4.5% and 19.7% of J(Mean) and 2.1%, 5.4% and
21.0% of F (Mean). Obviously, FT plays the most significant
role in improving the model’s overall performance, since FT
informs the model what the specific object is. The worst
time stability also occurs at the pipeline without FT and
the complete model has the lowest T value (the best time
stability).

TABLE IV: Comparison with pipelines without one of training
process (%)

Metrics
Methods Ours -BT -OT -FT

J(Mean)↑ 89.5 87.5 85.0 69.8

F(Mean)↑ 93.2 91.1 87.8 72.2

T↓ 8.3 8.7 9.6 25.9

> ‘-BT’ means the proposed approach without base training; ‘-OT’
means the proposed approach without objectness training; ‘-FT’ means
the proposed approach without fine-tuning.

VI. CONCLUSIONS AND FUTURE WORK

An accurate and real-time animal video segmentation
method is crucial to automatic behavior and health monitoring
of animals. For segmenting animal in the video with only
one labeled frame, an effective one-shot learning-based video
segmentation approach was proposed. Our approach selected
one guidance frame for manual labeling to leverage the effects
of the fine-tuning process on test videos. Xception-based
FCN was used to extract features and generate segmenta-
tion results. Then the post-processing module improved the
segmentation results by removing noise and sharpening the
contour. According to the experiments on DAVIS 2016 animal,
our proposed approach achieved 89.5% J(Mean) with a
relatively fast speed, and outperformed the state-of-art methods
OSVOS (87.3% J(Mean)) and OSMN (79.0% J(Mean)).
Extensive ablation studies have been performed to validate the
role of several modules in enhancing the performance of the
whole approach. Overall, our approach achieved a good trade-
off between speed and accuracy for one-shot animal video
segmentation, and can be adapted to applications with different
timing requirements. For future work, the spatial-temporal
information in video sequences will be exploited to potentially
improve the segmentation performance and computational
efficiency.
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