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Abstract— In hyperspectral image (HSI) classification, spatial
context has demonstrated its significance in achieving promis-
ing performance. However, conventional spatial context-based
methods simply assume that spatially neighboring pixels should
correspond to the same land-cover class, so they often fail
to correctly discover the contextual relations among pixels in
complex situations, and thus leading to imperfect classification
results on some irregular or inhomogeneous regions such as class
boundaries. To address this deficiency, we develop a new HSI
classification method based on the recently proposed graph con-
volutional network (GCN), as it can flexibly encode the relations
among arbitrarily structured non-Euclidean data. Different from
traditional GCN, there are two novel strategies adopted by our
method to further exploit the contextual relations for accurate
HSI classification. First, since the receptive field of traditional
GCN is often limited to fairly small neighborhood, we proposed
to capture long-range contextual relations in HSI by performing
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successive graph convolutions on a learned region-induced graph
which is transformed from the original 2-D image grids. Second,
we refine the graph edge weight and the connective relationships
among image regions simultaneously by learning the improved
similarity measurement and the “edge filter," so that the graph
can be gradually refined to adapt to the representations generated
by each graph convolutional layer. Such updated graph will in
turn result in faithful region representations, and vice versa. The
experiments carried out on four real-world benchmark data sets
demonstrate the effectiveness of the proposed method.

Index Terms— Contextual relations, graph convolutional
network (GCN), graph updating, hyperspectral image (HIS)
classification.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) has recently received
considerable attention in a variety of applications such

as military target detection, mineral identification, and disaster
prevention [1], [2]. In contrast to traditional panchromatic
and multispectral remote-sensing images, HSI consists of
hundreds of contiguous spectral bands, which are helpful to
distinguishing the targets with different materials. Thanks to
the high spectral resolution, HSI has shown its advantages in
identifying various land-cover types or targets [3].

Up to now, significant efforts have been made in developing
diverse kinds of HSI classification methods. The early-staged
algorithms are mainly based on the simple combination of
spectral signatures and conventional pattern recognition meth-
ods, such as nearest neighbor classifier and support vector
machines (SVMs) [4], [5]. However, these methods isolatedly
classify each image pixel without considering the spatial cor-
relation among the pixels, so they will encounter the spectral
variability problem [6] and generate imperfect classification
results.

To address this shortcoming, the spatial context naturally
becomes another type of useful information in addition to
the spectra. It is now commonly acknowledged that the
introduction of spatial context offers probability to improve
HSI classification results and is the key to generating dis-
criminative features for classification [7]; hence, there is a
huge demand for the algorithms which can effectively discover
and incorporate spatial context. During the past decades,
researchers have reported various HSI classification methods
utilizing spatial context. The first attempt was accomplished
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by Kettig and Landgrebe [8], where the well-known ECHO
classifier is proposed to extract contextual information. After
that, Markov random field (MRF), which is an undirected
graphical model [9], became a popular approach to include
spatial context for HSI classification. For instance, in [10],
a relative homogeneity index for each pixel is introduced in
MRF-based classification to determine an appropriate weight-
ing coefficient for the contextual contribution. Apart from this,
a novel framework combining SVM and MRF is proposed
for contextual HSI classification [11]. Although the spatial
context exploited by MRF improves the classification results
in smooth image areas [12], the aforementioned methods
do not explicitly investigate the contextual relations among
individual pixels (or regions), and they only implicitly assume
that nearby pixels have a large probability to take the same
class label regardless whether they are in object boundary
regions or homogeneous regions [13]. As a result, the semantic
meaning carried by image patches cannot be well preserved,
and the classification errors may appear within the object
area of a certain class. Moreover, the pixels around some
irregular or inhomogeneous regions are also very likely to
be misclassified due to the inappropriate utilization of local
contextual information. Consequently, the simple assumption
of smoothness and homogeneity over the whole image is
unreasonable.

Different from MRF-based models which are usually uti-
lized for postprocessing-based classification, texture plays an
important role in spatial preprocessing for HSI, particularly
when the classes of interest are quite similar [14], [15].
A widely adopted approach to extract texture is processing
each spectral band independently via using the existing texture
methods [16], which inevitably ignores the fact that each
pixel is characterized in a multidimensional space. To take
into account the multidimensional nature, some researchers
focused on introducing information of interband dependen-
cies. For example, in [17], the texture is approached from
the perspective of a Gaussian mixture generative process by
assuming that a given image can be generated with a set of
texture image primitives. Besides, Safia and He [14] proposed
a texture descriptor to extract interband dependencies among
a large number of spectral bands and exploit the spatial
variations among different bands simultaneously. However,
the texture information fails to capture the detailed relations
among image pixels and can only be used to characterize
the homogeneity of image regions. As a consequence, high-
level information cannot be directly generated using texture.
Moreover, the contextual relations exploited by conventional
texture-based methods are often restricted in a small local
region, and thus it is unable to capture the long-range depen-
dencies among faraway pixels.

To alleviate the aforementioned defects and effectively
exploit the contextual relations, in this article, we propose
a novel “context-aware dynamic graph convolutional net-
work" (CAD-GCN). In our CAD-GCN, the recently proposed
GCN [18] is employed as the backbone. As the extension of
convolutional neural network (CNN) for nongrid data, GCN
is able to aggregate features and propagate information across
graph nodes. Consequently, the convolution operation of GCN

is adaptively dominated by the neighborhood structure and
can be applied to the non-Euclidean irregular data based on
the graph which encodes contextual relations among the graph
nodes. As a result, the complex regions such as target bound-
aries in HSI can be flexibly preserved by GCN. Meanwhile,
through successively aggregating feature information based on
the contextual relations, high-level features can be naturally
extracted with GCN.

To capture the long-range dependencies, our proposed
method learns to project the original HSI into a region-
induced graph and encodes contextual relations among image
regions, by which the receptive field of GCN will not be
merely limited to a fairly small region. Then inference can
be performed on the graph through passing messages between
regions and along the edges connecting them. Therefore, this
inference can not only update the region features, but also
connect the regions which are originally far away in the
2-D space by successive graph convolutions. As a result,
the long-range relations between faraway image regions can
be effectively exploited. After that, the proposed CAD-GCN
can learn an effective graph representation with only a small
number of nodes. Finally, the learned region-level features
can be interpolated into the 2-D feature map by reverting the
pixel-to-region assignment from the previous graph projection
step, so that the pixel-level features can be obtained to fully
comply with the existing networks. With the above graph
projection and reprojection framework, the formed regions
as well as their features are flexibly learned by the net-
work in an end-to-end way, by which the negative impact
of inaccurate precomputed region features can be effectively
rectified.

Furthermore, in the proposed CAD-GCN, we also enable
the graph to be updated dynamically, to iteratively refine
the contextual relations among regions. The update process
can be divided into two parts, namely the refinement of
node similarities and connective relationships, respectively.
Considering that the predefined graph based on the Euclidean
distance may not be suitable for measuring their intrinsic
similarities [19], we intend to learn the improved similarity
measurement. To be specific, the graph can be dynamically
updated to adapt to the region representations generated by
each graph convolutional layer, which will in turn produce
the improved representations. In addition, we further refine
the learned graph by introducing the “edge filter" which can
filter out the incorrect interclass edges, since the graph may
contain improper interclass connections, especially around the
boundaries between different land covers.

It is noted that one previous work “multiscale dynamic
GCN" (MDGCN) [20] also utilizes GCN for HSI classifi-
cation. However, this article is very different from MDGCN
in two aspects. First, in MDGCN, the regions are coarsely
formed via using a heuristic superpixel generation technique,
which might be imprecise and will not change throughout the
classification process. In contrast, the regions in our CAD-
GCN are adaptively learned by the projection and reprojection
steps, so that they can well fit the object appearances in
the image. Second, different from MDGCN which fails to
refine the connective relationships among graph nodes, our
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Fig. 1. Framework of our proposed CAD-GCN. (a) Original HSI. (b) Five regions from the original HSI obtained via pixel-to-region assignment. (c) and
(d) Two dynamic graph convolutional layers, where the circles with different colors correspond to different image regions (i.e., graph nodes) and the gray lines
represent graph edges. From (c) to (d), both the edge weight and the connective relationships among regions can be dynamically refined during the convolution
operation, and thus the improved graph structure and node representations can be obtained. In our model, softplus [21] is utilized as the activation function.
In (e), the learned graph representation can be interpolated back into 2-D image grids based on the region-to-pixel assignment, and then the cross-entropy
loss is used to penalize the label differences between the network output and the originally labeled pixels.

CAD-GCN dynamically updates the graph edges connecting
different image regions, so that the contextual relations can be
exploited more properly.

To sum up, the proposed CAD-GCN employs three key
techniques to effectively and precisely characterize contextual
relations: 1) the incorporation of GCN for sufficiently exploit-
ing contextual relations among pixels; 2) the employment of
the flexible graph projection and reprojection framework for
exploring long-range contextual relations and generating faith-
ful region features; and 3) The utilization of dynamic graph
refinement for accurately characterizing contextual relations
and timely finding precise region representations. Intensive
experimental results on four typically used data sets reveal
the effectiveness of the proposed CAD-GCN.

II. PROPOSED METHOD

This section details the proposed CAD-GCN model,
of which the pipeline is presented in Fig. 1. Given an input
image [Fig. 1(a)], we first obtain its region features [Fig. 1(b)]
by learning to project the original image with 2-D pixel grids
into graph data. Then dynamic graph convolution [Fig. 1(c)
and (d)] is conducted to refine the acquired region graph, along
with encoding features for each region. Finally, the classifica-
tion result [Fig. 1(e)] is produced by interpolating the learned
graph representation into 2-D grids based on the region-
to-pixel assignment. The critical operations in the proposed
CAD-GCN will be detailed by presenting the GCN backbone
(Section II-A), explaining the graph projection with pixel-
to-region assignment (Section II-B), describing the dynamic
graph refinement (Section II-C), and elaborating the graph
reprojection with region-to-pixel assignment (Section II-D).

A. GCN

Inspired by CNN, GCN [18] is a multilayer neural network
which directly operates on a graph and aims to extract high-
level features through aggregating feature information from the
neighborhoods of graph nodes. In GCN, an undirected graph

is formally defined as G = (V, E) with V and E denoting the
sets of nodes and edges, respectively. The notation A denotes
the adjacency matrix of G which indicates the existence of an
edge between each pair of nodes, and its (i, j)th element can
be calculated as

Ai j =
{

e−γ ‖xi −x j ‖2
, if xi ∈ N(x j ) or x j ∈ N(xi )

0, otherwise
(1)

where the parameter γ is empirically set to 0.2 in our
experiments, xi and x j represent two graph nodes (i.e., image
regions in this article), and N(x j ) is the set of neighbors of
x j .

First, to conduct node embedding for G, spectral filtering
on the graph is defined, which can be expressed as the
multiplication of a signal x with a filter gθ = diag(θ) in the
Fourier domain, that is

gθ � x = UgθU�x (2)

where U is the matrix of eigenvectors of normalized graph
Laplacian L = I−D−(1/2)AD−(1/2) = U�U�. Here � denotes
a diagonal matrix composed of the eigenvalues of L, D is the
degree matrix with the diagonal element Dii = ∑

j Ai j , and
I represents the identity matrix with proper size throughout
this article. Then gθ can be understood as a function of
eigenvalues of L, i.e., gθ (�). To reduce the computational
cost of eigendecomposition in (2), Hammond et al. [22]
approximated gθ(�) using a truncated expansion in terms of
Chebyshev polynomials Tk(x) up to K th order, namely

gθ ′(�) ≈
K∑

k=0

θ ′
k Tk(�̃) (3)

where θ ′ denotes a vector of Chebyshev coefficients, and
�̃ = (2/λmax)� − I with λmax being the largest eigenvalue
of L. According to [22], the Chebyshev polynomials can be
defined as Tk(x) = 2xTk−1(x)− Tk−2(x), where T0(x) = 1 and
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T1(x) = x. Hence, we have the convolution of a signal x as

gθ ′ � x ≈
K∑

k=0

θ ′
k Tk(L̃)x (4)

where L̃ = (2/λmax)L − I is the scaled Laplacian matrix.
Equation (4) can be easily verified according to the fact that
(U�U�)k = U�kU�. As is can be observed, this expres-
sion is a K th-order polynomial regarding the Laplacian (i.e.,
K -localized). In other words, the filtering only depends on
the nodes that are at most K steps away from the central
node. In our CAD-GCN model, the first-order neighborhood
is considered, that is K = 1, and thus (4) turns to a linear
function on the graph Laplacian spectrum with respect to L.

Afterward, a neural network based on graph convolutions
can be built by stacking multiple convolutional layers in the
form of (4), where each layer is followed by an elementwise
nonlinear operation (i.e., softplus(·) [21]). By this way, we can
derive diverse classes of convolutional filter functions through
stacking multiple layers of the same configuration. With the
linear formulation, Kipf and Welling [18] further approximated
λmax ≈ 2, considering that the network parameters can adapt
to this change in scale during the training process. Therefore,
(4) is simplified to

gθ ′ � x ≈ θ ′
0x + θ ′

1(L − I)x = θ ′
0x − θ ′

1D− 1
2 AD− 1

2 x (5)

where θ ′
0 and θ ′

1 are two free parameters. Since reducing the
number of parameters helps to avoid overfitting, (5) is further
converted to

gθ � x ≈ θ(I + D− 1
2 AD− 1

2 )x (6)

by letting θ = θ ′
0 = −θ ′

1. As I+D−(1/2)AD−(1/2) has the eigen-
values in the range [0, 2], repeatedly applying this operator
will result in numerical instabilities and exploding/vanishing
gradients in a deep network. To solve this deficiency, Kipf
and Welling [18] performed the renormalization trick I +
D−(1/2)AD−(1/2) → D̃−(1/2)ÃD̃−(1/2) with Ã = A + I and
D̃ii = ∑

j Ãi j . As a result, the convolution operation of GCN
model can then be expressed as

H(l) = σ(ÃH(l−1)W(l)) (7)

where H(l) denotes the output of the lth layer, σ(·) represents
an activation function, such as the softplus function [21] used
in our proposed CAD-GCN, and W(l) is the trainable weight
matrix involved in the lth layer.

B. Pixel-to-Region Assignment

Although GCN is able to capture contextual relations
among image pixels, the receptive field of pixel-level graph
convolution is often limited [23]. To effectively character-
ize long-range relations among pixels, we intend to move
beyond regular 2-D image grids and encode contextual rela-
tions among regions, since the dependencies among image
regions are of much longer than those captured by pixel-
level convolutions [23]. The main idea is learning pixel-to-
region assignment which groups pixels with similar features

into coherent regions, to capture contextual relations among
the regions originally far away in the original 2-D space.

Different from the conventional region-based methods
[13], [24] which start by coarsely grouping pixels into certain
regions, we aim at learning to transform the original HSI into
a region graph, and this process is called graph projection.
Specifically, a soft assignment matrix which is parameterized
by V ∈ R

d×c will be learned by the network to assign each
pixel zi ∈ R

d to its neighboring regions, where d denotes
the spectral dimensionality of each pixel, c is the number of
image regions, and each column vi ∈ R

d of V corresponds to
the anchor point of a region. Then the soft assignment matrix
P ∈ R

n×c can be computed as

Pi j =
{

e−γ ‖zi −v j ‖2
, if v j ∈ Ñ(zi )

0, otherwise
(8)

where n is the number of image pixels, Ñ (zi) denotes the set
of neighboring regions connected to the pixel zi . To be more
specific, Ñ (zi) includes not only the central region where zi

resides, but also the regions adjacent that are to the central
one. In (8), the element Pi j defines the soft assignment of a
pixel zi to v j . With the learned pixel-to-region assignment,
the region feature x j can be encoded by

x j =
∑

i Pi j zi∑
i Pi j

. (9)

By learning the features for each region, the negative impact
of inaccurate precomputed region features can be reduced.

However, there still exists an optimization challenge, since
most or even all of the image pixels may be assigned to a
single region in some extreme circumstances. This is probably
because the anchor point matrix for image regions V is
initialized improperly, which will subsequently result in an ill-
posed assignment matrix P. Moreover, the imbalanced assign-
ment will lead to unfavorable graph structure, and thus the
contextual relations cannot be sufficiently exploited. To cope
with this problem, instead of initializing V randomly, we take
the spatial information into consideration and initialize V by
utilizing a segmentation technique. Specifically, the simple lin-
ear iterative clustering (SLIC) algorithm [25], which has been
widely used for image segmentation, is employed to obtain the
initial regions. Herein, the average spectral signatures of the
pixels involved in the corresponding region will be utilized to
initialize each vi , and the matrix V can be further updated via
using gradient descent. This segmentation-based initialization
technique can yield more stable training performance and
produce more meaningful graph representation than random
initialization [23]. Fig. 2 exhibits the pixel-to-region assign-
ment regarding a pixel zi . With the learned region features,
the corresponding region graph can be naturally acquired using
(1). After that, the region features X will be recomputed by
performing graph convolution [18] which aggregates infor-
mation along the edges. Moreover, through successive graph
convolutions, long-range dependencies among the regions that
are far away in the original 2-D space can be captured.
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Fig. 2. Illustration of the soft pixel-to-region assignment used in our CAD-
GCN model. Each of the initialized image regions are surrounded by yellow
lines, and the blue arrows denote the assignment regarding the pixel zi to its
neighboring regions.

C. Dynamic Graph Refinement

The performance of graph convolution largely depends
on the quality of the predefined graph which encodes the
similarities and connective relationships among graph nodes.
However, the Euclidean distance, which is widely used for
characterizing node similarities [e.g., in (1)], may not be
a good metric for graph structured data [19]. To address
this weakness, we aim to learn an improved distance metric.
Specifically, we construct a symmetric positive semidefinite
matrix M = Wd W�

d with Wd being a trainable weight matrix.
Then the generalized Mahalanobis distance can be formulated
as follows:

D(xi , x j) =
√

(xi − x j)
�M(xi − x j). (10)

Afterward, the adjacency matrix A in (1) can be rewritten as

Ai j =
{

e−γ (D(xi ,x j ))
2
, if xi ∈ N(x j ) or x j ∈ N(xi )

0, otherwise.
(11)

Since the graph representation is updated along with the
graph convolutional layers, learning a single matrix M is
insufficient to accurately measure node similarities for all the
layers. Therefore, we adaptively learn the symmetric positive
semidefinite parameter matrix M(l) for the adjacency matrix
A(l) which is utilized in the lth layer, to acquire the improved
node similarities. Then (11) can be rewritten as

A(l+1)
i j =

{
e−γ (D(l)(h(l)

i ,h(l)
j ))2

, if xi ∈ N(x j ) or x j ∈ N(xi )

0, otherwise
(12)

where h(l)
i is the representation of xi generated by the lth

layer with h(0)
i = xi , and D(l)(h(l)

i , h(l)
j ) can be formulated as

((h(l)
i − h(l)

j )
�

M(l)(h(l)
i − h(l)

j ))1/2.
During graph construction, connections among the regions

from different classes may be incorporated, which will lead to
the aggregation of interclass feature information and further
degrade the discriminability of graph convolution results.
To overcome this deficiency, we propose to use the edge
filter, which aims to refine the contextual relations by reducing
undesirable interclass edges of the graph. Since the intraclass

examples are generally more similar than the interclass ones,
it is believed that the element A(l)

i j with relatively small value is
more likely to represent interclass relations than the A(l)

i j with
large value. Therefore, we employ a threshold β(l) for each
graph convolutional layer to filter out the interclass relations
and reduce the adverse effect of interclass feature aggregation.
The selection of β(l) will be discussed in Section III. Specifi-
cally, in the lth layer, the edge filter F(·) used can be simply
expressed as

F(A(l)
i j ) =

{
A(l)

i j , if F(A(l)
i j ) > β(l)

0, otherwise.
(13)

In practice, constraining the number of parameters can be
beneficial to address the problem of overfitting [18], and thus
we set β(l) = β for all the layers. With the edge filter, the graph
convolutional layer can then be reformulated as

H(l) = σ(F(A(l))H(l−1)W(l)) (14)

with H(0) = X.

D. Region-to-Pixel Assignment

After conducting the dynamic graph convolution on the
region level, we need to reproject the new region features
(i.e., the learned graph representation) H(L) back into 2-D
image with grids of pixels, and this process is called graph
reprojection. Specifically, the region-to-pixel assignment is
accomplished by linearly interpolating pixel features based on
the soft assignment matrix P, namely PH(L), where L denotes
the number of graph convolutional layers. It is noted that all
the reprojected pixels will have diverse feature representations,
even if some of them are assigned to the same region. There-
fore, the contextual details of the HSI can be well preserved.

With the region-to-pixel assignment, the output of our
proposed CAD-GCN can be obtained as

O = PH(L). (15)

In our CAD-GCN model, the cross-entropy error is employed
to penalize the differences between the network output and the
labels of labeled pixels, namely

L = −
∑
g∈yG

C∑
f =1

Yg f ln Og f (16)

where C is the number of classes, yG denotes the set of indices
corresponding to the labeled pixels, and Y represents the label
matrix. Herein, we let Yi j be 1 if the pixel zi belongs to the
j th class, and 0 otherwise. It is noticeable that our model can
be trained via an end-to-end way. Similar to [18], full-batch
gradient descent is utilized to update the network parameters
for CAD-GCN. Algorithm 1 shows the summarization of our
proposed CAD-GCN classification method.

III. EXPERIMENTAL RESULTS

To test the effectiveness of the proposed CAD-GCN model,
in this section, we conduct exhaustive experiments on four
real-world benchmark data sets, namely Indian Pines, Univer-
sity of Pavia, and Salinas. We first compare CAD-GCN with
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Algorithm 1 Proposed CAD-GCN for HSI Classification
Input: Input image; number of iterations T ; learning rate η;

number of graph convolutional layers L;
1: Initialize the anchor point matrix V with SLIC algorithm;
2: // Train the CAD-GCN model
3: for t = 1 to T do
4: Learn the region features X through Eq. (8) and Eq. (9);
5: Dynamically refine the graph A(l) using Eq. (12) and

Eq. (13) along with the graph convolution operation
of Eq. (14);

6: Interpolate the region features back into the original 2D
grids by Eq. (15);

7: Calculate the error term according to Eq. (16), and
update the weight matrices W(l) (1 ≤ l ≤ L) using
full-batch gradient descent;

8: end for
9: Conduct label prediction via Eq. (14) and Eq. (15);

Output: Predicted label for each pixel.

other state-of-the-art methods, where four metrics including
per-class accuracy, overall accuracy (OA), average accuracy
(AA), and kappa coefficient, are used to evaluate the model
performance. Then we study the influence of the number of
labeled pixels on the classification performance. After that,
we investigate the impact of hyperparameters incorporated
by the proposed CAD-GCN. Finally, we present the ablation
study and also investigate the running time of our model.

A. Data Sets

The performance of our proposed CAD-GCN is evaluated
on four real-world benchmark data sets, i.e., the Indian Pines,1

the University of Pavia,2 the Salinas,3 and the Houston Uni-
versity,4 which will be introduced in the following.

1) Indian Pines: The Indian Pines data set was gathered
by Airborne Visible/Infrared Imaging Spectrometer sensor
in 1992, which records north-western India. This data set
consists of 145 × 145 pixels with a spatial resolution of
20 m × 20 m, and there are 220 spectral channels covering the
range from 0.4 to 2.5 μm. As a usual step, 20 water absorption
and noisy bands are removed, and the remaining 200 bands
are retained. The original ground truth of the Indian Pines data
set includes 16 land-cover classes, such as “Alfalfa," “Corn-
notill," “Corn-mintill," and so on. Fig. 3 exhibits the false
color image and ground truth map of the Indian Pines data
set. The amounts of labeled and unlabeled pixels of various
classes are listed in Table I.

2) University of Pavia: The University of Pavia data set
captures the Pavia University of Italy with the ROSIS sensor.
This data set consists of 610 × 340 pixels with a spatial
resolution of 1.3 m × 1.3 m and has 103 spectral channels in

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sen
sing_Scenes#Indian_Pines

2http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sen
sing_Scenes# Pavia_University_scene

3http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sen
sing_Scenes#Salinas_scene

4http://www.grss-ieee.org/community/technical-committees/data-fusion/

Fig. 3. Indian Pines. (a) False color image. (b) Ground truth map.

TABLE I

NUMBERS OF LABELED AND UNLABELED PIXELS OF

ALL CLASSES IN INDIAN PINES DATA SET

Fig. 4. University of Pavia. (a) False color image. (b) Ground truth map.

the wavelength ranging from 0.43 to 0.86 μm after removing
noisy bands. The University of Pavia data set includes nine
land-cover classes, such as “Asphalt," “Meadows," “Gravel,"
and so on, which are displayed in Fig. 4. Table II shows the
amounts of labeled and unlabeled pixels of each class.
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TABLE II

NUMBERS OF LABELED AND UNLABELED PIXELS
OF ALL CLASSES IN UNIVERSITY OF PAVIA DATA SET

Fig. 5. Salinas. (a) False color image. (b) Ground truth map.

3) Salinas: The Salinas data set is another classic HSI
which is collected by the AVIRIS sensor over Salinas Val-
ley, CA, USA. This data set comprises 204 spectral bands
(20 water absorption bands are removed) and 512 × 217
pixels with a spatial resolution of 3.7 m. The Salinas data set
contains 16 land-cover classes, such as “Fallow," “Stubble,"
“Celery," and so on. Fig. 5 exhibits the false color image
and ground truth map of the Salinas data set. The numbers
of labeled and unlabeled pixels of different classes are listed
in Table III.

4) Houston University: The Houston University data set,
which has been used in the 2013 GRSS Data Fusion Con-
test, was collected by the NSF-funded Center for Airborne
Laser Mapping over the Houston University campus and its
neighboring areas. This data set contains 349 × 1905 pixels
with a spatial resolution of 2.5 m and 144 spectral bands in
the range of 380–1050 nm. There are 15 land-cover classes
in the image, including “Healthy grass," “Water," “Running
Track," and so on, which are displayed in Fig. 6. Table IV
exhibits the numbers of labeled and unlabeled pixels of each
class.

TABLE III

NUMBERS OF LABELED AND UNLABELED PIXELS
OF ALL CLASSES IN SALINAS DATA SET

Fig. 6. Houston University. (a) False color image. (b) Ground truth map.

TABLE IV

NUMBERS OF LABELED AND UNLABELED PIXELS OF
ALL CLASSES IN HOUSTON UNIVERSITY DATA SET

B. Experimental Settings

In our experiments, the proposed CAD-GCN algorithm is
implemented by TensorFlow with Adam optimizer. For all the
adopted four data sets mentioned in Section III-A, usually
30 labeled pixels (i.e., examples) per class are randomly
chosen for training, and 15 labeled pixels are chosen if the
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TABLE V

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON INDIAN PINES DATA SET

corresponding class contains less than 30 pixels. The remain-
ing pixels in each class are regarded as unlabeled examples
during the training process and will be used as the test set
to evaluate the classification performance afterward. During
training, 90% of the labeled examples are used to learn the
network parameters and 10% are used as validation set to tune
the hyperparameters.

To evaluate the classification ability of our proposed
CAD-GCN, other recent state-of-the-art HSI classification
methods are also utilized for comparison. Specifically,
we employ three GCN-based methods, i.e., GCN [18],
spectral–spatial GCN (S2GCN) [26], and MDGCN [20],
together with one CNN-based methods such as CNN-pixel-
pair features (CNN-PPFs) [27]. Meanwhile, we also com-
pare the proposed CAD-GCN with two traditional HSI clas-
sification methods, namely multiband compact texture unit
(MBCTU) [15] and multiple feature learning (MFL) [29],
respectively. All these methods are implemented ten times with
different labeled pixels on each hyperspectral data set, and the
mean accuracies together with the standard deviations over
these ten independent implementations are reported.

C. Classification Results

To show the effectiveness of our proposed CAD-GCN, here
we quantitatively and qualitatively evaluate the classification
performance by comparing CAD-GCN with the aforemen-
tioned baseline methods.

1) Results on the Indian Pines Data Set: The quantitative
results acquired by different methods on the Indian Pines
data set are presented in Table V, and the highest record
regarding each class (i.e., each row) has been highlighted in
bold. As shown in Table V, the classical HSI classification
methods (i.e., MBCTU and JSDF) outperform GCN by a
substantial margin, which confirms the effectiveness of spatial
context. We also see that our proposed CAD-GCN achieves
the top-level performance among all the methods in terms of

OA, AA, and Kappa coefficient, and the standard deviations
are very small as well. Meanwhile, the proposed CAD-GCN
acquires stable and very high classification accuracies on most
of the land-cover classes. All these statistics demonstrate the
effectiveness of our CAD-GCN in HSI classification.

The classification maps generated by different methods on
the Indian Pines data set are exhibited in Fig. 7. To facilitate
the comparison among the investigated methods, the ground
truth map is also provided in Fig. 7(a). A visual inspec-
tion reveals that the proposed CAD-GCN method produces
a much more compact classification map and shows fewer
misclassifications than other methods. More concretely, in the
classification maps of GCN, S2GCN, and CNN-PPF, the errors
are almost uniformly distributed (the salt-and-pepper effect in
the homogeneous regions), while in the classification maps
of MDGCN and our proposed CAD-GCN, the errors only
appear in some highly heterogeneous areas, where the spatial
separability between classes is quite low. For instance, in the
classification maps obtained by GCN, S2GCN, and CNN-
PPF, the middle and the bottom left parts of the classifica-
tion maps which correspond to “Soybean-mintill" are highly
confusing. Moreover, by comparing CAD-GCN with JSDF,
we can also find that JSDF produces more errors around class
boundaries than our CAD-GCN method, which reveals the
good discriminability of the proposed CAD-GCN in boundary
regions.

2) Results on the University of Pavia Data Set: In Table VI,
different methods are compared on the aforementioned four
data sets, where per-class accuracy, OA, AA, and Kappa
coefficient are reported, and the best result in each row is
highlighted in bold. From Table VI, we can conclude that
the classification performance of our proposed CAD-GCN
method is superior to the competitors in terms of OA, AA,
and Kappa coefficient except MDGCN. In can be inferred
that the incorporation of multiscale cues enables MDGCN to
flexibly capture the variations of contextual distribution around
objects. Therefore, MDGCN is able to effectively perceive the
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Fig. 7. Classification maps obtained by different methods on Indian Pines data set. (a) Ground truth map. (b) GCN. (c) S2GCN. (d) MDGCN. (e) CNN-PPF.
(f) MBCTU. (g) JSDF. (h) CAD-GCN.

TABLE VI

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON UNIVERSITY OF PAVIA DATA SET

irregular regions in the University of Pavia data set. However,
the employment of multiscale contextual information also
makes MDGCN time consuming, which will be presented in
Section III-G. Differently, our CAD-GCN can achieve faithful
classification ability without utilizing information at different
scales. Specifically, compared with CNN-based method (i.e.,
CNN-PPF), the proposed CAD-GCN increases the OA by
4.19%, which suggests that the refined contextual relations
captured by our CAD-GCN is superior to the contextual
information characterized by the fixed convolutional kernels
of CNN.

Fig. 8 visualizes the classification results generated by the
seven different methods on the University of Pavia data set.
As depicted in Fig. 8(h), the classification map of our proposed
CAD-GCN are noticeably closer to the ground truth map
[see Fig. 8(a)] than other methods except MDGCN, which
is consistent with previous results in Table VI. Although
GCN and S2GCN are able to capture the relations among
graph nodes, they are not originally designed for accurately

encoding the contextual relations of HSI. Different from these
two methods, our CAD-GCN employs graph projection and
dynamic graph refinement operations to effectively exploit the
improved contextual relations. As a result, GCN and S2GCN
which use the fixed coarse graph convolution produce more
errors than CAD-GCN.

3) Results on the Salinas Data Set: Table VII presents
the experimental results of different methods on the Salinas
data set. The proposed CAD-GCN is obviously superior to
the CNN-based method (i.e., CNN-PPF) and all the other
competitors. For instance, in Table VII, CAD-GCN yields
approximately 8% higher OA than CNN-PPF. Especially in
some classes such as “Grapes untrained" (ID = 8) and
“Vineyard untrained" (ID = 15), the class-specific accuracies
of our proposed CAD-GCN are even approximately 20%
higher than those of the CNN-PPF. We also note that MBCTU
outperforms S2GCN, which can be inferred that the texture
information extracted by MBCTU is more powerful than the
contextual relations explored by S2GCN in distinguishing the
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Fig. 8. Classification maps obtained by different methods on University of Pavia data set. (a) Ground truth map. (b) GCN. (c) S2GCN. (d) MDGCN.
(e) CNN-PPF. (f) MBCTU. (g) JSDF. (h) CAD-GCN.

TABLE VII

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON SALINAS DATA SET

land covers of the Salinas data set. By contrast, the improved
contextual relations captured by our CAD-GCN still show their
advantage on this data set.

Fig. 9 provides a visual comparison of the classification
results obtained by different methods. It is observable

that some areas in the classification map of our pro-
posed CAD-GCN are less noisy than those of other meth-
ods, e.g., the regions of “Grapes untrained" and “Vineyard
untrained," which is in consistence with the results listed
in Table VII.
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Fig. 9. Classification maps obtained by different methods on Salinas data set. (a) Ground truth map. (b) GCN. (c) S2GCN. (d) MDGCN. (e) CNN-PPF.
(f) MBCTU. (g) JSDF. (h) CAD-GCN.

4) Results on the Houston University Data Set: Table VIII
summarizes the classification results of different methods
on the Houston University data set. As can be observed,
the proposed CAD-GCN achieves the best classification result
in terms of three quantitative criteria, namely OA, AA, and
Kappa coefficient. Compared with the proposed CAD-GCN,
we can see that CNN-PPF achieves slightly higher accuracies
in five land cover classes, but it has very poor performance
in several other classes, such as “Railway" (ID = 11),
“Parking Lot 1" (ID = 12), and “Parking Lot 2" (ID = 13).
It can be inferred that the CNN-based methods perform well
in homogeneous regions, but they cannot precisely perceive
the region boundaries due to the fixed convolutional kernels.
Another notable fact is that our CAD-GCN outperforms other
GCN-based method (i.e., GCN, S2GCN, and MDGCN) in ten
land-cover classes, which reveals the effectiveness of graph
projection and graph refinement.

The visual performance comparison of the seven different
methods on the Houston University data set is presented
in Fig. 10. As can be seen, there often exist noticeable errors
in the classification maps of the competitors (see the zoomed-
in regions of Fig. 10). By contrast, our proposed CAD-GCN
achieves the best visual classification result among all the
methods, which confirms the advantage of our CAD-GCN.

D. Impact of the Number of Labeled Examples

In this experiment, the classification performances of the
aforementioned seven methods with different numbers of
labeled examples (i.e., pixels) for training are investigated.
To be specific, we vary the number of labeled examples per
class from 5 to 30 with an interval of 5, and report the OA
acquired by all the methods on the Indian Pines, the University
of Pavia, the Salinas, and the Houston University data sets
(see Fig. 11). From the results, we can find that the proposed
CAD-GCN generally outperforms the GCN, S2GCN, MDGCN
and all the other competitors on three data sets (namely the
Indian Pines, the Salinas, and the Houston University data
sets), which verifies the effectiveness of contextual relations
captured by CAD-GCN. Meanwhile, the performance of our
CAD-GCN is also comparable to MDGCN on the University
of Pavia data set. Besides, we see that the performance of
S2GCN is unstable, since even the classical HSI classifica-
tion method (namely MBCTU) can obtain better results than
S2GCN on the Salinas data set. Another interesting observation
is that even if the labeled examples are quite limited (i.e.,
five or ten labeled examples per class), our CAD-GCN still
achieves relatively high OA, which suggests good stability of
CAD-GCN in HSI classification tasks.
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TABLE VIII

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT ACHIEVED BY DIFFERENT METHODS ON HOUSTON UNIVERSITY DATA SET

Fig. 10. Classification maps obtained by different methods on Houston University data set. (a) Ground truth map. (b) GCN. (c) S2GCN. (d) MDGCN.
(e) CNN-PPF. (f) MBCTU. (g) JSDF. (h) CAD-GCN. In (a)–(h), zoomed-in views of the regions are denoted by red boxes.

E. Impact of Hyperparameters
There are several important hyperparameters that should

be manually tuned in the designed CAD-GCN architecture.
Herein, we will evaluate in detail the sensitivity of the

classification performance to different hyperparameter settings
of the proposed CAD-GCN. Since GCN-based methods usu-
ally do not require deep structure to achieve excellent perfor-
mance [26], [30], we empirically employ two convolutional
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Fig. 11. Overall accuracies of various methods under different numbers of labeled examples per class. (a) Indian Pines data set. (b) University of Pavia data
set. (c) Salinas data set. (d) Houston University data set.

Fig. 12. Parametric sensitivity of η and T . (a) Indian Pines data set. (b) University of Pavia data set. (c) Salinas data set. (d) Houston University data set.

Fig. 13. Parametric sensitivity of β and u. (a) Indian Pines data set. (b) University of Pavia data set. (c) Salinas data set. (d) Houston University data set.

layers for all the four data sets. The hyperparameters to be
pretuned manually mainly include the number of iterations
T , the learning rate η, the number of hidden units u, and
the threshold β used in dynamic graph refinement. Herein,
we adopt the grid search strategy to find the optimal set-
ting. To facilitate the evaluation of the four hyperparameters,
we divide them into two groups and report the OA with respect
to the change of each group of hyperparameters, respectively.
The parametric sensitivity of η and T is exhibited in Fig. 12,
and Fig. 13 presents the parametric sensitivity of β and u.

In Fig. 12, we find that using a large learning rate η usually
leads to unstable performances, while promising results can
be obtained with a small η on all of the four data sets. Hence,
it is reasonable to select a relatively small value for η on the
four data sets. In addition, an appropriate number of iterations
T is critical for achieving satisfactory performance. For the
Indian Pines, the Salinas, and the Houston University data sets,
the OA generally improves with an increase of T . However,
it is not the case on the University of Pavia data set, where
the best result is reached when T = 500.

The impact of β and u on the four data sets is revealed
in Fig. 13. We observe that both β and u have an evident
impact on the classification accuracies. Meanwhile, the best
result is usually reached with a relatively small β on each data
set, since useful information may be removed when adopting
a large threshold value for edge filtering. For the number
of hidden units u, although increasing the value of u will
enhance the representation ability of the network, the risk of

TABLE IX

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT

ACHIEVED BY DIFFERENT MODEL SETTINGS ON

INDIAN PINES DATA SET

overfitting also gets higher. Therefore, we should carefully
select a reasonable u for each data set, respectively.

F. Ablation Study

As is mentioned in Section I, the proposed CAD-GCN con-
tains three critical parts for improving the contextual relations
that is the graph projection framework, the dynamic refinement
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TABLE X

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT
ACHIEVED BY DIFFERENT MODEL SETTINGS ON

UNIVERSITY OF PAVIA DATA SET

TABLE XI

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT

ACHIEVED BY DIFFERENT MODEL SETTINGS

ON SALINAS DATA SET

TABLE XII

PER-CLASS ACCURACY, OA, AA (%), AND KAPPA COEFFICIENT

ACHIEVED BY DIFFERENT MODEL SETTINGS ON

HOUSTON UNIVERSITY DATA SET

of node similarities, and the edge filter. To shed light on the
contributions of these three components, every time we report
the classification results of CAD-GCN without one of the three

TABLE XIII

RUNNING TIME COMPARISON (IN SECONDS) OF DIFFERENT METHODS.
“IP" DENOTES INDIAN PINES DATA SET, “UH" DENOTES HOUSTON

UNIVERSITY DATA SET, AND “PAVIAU" DENOTES UNIVERSITY

OF PAVIA DATA SET

components on the four adopted data sets (namely the Indian
Pines, the University of Pavia, the Salinas, and the Hous-
ton University). For simplicity, we adopt “CAD-GCN-v1,"
“CAD-GCN-v2," and “CAD-GCN-v3" to represent the
reduced model by removing dynamic refinement of node sim-
ilarities, the edge filter, and the graph projection framework,
respectively. Tables IX–XII exhibit the comparative results on
the aforementioned data sets. It can be obviously observed that
lacking any one of the components will inevitably hurt the
OA. Therefore, the graph projection framework, the dynamic
refinement of node similarities, and the edge filter work col-
laboratively to render satisfactory classification performance.

G. Running Time

To reveal the advantage of our proposed CAD-GCN to
the baselines in terms of efficiency, in Table XIII, we report
the running time of different deep models, including GCN,
S2GCN, MDGCN, CNN-PPF, and the proposed CAD-GCN on
four data sets (i.e., the Indian Pines, the University of Pavia,
the Salinas, and the Houston University), where the number
of labeled pixels per class is kept identical to the experiments
presented in Section III-C. The codes for all methods are
written in Python, and the running time is reported on a server
with a 3.60-GHz Intel Xeon CPU with 264 GB of RAM and
a Tesla P40 GPU. In Table XIII, we see that our proposed
CAD-GCN shows the comparable efficiency to GCN on the
Indian Pines data set and shows remarkably higher efficiency
than other methods in large-scale data sets (i.e., the University
of Pavia, the Salinas, and the Houston University data set),
which is owing much to the employment of graph projection
operation. Since the graph size can be significantly reduced
by graph projection, our proposed CAD-GCN exhibits high
efficiency on all the four data sets. The comparison results
demonstrate that our proposed method is effective and efficient
for HSI classification.

IV. CONCLUSION

In this article, we have developed a novel CAD-GCN for
HSI classification. To capture long-range contextual relations,
we move beyond regular image grids by learning the pixel-to-
region assignment, and further encode the contextual relations
among regions, so that the regions which are originally far
away in the 2-D space can be connected by successive graph
convolutions. Moreover, we enable the node similarities and
connective relationships to be dynamically updated via learn-
ing the improved distance metric and the edge filter. Therefore,
the contextual relations among pixels can be gradually refined
along with graph convolution, which significantly improves the
performance of CAD-GCN on representation and classification
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of HSI. The experimental results on four real-world HSI data
sets indicate the effectiveness of the proposed CAD-GCN.
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