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Abstract—This paper investigates deep neural networks
(DNNs) based lung nodule classification with hyperparameter op-
timization. Hyperparameter optimization in DNNs is a computa-
tionally expensive problem, and a surrogate-assisted evolutionary
algorithm has been recently introduced to automatically search
for optimal hyperparameter configurations of DNNs, by apply-
ing computationally efficient surrogate models to approximate
the validation error function of hyperparameter configurations.
Different from existing surrogate models adopting stationary
covariance functions (kernels) to measure the difference between
hyperparameter points, this paper proposes a non-stationary
kernel that allows the surrogate model to adapt to functions
whose smoothness varies with the spatial location of inputs. A
multi-level convolutional neural network (ML-CNN) is built for
lung nodule classification, and the hyperparameter configuration
is optimized by the proposed non-stationary kernel-based Gaus-
sian surrogate model. Our algorithm searches with a surrogate
for optimal setting via a hyperparameter importance based
evolutionary strategy, and the experiments demonstrate our al-
gorithm outperforms manual tuning and several well-established
hyperparameter optimization methods, including random search,
grid Search, the Tree-structured Parzen Estimator Approach
(TPE), Gaussian processes (GP) with stationary kernels, and the
recently proposed Hyperparameter Optimization via RBF and
Dynamic coordinate search (HORD).

Index Terms—Lung nodule classification, hyperparameter op-
timization, AutoML, non-stationary kernel, evolutionary algo-
rithm

I. INTRODUCTION

LUNG cancer is a notoriously aggressive cancer. Sufferers
have an average 5-year survival rate of 18% with a

mean survival time of fewer than 12 months [45], [58], hence
early diagnosis is very important to improve the survival rate.
Recently, deep learning has shown its superiority in computer
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vision [14], [26], [56], and an increasing number of researchers
have tried to diagnose lung cancers with deep neural networks
such as computer aided diagnosis (CAD) systems [1], [15],
[48], [63], [40], [42], [10] to assist early diagnosis. In our
previous work [34], a multi-level convolutional neural network
(ML-CNN) is proposed to handle lung nodule malignancy
classification, which extracts multi-scale features through dif-
ferent convolutional kernel sizes. Our ML-CNN [34] achieves
competitive accuracy in both binary and ternary classifica-
tion (92.21% and 84.81% accuracy, respectively) without any
preprocessing. However, the experiments also indicate the
performance is very sensitive to hyperparameters, especially
the number of feature maps in each convolutional layer. We
obtain near-optimal hyperparameter configuration through trial
and error, which is a difficult and time-consuming task [35],
[11].

Automatic hyperparameter optimization, which is an im-
portant branch of AutoML, is a very crucial step for deep
learning algorithms in practical applications, and several meth-
ods including grid search [27], random search [4], the Tree-
structured Parzen Estimator Approach (TPE) [3] and Bayesian
optimization[46], [60] have shown their superiority over man-
ual tuning in hyperparameters optimization. Hyperparameter
optimization in deep neural networks is a global optimization
with a black-box and expensive function, where evaluating a
hyperparameter setting may cost several hours or even days. It
is a computationally expensive problem, and a popular solution
is to employ a probabilistic surrogate, such as Gaussian
processes (GP) and Tree-structured Parzen Estimator (TPE),
to approximate the expensive error function to guide the
optimization process. A stationary covariance function (kernel)
is usually used in these surrogates to measure the differ-
ence between hyperparameter points based on spatial distance
without considering its spatial locations. Such a covariance
function that employs constant smoothness throughout the
hyperparameter search space violates the intuition that most
points away from the optimal point all attain similarly poor
performance even though them have large spatial distance.

In this paper, a deep neural network for lung nodule
classification is built based on multi-level convolutional neural
networks (ML-CNN), in which three levels of CNNs with
the same structure but different convolutional kernel sizes
are designed to extract the multi-scale features of input with
variable nodule sizes and morphologies. Then the hyperpa-
rameter optimization in a deep convolutional neural network
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is formulated as an expensive optimization problem, and a
Gaussian surrogate model is built to approximate the error
function of hyperparameter configurations, which is a novel
attempt to handle hyperparameter optimization in CNN-based
lung nodule classification. Appropriately measuring the dis-
tance between the hyperparameter settings is the key point for
the hyperparameter optimization of DNNs. In the hyperpa-
rameter optimization of DNN, all the points far away from
the optimal point all usually perform poorly and objective
functions are often much more sensitive near the optimal point.
To take these non-stationary characters into consideration,
this paper proposes a non-stationary kernel, which utilizes
spatial location transformation and input warping, to allow
the model to adapt its smoothness variations with the inputs.
Our algorithm searches the surrogate via a hyperparameter
importance based evolutionary strategy and finds the near-
optimal hyperparameter setting in limited function evaluations.

We name our algorithm Hyperparameter Optimization with
sUrrogate-aSsisted Evolutionary Strategy, HOUSES for short.
We compare our algorithm with several well-established hy-
perparameter optimization algorithms, namely random search,
grid search, the Tree-structured Parzen Estimator (TPE), the
Gaussian process with stationary kernels, and Hyperparam-
eter Optimization via RBF and Dynamic coordinate search
(HORD) [20]. The main contribution of our paper is summa-
rized in four folds: (1)

1) A multi-level convolutional neural network is adopted
for lung nodule malignancy classification, whose hyper-
parameter optimization is formulated as a computation-
ally expensive optimization problem.

2) A surrogate-assisted evolutionary strategy is introduced
to solve hyperparameter optimization for ML-CNN,
which utilizes hyperparameter importance-based muta-
tion as the sampling method for efficient candidate
points generation.

3) A non-stationary kernel is proposed to define the re-
lationship between different hyperparameter configura-
tions, which allows the model to adapt spatial depen-
dent structure to vary with location. Unlike the com-
monly used GP model, which has invariant smooth-
ness throughout the whole sampling region, our non-
stationary GP regression model is able to satisfy the
assumption that the correlation function is no longer
dependent on distance only and is dependent on their
relative locations to the optimal point. An input-warping
method is also adopted which makes covariance func-
tions more sensitive near the hyperparameter optimums.

4) Extensive experimental results illustrate the superiority
of the proposed HOSUES for the hyperparameter opti-
mization of deep neural networks.

We organize this paper as follows: Section II introduces
the background to lung nodule classification, hyperparameter
optimization in deep neural networks, and surrogate-assisted
evolutionary algorithm. Section III describes the proposed non-
stationary covariance function for hyperparameter optimiza-
tion in deep neural network, and also the framework and
details of HOUSES for ML-CNN. The experiment design is

TABLE I
SYMBOLS AND THEIR MEANINGS.

Symbol Meaning

Ztrain and Zval Training and validation datasets
w Learning weights for DNN
f∗ and f̂ The true and approximated fitness value
ξ(x) Error function of true and approximated fitness values
Tr Queried points with true fitness values
k Kernel function
N(µ, σ) Gaussian distribution with mean µ and covariance σ
θc Noise parameter
K Covariance matrix
B(αd, βd) Beta function with parameters αd, and βd
αPI Acquisition function of Probability of Improvement
αEI Acquisition function of Expected Improvement
αUCB Acquisition function of Upper Confidence Bound
f̌(θs) The component function for hyperparameter θs
Vs Variance of response performance for θs
Is Importance of hyperparameter θs

described in Section IV, and we detail the experiment results
and discuss the state-of-the-art hyperparameter optimization
approaches in Section V. We conclude and propose future work
in Section VI.

All the mathematical symbols used in this paper are listed
in Table I.

II. PRELIMINARIES

A. Lung Nodule Classification with deep neural network

Deep neural networks have shown their superiority in rela-
tion to conventional algorithms in computer vision, and many
researchers have employed DNNs in medical imaging diag-
nosis areas. The work in [50] presents several deep learning
algorithms in lung cancer diagnosis, including the stacked
denoising autoencoder, the deep belief network, and the con-
volutional neural network, which obtain a binary classification
accuracy of 79.76%, 81.19%, and 79.29%, respectively. Most
state-of-the-art works on DNN-based lung nodule classifica-
tion are inspired by the fact that, when pathologists examine
an image to determine whether an image is cancerous or not,
they often zoom in and out with the microscope to look at the
details as well as the context. In order to understand the details
as well as the context, these works design neural network
models to take in medical images with different scales. Shen et
al. [43] proposed Multi-scale Convolutional Neural Networks
(MCNNs) which utilizes multi-scale nodule patches to suf-
ficiently quantify nodule characteristics, which obtained a bi-
nary classification accuracy of 86.84%. In MCNN, three CNNs
that took different nodules as inputs were assembled in parallel
and concatenated the output of each fully connected layer as its
resulting output. The experiment results show that multi-scale
inputs help CNN learn a set of discriminative features. In 2017,
they extended their research and proposed a multi-crop CNN
(MC-CNN) [44], which automatically extracted nodule fea-
tures by adopting a multi-crop pooling strategy, and obtained
87.14% binary classification and 62.46% ternary classification
accuracy. Similar to MC-CNN, the work in [63] proposed
a multi-resolution convolutional neural network (MRC) to
extract the features of lung nodules with different resolutions.
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MRC merged feature maps with different resolutions after
pooling layers as the final feature maps to train the classifier.
Liu and Kang [31] proposed a multi-view convolutional neural
network (MV-CNN) for both two-class and three-class lung
nodule classification. MV-CNN utilizes multiple views as input
channels for CNN based lung nodule classification which
obtain a 94.59% and 86.09% accuracy for binary and ternary
classification, respectively. In our previous work [34], a ML-
CNN was proposed to extract multi-scale features through
different convolutional kernel sizes. It also designed three
CNNs with the same structure but different convolutional
kernel sizes to extract multi-scale features with variable nodule
sizes and morphologies. Our ML-CNN achieves state-of-the-
art accuracy both in binary and ternary classification (92.21%
and 84.81%, respectively) without any additional hand-craft
preprocessing. Even though these deep learning methods were
end-to-end machine learning architectures and had shown their
superiority over conventional methods, the structure design
and hyperparameter configuration were based on expert ex-
perience through a trial and error search guided by expert
intuition, which was a difficult and time-consuming task [35],
[11].

B. Hyperparameter optimization in DNN

Setting correct hyperparameters is often critical for reaching
the full potential of the chosen or designed deep neural
network; otherwise, it may severely hamper the performance of
the deep neural networks. Hyperparameter optimization is an
important branch of AutoML [57]. Hyperparameter optimiza-
tion in DNN is a global optimization to find a D-dimensional
hyperparameter setting x that minimizes the validation error
f of a DNN with learned weights w. The optimal x could be
obtained through optimizing f as follows:

min
x⊆RD

f(x,w ; Zval)

s.t. w = arg min
w

f(x,w ; Ztrain),
(1)

where Ztrain and Zval are the training and validation datasets
respectively. Solving Eq.(1) is very challenging for the high
complexity of function f and it is usually accomplished man-
ually in the deep learning community, which largely depends
on the expert’s experience or intuition. It is also difficult to
reproduce similar results when this configuration is applied to
different datasets or problems.

There are several systematic approaches to tune hyperpa-
rameters in the machine learning community, such as grid
search, random search, and Bayesian optimization methods.
Grid search is the most common strategy in hyperparameter
optimization [27], and it is simple to be implemented with
parallelization, which makes it reliable in low dimensional
spaces (e.g., 1-d, 2-d). However, grid search suffers from
the curse of dimensionality because the search space grows
exponentially with the number of hyperparameters. Random
search [4] proposes to randomly sample points from the hyper-
parameter configuration space. Although this approach looks
simple, it can find a comparable hyperparameter configuration
to grid search with less computation time. Hyperparameter

optimization in deep neural networks is a computationally
expensive problem as evaluating a hyperparameter choice may
cost several hours or even days. This property also makes it
unrealistic to sample enough points to be evaluated in grid and
random search. One popular approach uses efficient surrogates
to approximate the computationally expensive fitness functions
to guide the optimization process. Bayesian optimization [46]
builds a probabilistic Gaussian model surrogate to estimate
the distribution of computationally expensive validation errors.
A hyperparameter configuration space is usually modeled
smoothly, which means that knowing the quality of certain
points might help infer the quality of their nearby points,
and Bayesian optimization [3], [41], [5] utilizes the above
smoothness assumption to assist the search of hyperparam-
eters. The Gaussian process with a stationary kernel function,
e.g., the squared exponential covariance function, is one of
the most commonly used methods in Bayesian optimization
due to its practicality, simplicity and efficiency. However,
the smoothness of the covariance function often varies over
the input space in many real-world applications, and the
stationarity does not hold when mapping the original input
space to a new space with the covariance functions [37],
[16]. Therefore, the GP with stationary kernel functions could
hardly handle these problems. How to incorporate the non-
stationarity into the covariance functions poses a challenge to
the GP based hyperparameter optimization in DNN.

C. Gaussian Process based Bayesian Optimization

The Gaussian process[38], [53] uses a generalization of the
Gaussian distribution to describe a function, defined by mean
µ, and covariance function σ:

f̂(x) ∼N(µ(x), σ(x)). (2)

Given training data that consists of n D-dimensional inputs
and outputs, {x1:n, f1:n}, where xi ⊆ RD and fi = f(xi).
The predictive distribution based on the Gaussian process at
an unknown input, x∗, is calculated by the following:

µ(x∗) = K∗(K + θ2
cI)−1fi:n, (3)

σ(x∗) = K∗∗ −K∗((K + θ2
cI)−1)KT

∗ , (4)

where K∗ = [k(x∗, x1), ..., k(x∗, xn)] and K∗∗ = k(x∗, x∗),
θc is a noise parameter, K is the associated covariance matrix
which is built as:

K =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

 , (5)

where k is a covariance function that defines the relationship
between points in the forms of a kernel. A commonly used
kernel is the automatic relevance determination (ARD) squared
exponential covariance function:

k(xi, xj) = θf exp
D∑
d=1

−(xdi − xdj )2

2θ2
d

. (6)
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Fig. 1. The structure of the proposed ML-CNN for lung nodule malignancy classification.

After building a surrogate model, Bayesian optimization
uses the acquisition function to determine the next querying
point in each iteration. There are several acquisition functions
to determine the next promising points in GP, including Proba-
bility of Improvement (PI), Expected Improvement (EI), Upper
Confidence Bound (UCB), and the Predictive Entropy Search
(PES) [46], [17]. We applied the three different acquisition
functions for Gaussian process (GP)-based hyperparameter
optimization:
• Probability of Improvement

αPI(x) = Φ(γ(x)),

γ(x) =
f(xbest)− µ(x)

σ(x)
.

(7)

where Φ(z) = (2π)−
1
2

∫ −∞
z

exp(−t
2

2 )dt.
• Expected Improvement

αEI(x) = σ(x)(γ(x)Φ(γ(x)) + N(µ(x))), (8)

where N(z) is the variable z which has a Gaussian
distribution with z ∼N(0, 1).

• and Upper Confidence Bound

αUCB(x) = µ(x) + r · σ(x) (9)

with a tunable r to balance the exploitation against
exploration [20].

D. Surrogate-assisted evolutionary algorithm

Evolutionary algorithms are generic population-based meta-
heuristic optimization algorithm for many tasks [23], [12],
[55]. A surrogate-assisted evolutionary algorithm is designed
to solve expensive optimization problems whose fitness func-
tion is highly computationally expensive [22], [23], [12], [6],
[54], [30], [29], [51], [24]. It usually utilizes computationally
efficient models, also called surrogates, to approximate the
fitness function. The surrogate model is built as follows:

f̂(x) = f∗(x) + ξ(x), (10)

where f∗ is the true fitness value, f̂ is the approximated fitness
value, and ξ is the error function to be minimized by the
built surrogate. The surrogate-assisted evolutionary algorithm
uses one or several surrogate models f̂ to approximate true
fitness value f∗ and uses the computationally cheap surrogate
to guide the search process [61]. The iteration of the surrogate-
assisted evolutionary algorithm is described as: 1) learn sur-
rogate model f̂ based on previously truly evaluated points
(x, f(x)); 2) utilize f̂ to evaluate new mutation-generated
points and find the most promising individual x∗; 3) evaluate
the true fitness value of additional points(x∗, f(x∗)); 4) update
training set.

In this paper, we focus on the Gaussian process to build the
surrogate. As described in Sec. II-B, the common stationary
kernels are hard to capture the non-stationarity in the hyper-
parameter optimization of DNN. On the other hand, the non-
stationary kernels constructed by non-stationary extensions
of stationary kernels with input-dependent length-scales [37],
[16] or input warping [47], are good options to bring the
non-stationary properties to the input space transitions for
modeling. This paper devises a non-stationary kernel function-
based Gaussian process as the surrogate model, which allows
the model to adapt a spatial dependent structure with varying
locations to satisfy our assumption that the hyperparameter
configuration performs well near the optimal points but poorly
away from the optimal point. Then the evolutionary strategy is
used to search the near-optimal hyperparameter configuration.
The next section presents the details of HOUSES for ML-
CNN.

III. HYPERPARAMETER OPTIMIZATION WITH
SURROGATE-ASSISTED EVOLUTIONARY STRATEGY

In our previous work [34], a ML-CNN is proposed for lung
nodule classification, which applies different kernel sizes in
three parallel levels of CNNs to effectively extract different
features of each lung nodule with different sizes and various
morphologies. Fig. 1 presents the structure of ML-CNN, which
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Fig. 2. General flowchart of the proposed Hyperparameter Optimization with sUrrogate aSsisted Evolutionary Strategy (HOUSES)

contains three levels of CNNs, and each having the same struc-
ture and different kernel sizes. As suggested in our previous
work, the number of feature maps in each convolutional layer
has a significant impact on the performance of ML-CNN, so
as do the dropout rates. The hyperparameter configuration of
ML-CNN in [34] is based on trial and error search, which is
time-consuming for researchers. In this section, we introduce
HOUSES to our ML-CNN for lung nodule classification,
which is able to automatically find a competitive or even bet-
ter hyperparameter configuration than manual search method
without too much computational cost. The framework of the
proposed HOUSES for ML-CNN is presented in Algorithm 1.
In our hyperparameter optimization method, a non-stationary
kernel is proposed as a covariance function to define the
relationship between different hyperparameter configurations,
which allows the model to adapt a spatial dependent structure
which varies with a function of location, and the algorithm
searches for the most promising hyperparameter values based
on the surrogate model through the evolutionary strategy. In
the proposed HOUSES, several initial hyperparameter config-
uration points are randomly generated using Latin Hypercube
Sampling (LHS) [21] methods to keep the diversity of the
initial population. These initial points are truly evaluated and
used as the training set Tr0{(xi, fi)}n0

i=1 to build the initial
surrogate model. Then the evolutionary strategy generates a
group of new points that are evaluated according to the acqui-
sition function of the surrogate model. Several most promising
individuals x∗ are found from those newly generated points
based on the acquisition function and are then truly evaluated.
The most promising points with true fitness value(x∗, f(x∗))
are added to the training set to update the surrogate model. Fig.
2 gives the general flowchart of HOUSES, which we describe
it in detail in the following paragraphs.

A. Non-stationary Covariance Function for Hyperparameter
Optimization in DNNs

1) Spatial location transformation: In the hyperparameter
optimization of DNNs, two far away hyperparameter points

Algorithm 1 General Framework of HOUSES
Input:Initial population size n0, Maximum generation gmax,
Mutation rate pm, number of new generated points every
generation m, Dataset, DNN model.
Output: best hyperparameter configuration cbest.

1. Divide dataset into Training, Validation and Testing sets
2. Initialization a hyperparameter configuration population
pop0 is randomly generated through Latin Hypercube Sam-
pling. These hyperparameter points are used to train DNN
model in Training set, and truly evaluated in the Validation
set to get true fitness values Tr0 = {(xi, fi)}n0

i=1.
for i = 1, 2, ..., gmax do

1. Use Tr to fit or update the Gaussian surrogate model
f̂ according Eq.(2);
2. popselected= select (popg)// select individuals with
good performance and diversity for mutation;
3. popm= mutation (popselected)// apply mutation op-
eration to selected points to generate m new points;
4. Calculate {(xi, f̂i)}mi=1 for m new generated points
based on Gaussian surrogate model and acquisition func-
tions Eq.(14)(15)(16);
Set x∗ = argmin{f̂i}mi=1;
5. Truly evaluate f(x∗) in Training set and Validation set
to get true fitness values;
6. Update Trg+1 = {Trg+1 ∪ (x∗, f(x∗))};

end for

usually perform poorly when they are a distance away from
the optimal points. This property means that the correlation
of two hyperparameter configurations depends not only on the
distance between them, but also the points’ spatial locations.
Those stationary kernels, such as the Gaussian kernel, clearly
do not satisfy this property of hyperparameter optimization
in DNNs. To account for this non-stationarity, we propose a
non-stationary covariance function, where the relative distance
to the optimal point is used to measure the spatial location
difference of two hyperparameter points. The relative distance
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Fig. 3. Example of how Kumaraswamy cumulative distribution function transforming a concave function into a convex function, which makes the kernel
function is much more sensitive to small inputs.

based kernel is defined as:

k(xi, xj) = θfexp
D∑
d=1

−(
∣∣xdi − sd

∣∣− ∣∣xdj − sd
∣∣)2

2θ2
d

, (11)

where s is the assumed optimal point. It is also easy to prove
this relative distance based covariance function k(xi, xj) is a
kernel based on Theorem 1. Eq.(11) can be obtained by set
ψ(x) = |x− s| and k′ as the Gaussian kernel. This relative
distance based kernel is no longer a function of distance
between two points but depends on their own spatial locations
to the optimal point.

Theorem 1: if ψ is an RD-valued function on X and k′ is
a kernel on RD × RD, then

k(x, z) = k′(ψ(x), ψ(z)) (12)

is also a kernel.
Proof: k′ : RD × RD → R, ψ : RD → RD, k′ is a valid

kernel, then we have

k′(x, z) = ϕ(x)Tϕ(z)

so that
k(x, z) = ϕ(ψ(x))Tϕ(ψ(z))

is a kernel.
2) Input Warping: In the hyperparameter optimization of

machine learning models, objective functions are usually more
sensitive near the optimal hyperparameter settings but they are
much less sensitive when they are far away from the optimum.
For example, if the optimal learning rate is 0.05, it is supposed
to obtain a 50% performance increase when the learning rate
changes from 0.04 to 0.05, whereas there is only a 5% increase
from 0.25 to 0.24. Traditionally, most researchers often use
the logarithm function to transform the input space and then
search in the transformed space, which is effective only when
the input space’s non-stationary property is known in advance.
Recently, a beta cumulative distribution function was proposed
as the input warping transformation function [47], [52],

wd(xd) =

∫ xd

0

uαd−1(1− u)βd−1

B(αd, βd)
du, (13)

where B(αd, βd) is the beta function, which adjusts the shape
of the input warping function to the original data based on
parameters αd, and βd.

Different from [47], [52], we take the relative distance to
local optimum as inputs to be warped to make the kernel

function more sensitive to small inputs and less sensitive to
large ones. We take the Kumaraswamy cumulative distribution
function as the substitute, not only for computational reasons,
but also because it is easier to fulfill the non-stationary prop-
erty of our kernel function after spatial location transformation,

wd(xd) = 1− (1− xαd

d )βd . (14)

Similar to Eq.(12), it is easy to prove that k(x, x′) =
k′(w(ψ(x)), w(ψ(x′))) is a kernel. Fig.3 illustrates input warp-
ing example with different shaped parameters αd, and βd input
warping functions. The final kernel for HOUSES is defined as:

k(xi, xj) = θf exp
D∑
d=1

−(wd
∣∣xdi − sd

∣∣− wd ∣∣xdj − sd
∣∣)2

2θ2
d

+ θk exp
D∑
d=1

−(wd
∣∣xdi − xdj ∣∣)2

2γ2
d

. (15)

Eq.(15) is also proven to be a kernel based on Theorem
2. This non-stationary kernel satisfies the assumption that
the correlation function of two hyperparameter configuration
depends on their distances and their relative locations to
the optimal point. However, it is impossible to determine
the optimal point in advance, so we use the hyperparameter
configuration with the best performance in the training set and
update it in every iteration in the proposed HOUSES.

Theorem 2: If k1 is a kernel on RD ×RD and k2 is also a
kernel on RD × RD, then

k(x, z) = k1(x, z) + k2(x, z) (16)

is also a kernel.
Proof: This is because if k1(x, z) and k2(x, z) are valid

kernels on RD×RD → R, then we have k1(x, z) = ϕT(x)ϕ(z)
and k2(x, z) = ψT(x)ψ(z), we may define

θ(x) = ϕ(x)⊕ ψ(x) = [ϕ(x), ψ(x)]T

so that

k(x, z) = θ(x)Tθ(z)

is a kernel.
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Fig. 4. Marginal response performance of the number of feature maps of all convolutional layers in three different levels of ML-CNN. The first two parameters
are for the two convolutional layers in the first level, the middle two are for the second level, and the last two are for the third level. Results show that the
latter ones in the three-level bring more effects to the performance, while there is no significant difference among all possible configurations for the previous
feature maps number in each level of ML-CNN. We plot marginal response performance with standard deviations (mean ± standard deviations, also 68%
confidence level) calculated by fANOVA.

B. Hyperparameter Importance based Mutation for Candidate
Hyperparameter Points Generation

The mutation aims to generate better individuals by mutat-
ing selected excellent individuals, which is a crucial step in
the optimization in evolutionary strategy [9]. To maintain the
diversity of the population, a grid strategy-based mutation is
adopted. We first divide every dimension into M uniformed
grids [59] and the point with the highest fitness in every
dimensional grid is selected for mutation. In this way, D ∗M
individuals are selected and the polynomial mutation is ap-
plied to every selected individual to generate nd candidate
hyperparameter points, respectively. These D ∗M ∗ nd points
are evaluated based on acquisition function, and the most
promising point is selected for true evaluation and added into
the training set to update the surrogate model.

However, as suggested by several recent works on Bayesian
based hyperparameter optimization [18], [4], most hyperpa-
rameters are truly unimportant while some hyperparameters
are much more important than others. Fig. 4 demonstrates ML-
CNN’s marginal performance variation with the number of
feature maps, which clearly shows that the number of feature
maps in the last convolutional layer in every layer is much
more crucial to ML-CNN than previous ones. The work in [18]
proposes the use functional analysis of variance (fANOVA1)
to measure the importance of the hyperparameters in machine
learning problems. fANOVA is a statistical method for promi-
nent data analysis, which partitions the observed variation of
a response value (CNN performance) into components due to
each of its inputs (hyperparameter setting). fANOVA illustrates
how response performance changes with input hyperparame-
ters. It first accumulates the response function values of all

1https://github.com/automl/fanova.

subsets of its inputs N :

y̌(θ) =
∑
U⊆N

f̌U (θU ), (17)

where the component f̌U (θU ) is defined as:

f̌U (θU ) =

{
f̌∅ if U = ∅

ǎU (θU )−
∑
f̌W (θW ) otherwise

, (18)

where the constant f̌∅ is the mean value of the function over
its domain, ǎU (θU ) is the marginal predicted performance
defined as ǎU (θU ) = 1

‖ΘT ‖
∫
y̌(θN |U )dθT . The subset |U | > 1

captures the interaction between all the hyperparameters in
subset U , while we only consider the separate hyperparameter
importance in this paper and set |U | = 1. The component
function f̌U (θU ) is then calculated as:

f̌(θs) = ǎ(θs) =
1

‖ΘT ‖

∫
y̌(θN |s)dθT , (19)

where θs is the single hyperparameter, T = N\s, ΘT = Θ\θs,
Θ = θ1×· · ·× θD. The variance of the response performance
of y̌ across its domain Θ is

V =

n∑
i=1

Vs, Vs =
1

‖θs‖

∫
f̌(θi)

2dθs. (20)

The importance of each hyperparameter could thus be quanti-
fied as:

Is = Vs/V. (21)

When the polynomial mutation operator is applied to in-
dividuals, genes corresponding to different hyperparameters
have different mutation probabilities in terms of hyperparam-
eter importance, where genes with greater importance are sup-
posed to have higher mutation probabilities of generating more
offspring. In this way, our evolutionary strategy emphasizes
those subspaces of important hyperparameters and finds better
hyperparameter settings.

https://github.com/automl/fanova
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IV. EXPERIMENTAL DESIGN

A. Synthetic Function and DNN Problems

To examine the optimization performance of the proposed
HOUSES for hyperparameter optimization, three sets of ex-
periments are conducted.

1) First Experiment Set: There are several local optimal
points in the hyperparameter optimization of DNNs, and the
correlation between two hyperparameter configuration usually
depends on the distance and the spatial locations. In this case,
we consider the trimodal and Branin functions [60] to simulate
the hyperparameter optimization of DNNs, which both contain
several local optimums with intrinsic dimension de = 2. We
first conduct comparison experiments with baselines on the
trimodal and Branin function [60], [32]. The trimodal function
is defined as:

f(x) = g(u) = log(0.1×mvnpdf(u, c1, σ
2)+

0.8×mvnpdf(u, c2, σ
2) + 0.1×mvnpdf(u, c3, σ

2)),
(22)

where σ2 = 0.01d0.1
e and mvnpdf(x, µ, σ2) are multivariate

Gaussian distributions and ci are the fixed centers in Rde . The
global maximum is f(x∗) = g(u∗) = g(c2) = 2.4748 at center
c2 with the highest probability of 0.8. The Branin function is
defined as:

f(x) = g(u) = a(xj−bx2
i+cxi−r)+s(1−t)cos(xi)+s (23)

where i, j are two randomly selected dimensions, a = 1, b =
5.1
4π2 , c = 5

π , r − 6, s = 10, t = 1
8π , and the global minimum

is g(u∗) = 0.397887 at u∗ = (−π, 12, 275), (π, 2.275) and
(9.42478, 2.475).

2) Second Experiment Set: There are three DNN problems
in the second experiment set, the first being the MLP network
applied to MNIST, which consists of three dense layers with
ReLU activation and a dropout layer between them and
SoftMax at the end. This problem has five parameters to
be optimized, including the number of units in three dense
layers and two dropout rates in the dropout layer. This paper
describes this problem as 5-MLP. The second DNN problem
is LeNet5 applied to MNIST with seven hyperparameters to
be optimized, described as 7-CNN. The 7-CNN contains two
convolutional blocks, each containing one convolutional layer
with batch normalization, followed by ReLU activation and
2 × 2 max-pooling, and three fully connected layers with
two dropout layers among them are followed at the end.
The optimizing parameters in 7-CNN contain the number of
feature maps in the two convolutional layers and units in the
first two fully connected layers, and also the dropout rates in
two dropout layers. The third DNN problem is to optimize
the hyperparameters of AlexNet applied to the CIFAR-10
dataset. There are nine parameters: feature numbers in five
convolutional layers, numbers of units in two fully-connected
layers, and the dropout rate of the dropout layer after them.
This is described as the 9-CNN problem in this paper.

3) Third Experiment Set: For the third set, the purpose is
to find an optimal hyperparameter configuration of ML-CNN
applied to lung nodule classification. We evaluate HOUSES on
ML-CNN applied to lung nodule classification. There are nine
hyperparameters to be optimized, consisting of the number of

feature maps of two convolutional layers for the three levels,
the number of units in the full connected layer, and the dropout
rate of two dropout layers. This hyperparameter optimization
problem is denoted as 9-ML-CNN in this paper. The lung
nodule images in this experiment are from the Lung Image
Database Consortium (LIDC) and Image Database Resource
Initiative (IDRI) database [2], [39], containing 1,018 cases
from 1,010 patients and are annotated by 4 radiologists. The
malignancy suspiciousness of each nodule in the database is
rated from 1 to 5 by four radiologists, where scores 1 and
2 are benign nodules, score 3 is an indeterminate nodule,
and scores 4 and 5 are malignant nodules. The diagnosis of
nodules is labeled to the class with the highest frequency, or
is indeterminate when more than one class has the highest
frequency. The nodules are cropped according to the contour
annotations of four radiologists and resized by 52× 52 as the
input of our multi-level convolutional neural networks.

All the experiments were performed using Nvidia Quadro
P5000 GPU (16.0 GB Memory, 8873 GFLOPS). Our ex-
periments are implemented in the Python 3.6 environment,
and Tensorflow 2 and Tensorlayer 3 are used to build deep
neural networks. The following subsections present a brief
introduction of peer algorithms, evaluation budgets, and the
experiment settings.

B. Peer Algorithm
We compare HOUSES against random search, grid search,

Tree-structured Parzen Estimator (TPE), Gaussian processes
(GP) with Gaussian kernel, and Hyperparameter Optimization
via RBF and Dynamic coordinate search (HORD). We also
compare three different acquisition functions for Gaussian
processes (GP) based hyperparameter optimization: HOUSES
with Expected Improvement (HOUSE-EI), HOUSES with
Probability of Improvement (HOUSE-PI), and HOUSES with
Upper Confidence Bound (HOUSE-UCB).

C. Evaluation Budget and Experimental Setting
Hyperparameter configuration evaluation is typically com-

putationally expensive, being the highest computation cost in
the DNN hyperparameter optimization problem. For a fair
comparison, we set the number of function evaluations as
200 for all the compared algorithms. The number of training
iterations for the MNIST dataset is set as 100, and CIFAR-10
and LIDC-IDRI are set as 200 and 500, respectively.

We implement the random search and TPE with the open-
source HyperOpt library 4. We use the public sklearn library 5

to build the Gaussian processes-based surrogate model. Details
of the implementation of HORD are available at 6. The code
for hyperparameter importance assessment based on functional
ANOVA is available at 7. The code for HOUSES is also
available at 8. We run each algorithm for 10 independent runs.

2https://github.com/tensorflow/tensorflow.
3https://github.com/tensorflow/tensorflow.
4http://hyperopt.github.io/hyperopt/
5https://scikit-learn.org/stable/modules/gaussian process.html
6bit.ly/hord-aaai
7https://github.com/automl/fanova
8https://github.com/MiaoZhang0525/code-for-houses

https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
http://hyperopt.github.io/hyperopt/
https://scikit-learn.org/stable/modules/gaussian_process.html
bit.ly/hord-aaai
https://github.com/automl/fanova
https://github.com/MiaoZhang0525/code-for-houses
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TABLE II
EMPIRICAL COMPARISONS ON SYNTHETIC FUNCTIONS WITH BASELINES.

DNN Problems Trimodel Branin
d=5 d=10 d=5 d=10

Random Search 0.328 ± 0.024 0.300 ± 0.025 0.301 ± 0.305 0.374 ± 0.275
Grid Search 0.249 ± 0.132 0.478 ± 0.213 0.254 ± 0.112 0.342 ± 0.189
TPE 0.014± 0.013 0.131 ± 0.113 0.032± 0.029 0.135 ± 0.076
GP-EI 0.154 ± 0.056 0.034 ± 0.036 0.150 ± 0.234 0.271 ± 0.161
GP-PI 0.078 ± 0.004 0.434 ± 0.062 0.209 ± 0.101 0.374 ± 0.256
GP-UCB 0.123 ± 0.044 0.534 ± 0.162 0.234 ± 0.188 0.361 ± 0.180
HOUSES-EI-G 0.024 ± 0.008 0.152 ± 0.162 0.074 ± 0.013 0.232 ± 0.083
HOUSES-PI-G 0.068 ± 0.021 0.053 ± 0.051 0.135 ± 0.045 0.302 ± 0.156
HOUSES-UCB-G 0.083 ± 0.172 0.214 ± 0.162 0.087 ± 0.079 0.274 ± 0.189
HOUSES-EI 0.023± 0.007 0.003± 0.002 0.077 ± 0.021 0.104 ± 0.007
HOUSES-PI 0.072 ± 0.006 0.183 ± 0.058 0.067 ± 0.045 0.121 ± 0.136
HOUSES-UCB 0.063 ± 0.002 0.267 ± 0.234 0.057± 0.049 0.097± 0.067

V. EXPERIMENT RESULTS AND DISCUSSION

A. Experiments on the First Experiment Set

In this section, the HOUSES is compared with baselines on
a numerical case, where the trimodel and Branin functions are
used to simulate the hyperparameter optimization in DNNs.
We further augment the number of dimensions to d = 5 and
d = 10 with dummy variables since most hyperparameters are
unimportant in the hyperparameters optimization of DNNs.
Table. II provides the comparison results of the simple re-
grets of the proposed HOUSES and compares the baselines
on trimodal and Branin functions with a different number
of dummy variables. We consider three different acquisition
functions for the Gaussian processes-based methods. We could
find that our HOUSES achieves excellent performance for four
different cases, which shows the superiority of our approach.
Specifically, TPE achieves the best results for low-dimension
d = 5 that, 0.014 ± 0.013 for trimodal and 0.032 ± 0.029
for Branin. HOUSES also obtains competitive results in this
case that, HOUSES-EI obtains 0.023±0.007 for Trimodal and
HOUSES-UCB obtains 0.057 ± 0.049 for Branin. When we
augment more dummy variables where d = 10, we find that
HOUSES performs the best on the two synthetic functions,
achieving 0.003± 0.002 with HOUSES-EI on trimodal func-
tion and 0.097 ± 0.067 with HOUSES-UCB on the Branin
function. Compared with other peer algorithms, HOUSES is
more robust with the dimension.

To investigate the impacts of the proposed hyperparameter
importance based mutation, we compare our proposed method
with HOUSES-G, which adopts the baseline mutation (a grid
strategy-based mutation). The comparison results are presented
in Table. II. We find that HOUSES performs better than
HOUSES without our proposed mutation strategy in all sce-
narios. These results verify that it is essential to identify these
important hyperparameters and force the algorithm to search
in those dimensions with a limited computational budget,
significantly helping the following optimization process.

We conducted an ablation study to investigate the impacts of
the proposed non-stationary kernel function. We compare GP
and HOUSES-G in Table. II. In this table, the only difference
between the compared methods is the kernel function. GP is
the baseline Bayesian optimization with the stationary kernel

function, and HOUSES-G is the Bayesian optimization with
the proposed non-stationary kernel function. We compare
GP and HOUSES-G with different acquisition functions and
dimensions on the two synthetic functions, with 12 cases.
From Table. II, we observe that HOUSES-G outperforms GP
in 11 of the 12 cases, demonstrating the effectiveness of the
proposed non-stationary kernel function.

B. Experiments on the Second Experiment Set

In this section, we evaluate these peer hyperparameter
optimization algorithms on 3 DNN problems, including the
MLP applied to MNIST (5-MLP), and LeNet network to
MNIST (7-CNN), and AlexNet applied to CIFAR10 (9-CNN).

For the 5-MLP problem, Table III (Column 2) and Fig. 5 (a)
show the test results obtained by the different methods and Fig.
6 (a) plots the average accuracy over epochs of the obtained
hyperparameter configurations from different hyperparameter
optimization methods. One surprising observation from Table
III and Fig. 5 is that the simplest random search method
obtains satisfied results, and sometimes even outperforms
some Bayesian optimization based methods (GPs and HORD).
This phenomenon suggests that, for low-dimensional hyper-
parameter optimization, the simple random search algorithm
could perform very well, which is also in line with [4].
Furthermore, we also find from Table III (Column 2) and Fig. 5
(a) that, with the same experiment settings, our proposed non-
stationary kernel clearly performs better than the stationary
Gaussian kernel with all three acquisition functions in the
5-MLP problem. This also demonstrates that incorporating
expert intuition-based priors into Bayesian optimization and
designing a non-stationary kernel is necessary for Gaussian
processes based hyperparameter optimization.

In the 7-CNN problem, we find that most hyperparameter
optimization algorithms obtain satisfactory results, and test
errors are less than the best result in the 5-MLP problem
(see Column 3 of Table III). These results demonstrate that
a better neural network structure significantly improves the
performance and is more robust to hyperparameter configura-
tion, where there is not much significant difference between
these hyperparameter optimization methods in the 7-CNN
problem. Designing an appropriate neural network structure
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TABLE III
EXPERIMENTAL ACCURACY OF COMPARING ALGORITHMS ON 4 DNN PROBLEMS

DNN Problems 5-MLP 7-CNN 9-CNN 9-ML-CNN

Random Search 0.973 ± 0.015 0.9947 ± 0.005 0.743 ± 0.016 0.840 ± 0.007
HORD 0.968 ± 0.015 0.9929 ± 0.006 0.747 ± 0.017 0.841 ± 0.009
GP-EI 0.964 ± 0.014 0.9934 ± 0.006 0.754 ± 0.015 0.852 ± 0.009
GP-PI 0.964 ± 0.016 0.9937 ± 0.006 0.765 ± 0.015 0.847 ± 0.009
GP-UCB 0.963 ± 0.014 0.9942 ± 0.005 0.732 ± 0.015 0.846 ± 0.009
HOUSES-EI 0.970 ± 0.014 0.9931 ± 0.006 0.764 ± 0.016 0.851 ± 0.010
HOUSES-PI 0.969 ± 0.016 0.9949 ± 0.005 0.768± 0.014 0.854 ± 0.008
HOUSES-UCB 0.974± 0.017 0.9937 ± 0.004 0.749 ± 0.014 0.855± 0.008
Manual Tuning - - - 0.848
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Fig. 5. Results of different Hyperparameter optimization algorithms on four DNN problems.

is the priority, which is also why we design a multi-level
convolutional neural network for lung nodule classification.

As for the more complicated DNN problem 9-CNN, GPs
found significantly better hyperparameters than the random
search algorithm, except GP-UCB, which may be due to the
improper weighting setting in the UCB acquisition function
(see Column 4 of Table III, Fig. 5 (c), Fig. 6 (c)). These results
show the random search algorithm performs significantly
worse than other hyperparameter optimization algorithms on
the 9-CNN problem, and suggest that hyperparameter opti-
mization is required for complicated DNN problems, which
helps the deep neural network to reach its full potential. Fig.
5 (c) and Fig. 6 (c) show the performance of HOUSES and GP
with different acquisition functions. We can find HOUSES-PI
and GP-PI obtain better results than the other two acquisition
functions, demonstrating the importance of the acquisition
function. Furthermore, similar to the results for the 5-MLP
problem, the results for the 9-CNN again show the superiority
of our proposed non-stationary kernel for hyperparameter
optimization in CNN, where the non-stationary kernel always
outperforms the standard Gaussian kernel.

Table IV summarizes the mean sensitivity and specificity
(accuracy was presented in Table III) of hyperparameter
configuration obtained by all the compared algorithms for 5-
MLP, 7-CNN, and 9-CNN. We also calculate the area under
curve (AUC) [7] as the assessment criteria for the receiver
operating characteristic (ROC) curve. As shown in Table IV,
the proposed HOUSES approach outperforms random search,
HORD, and normal kernel-based Gaussian processes in terms
of the three metrics on the 7-CNN and 9-CNN problems. For
the 5-MLP problem, random search achieves remarkable in-
credible results, which suggests that the simple random search
algorithm is able to perform very well in low-dimensional
hyperparameter optimization. There is no statistical difference
between the compared algorithms in the results of 7-CNN,
indicating a better neural network structure could significantly
improve the performance and relieve the work associated with
hyperparameter optimization works.

C. Experiments on the Third Experimental Set

In this section, we first compare the existing works on CNN
based ternary lung nodule classification, and the results are
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TABLE IV
SENSITIVITY, SPECIFICITY, AND AUC COMPARISON RESULTS IN THE SECOND EXPERIMENTAL SET.

Algorithm 5-MLP 7-CNN 9-CNN
Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC

Random Search 0.95054 0.99521 0.97588 0.98809 0.99569 0.99339 0.7590 0.97130 0.8617
HORD 0.95085 0.99458 0.97272 0.98398 0.99832 0.99111 0.76690 0.97410 0.87050
GP-EI 0.95474 0.99502 0.97488 0.95576 0.99840 0.99182 0.76800 0.97420 0.87110
GP-PI 0.93838 0.99324 0.96581 0.98706 0.99857 0.99281 0.7571 0.9730 0.86505
GP-UCB 0.93604 0.99298 0.96451 0.98511 0.99842 0.99207 0.7609 0.97343 0.86717
HOUSES-EI 0.93642 0.99300 0.96472 0.98414 0.99855 0.99519 0.76940 0.97438 0.87200
HOUSES-PI 0.94486 0.99395 0.96940 0.98517 0.99857 0.99377 0.7798 0.97553 0.87767
HOUSES-UCB 0.96161 0.99578 0.97870 0.98578 0.99852 0.99355 0.7609 0.9343 0.86717
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(a) Trajectory of validation accuracy of different hyperparameter opti-
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(d) Results of Different HO algorithms on 9-ML-CNN
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Fig. 6. Validation accuracy on four DNN problems over epochs.

shown in Table V. We observe that our work is the only one
that handles hyperparameter optimization in CNN-based lung
nodule classification through the automatic approach. Our ML-
CNN achieves competitive classification accuracy of 84.8%,
and with the proposed hyperparameter optimization method
HOUSES (taking the HOUSES-UCB as an example), ML-
CNN could obtain better results of 85.5%. More interesting,
our recently proposed ML-xResNet [33] adds more skip-
connections among residual layers in different levels based on
ML-CNN, and it also achieves better results than ML-CNN.
ML-xResNet is more related to another branch of AutoML,
neural architecture search (NAS), and these experimental
results demonstrate that hyperparameter optimization and ar-

chitecture design are two ways to improve the performance of
existing CNN based lung nodule classification.

We then evaluate HOUSES and all the compared algo-
rithms applied to 9-ML-CNN (multi-level convolutional neu-
ral network applied to lung nodule classification with nine
hyperparameters to be optimized), and the results are shown
in Table III Column 4, Fig.5(d) and Fig.6(d). As expected,
the performance of conventional hyperparameter optimization
methods degrades significantly in complicated and high di-
mensional search space, while HOUSES continues to achieve
satisfying results and outperforms the Gaussian process with
stationary kernels. Similar to the results discussed in the
previous subsection, we find that UCB achieves the best result
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TABLE V
COMPARISON RESULTS WITH THE STATE-OF-THE-ART CNN BASED TERNARY LUNG NODULE CLASSIFICATION METHODS.

Method Accuracy Sensitivity Specificity HO method

Ensenble SVM [25] 0.8336 0.8259 0.9117 Manual Tuning
Ensenble RF [25] 0.8489 0.8311 0.9209 Manual Tuning
MV-CNN with BN [31] 0.8129 - - Manual Tuning
MC-CNN [44] 0.6246 - - Manual Tuning
DenseNet [19] 0.6890 - - Manual Tuning
MoDenseNet [8] 0.8545 - - Manual Tuning
ML-xResNet [33] 0.8588 0.8456 0.9248 Manual Tuning
ML-CNN [33] 0.848 0.8275 0.9137 Manual Tuning
HOUSES based ML-CNN 0.8550 0.8503 0.9236 HOUSES

TABLE VI
COMPARISON RESULTS OF LUNG NODULE CLASSIFICATION PROBLEM FOR EACH CLASS.

Algorithm Benign Indeterminate Malignant
Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC

Random Search 0.79260 0.92026 0.86643 0.83593 0.85256 0.85925 0.81320 0.92327 0.87814
HORD 0.83457 0.92735 0.88096 0.83447 0.90906 0.87226 0.86095 0.92947 0.89521
GP-EI 0.83395 0.92615 0.88005 0.83790 0.91208 0.87499 0.85685 0.92640 0.89160
GP-PI 0.81913 0.93726 0.89239 0.85314 0.91601 0.87604 0.85385 0.91874 0.88955
GP-UCB 0.82407 0.93155 0.88707 0.85314 0.91994 0.87740 0.85385 0.92364 0.89792
HOUSES-EI 0.84259 0.94116 0.88262 0.83406 0.89758 0.87536 0.87219 0.92702 0.89043
HOUSES-PI 0.84753 0.93966 0.87940 0.83608 0.89819 0.87109 0.86035 0.92180 0.88871
HOUSES-UCB 0.85000 0.93546 0.89273 0.82328 0.91516 0.86919 0.87745 0.92000 0.89371
Manual Tuning 0.80617 0.93455 0.87036 0.87751 0.85468 0.86610 0.79882 0.95216 0.87549

of the three acquisition functions, which also suggests that
UCB may be the most appropriate acquisition function in 9-
ML-CNN hyperparameter optimization.

We present the test accuracy over iterations of the obtained
hyperparameter configurations for the 9-ML-CNN problem
from the different hyperparameter optimization methods in
Fig. 5 and Fig. 6 (d). Our spatial location based non-stationary
kernel outperforms the stationary Gaussian kernel with three
different acquisition functions, indicating a non-stationary
kernel is especially necessary for complicated CNN hyperpa-
rameter optimization. The 9-ML-CNN problem again shows
that using a non-stationary kernel significantly improves the
convergence of the hyperparameter optimization, especially for
high-dimensional and complicated deep neural networks.

We observe that HOUSES-UCB reaches better validation
accuracy in only 250 epochs compared to the manual tuning
method [34]. Table VI presents the ability of ML-CNN with
hyperparameter configurations obtained by different hyper-
parameter optimization methods to classify different type of
malignant nodules, and shows the sensitivity, specificity, and
AUC on three types of malignant nodules. Our hyperparameter
optimization method HOUSES is able to relieve the trivial
work of tuning hyperparameters and obtain better results in
terms of accuracy compared with manual tuning [34]. The
experimental results from above show that the non-stationary
assumption is non-trivial for hyperparameter optimization in
DNN with Bayesian methods, and incorporating expert intu-
ition based priors into the Bayesian optimization framework
improves optimization effectiveness.

VI. CONCLUSION

In this paper, a Hyperparameter Optimization with
sUrrogate-aSsisted Evolutionary Strategy, named HOUSES,
is proposed for CNN hyperparameter optimization. A non-
stationary kernel is devised and adopted as a covariance
function to define the relationship between different hyperpa-
rameter configurations to build the Gaussian processes model,
which allows the model to adapt spatial dependent structure
which varies with a function of location. Our previously
proposed multi-level convolutional neural network (ML-CNN)
is developed for lung nodule malignancy classification, whose
hyperparameter configuration is optimized by our HOUSES.
The experiment results on several deep neural networks and
datasets validate that our non-stationary kernel-based approach
achieves better hyperparameter configuration than other ap-
proaches, such as grid search, random search, Tree-structured
Parzen Estimator (TPE), Hyperparameter Optimization via
RBF and Dynamic coordinate search (HORD), and stationary
kernel based Gaussian kernel Bayesian optimization. The ex-
perimental results suggest that, even though random search is
a simple and effective way to undertake CNN hyperparameter
optimization, it is difficult to find a satisfactory configuration
for high-dimensional and complex deep neural networks, and
incorporating expert intuition-based priors into a conventional
Bayesian optimization framework improves optimization ef-
fectiveness. Furthermore, the results also demonstrate that
devising a suitable network structure is essential to improve
performance, while hyperparameter optimization could help
achieve the network’s potential.

Our future research will focus on extending HOUSES
to deep neural networks architecture search in light of the
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promising initial research results. Several works have been
proposed to automatically search for well-performing CNN
architectures via hill-climbing procedure [13], Q-Learning
[62], sequential model-based optimization (SMBO), genetic
programming approach [49], and so on [36]. However, few
works utilize the surrogate model to reduce the expensive
complexity required by the neural architecture search (NAS).
Moreover, a simple evolutionary strategy is not an appropriate
method to search the surrogate for optimal architecture design,
as it is a variable-length optimization problem [28]. Future
works will also investigate other evolutionary algorithms for
hyperparameter optimization, and the quality-diversity-based
evolutionary algorithm may provide a solution.
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