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Exploiting Implicit Influence from Information
Propagation for Social Recommendation
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Abstract—Social recommender systems have attracted a lot of
attention from academia and industry. On social media, users’
ratings and reviews can be observed by all users, and have
implicit influence on their future ratings. When these users make
subsequent decisions about an item, they may be affected by
existing ratings on the item. Thus, implicit influence propagates
among the users who rated the same items, and it has significant
impact on users’ ratings. However, implicit influence propagation
and its effect on recommendation rarely have been studied. In
this paper, we propose an information propagation-based social
recommendation method (SoInp) and model the implicit user
influence from the perspective of information propagation. The
implicit influence is inferred from ratings on the same items. We
investigate the concrete effect of implicit user influence in the
propagation process and introduce it into recommender systems.
Furthermore, we incorporate the implicit user influence and
explicit trust information in the matrix factorization framework.
To demonstrate the performance, we conduct comprehensive
experiments on real-world datasets to compare the proposed
method with state-of-the-art models. The results indicate that
SoInp makes notable improvements in rating prediction.

Index Terms—Computational Intelligence, Recommender Sys-
tems, Information Propagation, Implicit User Influence, Social
Networks.

I. INTRODUCTION

W ITH the development of online social media, a huge
amount of information and extensive applications on

the Internet have influenced or even redefined our lives in
many ways. However, enormous contents on the web make
it difficult for users to obtain the information they need. In
many situations, individual demands can be described by only
a few search terms. Therefore, recommender systems have
become an important way of filtering information to overcome
the problem of information overload. Recommender systems
have been used successfully in a wide variety of fields, such
as websites for music [1], movies [2, 3] and social news [4].
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Meanwhile, as social media have sprung up, online users are
allowed to participate in many kinds of activities that produce
large numbers of social relationships, such as friendships in
Facebook and trust relationships in Epinions.

Collaborative filtering (CF) is one of the most popular and
effective techniques in recommender systems, and it can be
divided into memory-based [5, 6] and model-based [7–11]
categories. CF uses past reviews or rating data to make fine
recommendation without the need for exogenous information.
In CF, users with similar preferences in the past are supposed
to agree on the same items in the future. However, CF suffers
from two well-known issues, i.e., data sparsity and cold start
[12, 13]. It is a fact that users usually rate or experience only
a small fraction of available items. Cold-start users with few
ratings pose a great challenge for CF methods. Therefore,
traditional recommender systems that purely mine the data of
ratings may not provide sufficiently reliable prediction.

To address these problems, many researchers have intro-
duced social information into recommendation models [14–
18]. In reality, users’ decisions often are affected by their
trusted friends. Since traditional recommender systems usu-
ally lack the capability of differentiating users’ creditability,
i.e., the trustworthiness of users’ ratings, social information
provides an independent source for recommendation. Social
information and ratings can complement each other, and com-
bining them is very beneficial in mining users’ preferences.
Therefore, more appropriate recommendations are provided to
users.

For the reason stated above, trust-aware recommender sys-
tems have attracted a lot of attention [19, 20]. Trust- aware
models assume that people usually prefer to consider the
opinions of their trusted friends when making decisions or
choices. Although trust relationships have a key role in im-
proving recommender systems, the performance of many trust-
aware methods may be inferior to those of some models which
merely consider users’ ratings [18]. One possible explanation
is that these trust-aware models focus too much on the utility
of users’ trust and do not make full use of the influence
of ratings. This result inspires us to make extensive use
of potential information from ratings in addition to explicit
values. User influence does not only originate from social
networks, but also can be inferred by observed ratings on
jointly-rated items.

Users on social media often are influenced by others to
form opinions and take actions, resulting in the process of
information diffusion. For instance, after a user accepts a
message, other users may be affected and also will consider
accepting the message. The message may be a tweet on
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Twitter, a movie on a video website, or an item on a product
review website. Information diffusion is caused by users’
actions which include retweeting a tweet or rating an item.
Therefore, the aim of personalized recommendation is to
explore the acceptance of items over a population, and it
can be regarded as an application of information diffusion
[21]. For recommendation, after users’ ratings and reviews
have been published, they can be observed by all other users.
When a user rates an item, he/she is affected by the users who
rated the item, irrespective of whether or not they have direct
links. The implicit influence propagates among the users who
rated the same items. However, implicit influence propagation
rarely has been studied, and its effect on recommendation still
needs additional study. In this paper, we investigate the effect
of implicit user influence based on information propagation,
and we consider the influence in recommendation. Also, we
propose a social recommendation method that incorporates the
implicit user influence from ratings and explicit trust influence
from social networks. Experimental results on two real-world
datasets demonstrate that our method performs significantly
better than state-of-the-art models. In addition, our method
does not increase the computation complexity so it is suitable
for practical use. The main contributions of this paper are
listed below:

1) We investigate the implicit user influence from the per-
spective of information propagation. We analyze the concrete
effect of user influence by the mean-field approach for two
propagation mechanisms, i.e., linear threshold and independent
cascade. The analysis on homogeneous and heterogeneous
networks indicates the concrete effect of user influence.

2) We introduce the implicit user influence to the matrix
factorization for recommender systems. Ratings on an item are
correlated with users who rated the item in the past. We also
revamp our recommendation method by incorporating both the
implicit user influence and explicit trust influence to improve
its performance.

3) We conduct comprehensive experiments to evaluate the
accuracy of the proposed method (SoInp). We compare SoInp
with state-of-the-art models on two real-world datasets. Re-
sults indicate that the implicit user influence based on infor-
mation propagation has a significant role in recommendation,
and SoInp makes a remarkable improvement in the task of
rating prediction both for all users and cold-start users.

The rest of this paper is organized as follows. In Section II,
we briefly review related work about recommender systems.
Section III describes the proposed method with the implicit
influence based on information propagation. Experimental
settings and results on real-world datasets are reported in
Section IV, and this is followed by some concluding remarks
and an outline of our future work.

II. RELATED WORK

A. Matrix factorization

As a typical representative of model-based CF, matrix
factorization (MF) is widely used in recommender systems
[22]. It is an efficient and effective approach which maps the
m×n rating matrix into two low-rank matrices [23, 24], where

m denotes the number of users, and n denotes the number of
items. This approach factorizes the user-item rating matrix and
utilizes the generated user-specific and item-specific matrices
to predict missing ratings. MF seeks to approximate the rating
matrix R ∈ Rm×n by the inner product of two low-rank
matrices, i.e., U ∈ Rd×m and V ∈ Rd×n, as follows:

R ≈ UTV (1)

Traditionally, the aim of MF is to decompose the rating matrix
by minimizing the sum-of-squared-errors objective function
with quadratic regularization terms, as:

L =
1

2

∑
u

∑
j∈Iu

(V T
j Uu − ru,j)

2 +
λ

2
(
∑
u

∥Uu∥2 +
∑
j

∥Vj∥2)

(2)
where Uu is a d-dimensional vector (d < min(m,n)) that
represents user u’s latent factor vector, Vj is the latent vector
of item j, and Iu is the set of items which user u rated.
λ(λ > 0) is a trade-off parameter which controls the model
complexity and avoids over fitting, and ∥∗∥ is the Euclidean
norm. Gradient-based approaches can be used to solve the
problem of minimizing the objective function. Then, missing
ratings are predicted by the inner product, UTV , of the user-
specific and item-specific matrices.

B. Social recommendation

Original MF only utilizes ratings. In fact, it has been proved
that social information and ratings can complement each other
[18, 25, 26]. This finding inspires researchers to study trust-
aware recommendation. In recent years, with the occurrence
of abundant social data, trust-aware recommender systems
have been presented extensively. Tan et al. [27] developed
a novel music recommendation model that uses a variety of
social information and music acoustic-based contents. In their
model, users have more complex relationships than pairwise
connections. Ma et al. [14] proposed a probabilistic MF
method, i.e., SoRec, which factorizes both the rating matrix
and social relationship matrix. Most of these existing methods
only combine users’ preferences with their trusted friends
and seek to determine the impact of users’ interactions in
local regions. Besides explicit influence for real values of
ratings and trust, implicit influence also helps improve the
recommendation. The implicit trust means that users’ decisions
are affected by friends’ ratings, and the implicit trust can
be inferred from ratings. Guo et al. [28] proposed a trust-
aware MF model named TrustSVD which incorporates both
the explicit and implicit influence of trust for the prediction
of missing ratings. TrustSVD outperforms most of state-of-
the-art social recommendation models.

Users’ relationships on social networks are complex and
diverse. Behaviors of users usually are affected by their social
relationships which involve directly and indirectly connected
friends. Yang et al. [29] studied interest propagation on social
networks and found that information extracted from interest
networks and friendship networks was truly relevant and mu-
tually helpful. Therefore, they proposed a friendship-interest
propagation model to predict friendships, and the propagation
was applied for social recommendation. Massa and Avesani
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[30] proposed a trust-aware recommender system that used
a trust metric to propagate trust over a trust network instead
of finding similar users, since the similarity calculation often
failed due to data sparsity of input ratings.

In addition to the influence on friends’ preferences, more
information from trust relationships has been used to im-
prove the recommendation. Golbeck [2] presented an approach
which allows users to encode more information about their
relationships rather than just stating the people they know
or trust. In [31], trust propagation enhances the coverage
of recommender systems while simultaneously maintaining
recommendation accuracy and quality. In this approach, the
CF process is determined by users’ reputation. Guha et al. [32]
proved that minority trust/distrust relationships contributed
to predict the trust between any pairwise users. Parvin et
al. [33] incorporated trust information in a non-negative MF
framework to solve cold-start problems. In [34], each user’s
decisions depend on the ratings of the users who have direct
or indirect social relationships with him/her. In [35], trust
statements along with raings were treated as side information
in a nonnegative MF framework.

Item recommendation can be regarded as the prediction
of acceptance for items over a population in the process
of information propagation so that studies on information
propagation can contribute to recommender systems. Duo et al.
[36] proposed a unique form of user similarity, i.e., transferring
similarity, which considers all high-order similarities among
users. In their model, the greater the distance between two
users is, the smaller their impact is.

Table I shows the main properties of the methods we
mentioned above. In the table, d means the number of latent
factors, |R| means the number of ratings, |C| means the
number of relationships, m is the number of users, n is
the number of items, S means the average number of direct
relationships per user, and l = max(M,k+, k−) where M is
the average number of ratings received by an item, k+ and k−

are the average number of trust statements given and received,
respectively, by a user. In summary, trust-aware models open
a research direction of recommender systems. In addition to
trust networks, the ratings themselves imply implicit user
influence which affects users’ decisions in the future. The
implicit influence propagates among the users who rated the
same items. However, implicit influence propagation rarely has
been studied. In this paper, we model the implicit influence of
users from the perspective of information propagation, and we
connect explicit ratings, social trust relationships and implicit
user influence together.

III. RECOMMENDATION WITH IMPLICIT INFLUENCE BASED
ON INFORMATION PROPAGATION

In this section, we explore how users are influenced by oth-
ers when they make a decision, and we introduce the concept
of information propagation to recommender systems. Figure 1
shows the process of information propagation. Typically, a
user’s rating on item j is influenced to different extents by
the users who rated item j. If the user gives a rating on item
j, it has a certain effect on the users who will rate item j in
the future.

Fig. 1. The process of information propagation.

In the following sections, we provide more details concern-
ing the motivations of our work in consideration of information
propagation in recommender systems. Then, we describe two
mechanisms of information propagation among users. Our
detailed method is introduced in Section III-C. The explicit
influence of trust relationships is addressed in Section III-D
and the training algorithm of the proposed method is given in
Section III-E. In Section III-F, we analyze the computational
complexity of the proposed method. Table II shows the main
notations defined in this paper.

A. Motivations

There are kinds of social relationships which affect users’
behaviors or decisions, such as friends, colleagues and school-
mates. However, users do not always accept recommendations
that are provided by each friend, implying that the influence of
these friends is different. In addition, each user also is affected
by the users who rated the same items with him/her, even if
there is no direct connection between them. The objective of
this paper is to effectively predict missing values in the user-
item rating matrix by integrating information from multiple
data sources. We model the implicit influence of users who
rated the same items from the perspective of information
propagation, and we incorporate explicit ratings with implicit
user influence.

The motivations of this paper are described as follows:
1) Existing social recommender systems often assume that

users’ preferences are influenced by direct friends. In fact,
implicit user influence also comes from the people who rated
the same items. For instance, when user u publishes a rating
and some comments on an item, besides the rating, the
comments and user information also can be noticed by other
users. When these users make decisions on the same item, they
may be affected by user u. These decisions also influence other
users’ future ratings on the item. Therefore, user influence
propagates among these users. However, implicit influence
propagation rarely has been considered in recommendation.

2) User influence depends on specific items. A user may
be an expert on an item, but he/she may have no knowledge
about another item. Therefore, influence between two users is
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TABLE I
ANALYSIS OF THE MAIN PROPERITES OF METHODS

Methods Recommendation type Side information Cold-start control Time complexity in an iteration

MRH[27] Model-Based Trust X -
SoRec[14] Model-Based Trust X O(|R|d+ |C|d)
TrustSVD[28] Model-Based Trust X O(d|R|l + d|C|l)
FIP[29] Model-Based Trust × -
TrustAR[30] CF Trust X -
TBR[2] CF - × -
TrustRSNF[35] Model-Based Trust × O(d ∗max(m,n))

TrustMF[34] Model-Based Trust × O(mMd+mSd)

TrustANLF[33] Model-Based Trust X O(d2|R|)

TABLE II
NOTATIONS

Symbol Description

Cu the set of user u’s neighbor
δv the state of user v in information propagation

Pu,v the probability of inactive user u being activated by active user v
ε the average probability of being activated by an active neighbor

ρa(t) the proportion of active users at time t in homogeneous networks
ρi(t) the proportion of inactive users at time t in homogeneous networks

P (k
′ |k) the probability that a user with degree k connects to a user with degree k

′

ρa(k, t) the proportion of active users with degree k at time t

Uu the latent vector of user u
Wv the latent vector of trustee v

Vj the latent vector of item j

r̂u,j the prediction of u’s rating score on item j

ĉu,v the predicted trust relationship between user u and v

Iu the set of items which user u rated
bu inherent bias of user u
bj inherent bias of item j

µ global average rating
Γj the set of users who rated item j

yi the implicit influence vector of user i who rated item j

α a constant which controls the extent of implicit influence
λt a constant which controls the extent of trust regularization
λ the regularization parameter for latent factors
d the number of latent factors

different towards different items. User influence for a target
item is correlated with latent factors of the item.

3) Information propagation shows how a message is dis-
seminated from a user to others. The probability of accepting
a message from another user depends on the user’s influence.
A message can be treated as an item in recommender systems,
and accepting and using the message is regarded as publishing
a rating. Therefore, the implicit user influence in recommender
systems can be derived from the process of information
propagation, and it can be introduced to the MF framework.

B. Information propagation
On social media, once a user publishes a message, the

message is transmitted to his/her neighbors. The decision of
whether to accept and repost the message is correlated with the
content of the message and the influence of the author. When

neighbors repost the messages, more users have an opportunity
to read it. Then, the message propagates beyond the original
author’s local region. There are dynamic models that simulate
information propagation among users. At the beginning of the
dynamics for these models, one or several users are set in
the active state, and the others remain inactive. The active
state means users have accepted the message and tried to
diffuse it, while inactive users do not have any contact with
it. Inactive users may be activated by active neighbors with
different probability. Here, we focus on two basic mechanisms
of information propagation, i.e., linear threshold [37] and
independent cascade [38].

Linear threshold: Assume that there is a social network
represented by a graph which includes the set of users and
the set of social relationships. Each user chooses a threshold
θu which is selected at random from a uniform distribution in
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the interval [0, 1]. In each iteration, inactive user u becomes
active if the weighted sum of the edges with active neighbors
exceeds the threshold θu, shown as follows:∑

v∈Cu

δvPu,v ≥ θu (3)

where Cu is the set of user u’s neighbors, and δv = 1 if
user v is active, otherwise δv = 0. Inactive user u is activated
by active user v with probability Pu,v . The aforementioned
activation condition is not differentiable, so that the process
of information propagation is hard to analyze by the mean-field
approach. Therefore, we generalize the activation probability
of inactive user u by linear superposition of active neighbors,
as:

Pu,i→a =
∑
v∈Cu

δvPu,v/|Cu| (4)

Independent cascade: In this case, if user u has some
neighbors, he/she is activated by each neighbor independently
with different probability. One can infer the activation proba-
bility of user u as:

Pu,i→a = 1−
∏

v∈Cu

(1− δvPu,v) (5)

The two mechanisms of information propagation shown above
can be extended to continuous-time dynamics. Given a con-
tinuous time interval τ , for the propagation of linear super-
position or independent cascade, the activation probability of
inactive users during τ can be obtained as follows.

We introduce a small auxiliary variable ∆t. Users can dif-
fuse the message in ∆t, so that inactive user u is activated by
active neighbors in ∆t with probability Pu,i→a∆t. Therefore,
the activation probability of user u during τ is:

P τ
u = 1− lim

∆t→0
(1− Pu,i→a∆t)τ/∆t = 1− e−Pu,i→aτ (6)

Therefore, the activation probability during continuous time
accumulates as an exponential function.

C. Recommendation based on information propagation

Users’ ratings have a correlation with the users who rated
the same items. In other word, users who rated a certain item
contribute to rating prediction for the item. We introduce this
relationship as the implicit influence based on information
propagation.

Linear superposition: From the perspective of information
propagation, user influence is regarded as the contribution for
the diffusion of a message. Now, we investigate the global
effect of user influence during the propagation process by the
mean-field approximation.

The global effect is obtained from the global proportion of
activation, i.e., the proportion of active users. Note that the
global proportion of activation varies with time, so we define
the proportion at time t as ρa(t). Therefore, the proportion of
inactive users is defined as ρi(t) = 1−ρa(t). In the mean-field
approach, if the distribution of Pu,v is given by P (u, v), the
average probability of being activated by an active neighbor
is approximated by ε =

∑
u,v Pu,vP (u, v).

Proposition 1: For the propagation of linear superposition,
on a homogeneous network with node degree k, the global
effect of user influence increases as an exponential function.

Proof: An inactive user is activated by one of his/her
neighbors v in the interval ∆t (∆t → 0) with probability
ε∆tδv . According to Equation 4, an inactive user is activated
during [t,t+∆t] with the probability, as:

Pi→a(t) =
∑
v∈Cu

ε∆tδv/|Cu| = ερa(t)∆t (7)

The proportion of inactive users ρi(t) decreases when inactive
users are activated. Therefore, the variation of ρi(t) during
[t,t+∆t] is ρi(t)Pi→a(t), and we obtain ρi(t+∆t) = ρi(t)−
ερi(t)ρa(t)∆t. The transition rate of ρi(t) can be calculated
by:

∂ρi(t)/∂t =
lim∆t→0 ρi(t+∆t)− ρi(t)

∆t
= −ερi(t)ρa(t)

(8)
The transition rate of ρa(t) is obtained easily by ∂ρa(t)/∂t =
ερi(t)ρa(t). From the two equations above, we obtain the time
evolution of ρa(t), shown as follows:

ρa(t) =
1

1 + eln(1/ρa(0)−1)−εt
(9)

where ρa(0) means the initial proportion of active users in the
population.

Then, we consider information propagation on heteroge-
neous networks. In this case, the proportion of active users
depends on users’ degrees. The distribution of users’ degrees
is given by P (k), and the probability that a user with degree
k connects to a user with degree k

′
is given by P (k

′ |k). We
define the proportions of active and inactive users with degree
k as ρa(k, t) and ρi(k, t), respectively.

Proposition 2: For the propagation of linear superposition on
a heterogeneous network, the effect of user influence increases
as an exponential function.

Proof: In this case, the activation probability of an inactive
user with degree k in Equation 7 is changed to:

Pi→a(k, t) =

∑
v∈Cu

ε∆t
∑

k′ P (k
′ |k)ρa(k

′
, t)

|Cu|
=ε

∑
k′

P (k
′
|k)ρa(k

′
, t)∆t

(10)

We calculate the transition rate of ρi(k, t) as:

∂ρi(k, t)/∂t = −ερi(k, t)
∑
k′

P (k
′
|k)ρa(k

′
, t) (11)

From Equation 11, we obtain the time evolution of ρa(k, t) as
follows:

ρa(k, t) = 1− ρi(k, 0)e
−εϕ(t) (12)

where ϕ(t) =
∑

k′ P (k
′ |k)

∫ t

0
ρa(k

′
, t

′
)dt

′
. We conclude

that user influence increases exponentially (see Appendix A).
According to the aforementioned analysis, we model the effect
of use influence as an exponential form of latent user and item
vectors in recommender systems.

In the implicit influence of linear superposition, a user’s
rating on a certain item j is influenced by the users who
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rated item j, and the multiple influence of users accumulates
linearly. We define the effect of user influence as:

1

1 + e
−V T

j

∑
i∈Γj

yi
(13)

where Γj is the set of users who rated item j. yi is the
vector that indicates the implicit influence of user i who rated
item j. Original ratings are regarded as explicit influence, and
implicit influence can also be exploited from users’ actions to
better represent their preferences. V T

j

∑
yi is the accumulative

information that a user receives from the users who rated item
j during the process of information propagation.

Users always have different experience, expertise and feel-
ings towards different items, so user influence is correlated
with items. User influence on a specific user may be different
when the user rates different items. Therefore, in Equation 13,
user influence in rating prediction is not exerted on any specific
user but on the users who rate a specific item.

With the implicit user influence, the estimated rating is given
by:

r̂u,j = bu + bj + µ+ V T
j Uu + α

1

1 + e
−V T

j

∑
i∈Γj

yi
(14)

where bu represents the inherent bias of user u, independently
of any item, and bj is the inherent bias of item j. Both of them
are updated during the iterations of training. µ is the global
average rating, and α is a positive constant which controls the
extent of implicit influence of the users who rated the same
item j. V T

j Uu is the inner product of latent user-specific and
item-specific vectors, which represents explicit influence of the
item.

Independent cascade: When a user who did not act is
making a decision, he/she receives multiple information from
active users, and multiple information generates cascade influ-
ence.

Proposition 3: For the propagation of independent cascade,
on a homogeneous network with node degree k, the global
effect of user influence increases as an exponential function.

The proof is analogous to Proposition 1. For an inactive
user, the probability that he/she meets an active neighbor is
ρa(t). The activation probability Pi→a(t) during [t,t+∆t] in
Equation 7 is changed as:

Pi→a(t) = 1−
∏

v∈Cu

(1− ε∆tρa(t)) = 1− (1− ε∆tρa(t))
k

(15)
Since ∆t is very small, Pi→a(t) can be approximated by
kε∆tρa(t). For independent cascade, user influence also in-
creases exponentially (see Appendix B).

Proposition 4: For the propagation of independent cascade
on a heterogeneous network, the effect of user influence
increases as an exponential function.

The proof is analogous to Proposition 2. For independent
cascade, users who rated item j have their cascade influence
on a new user, and the influence of these users is independent
of each other. According to the exponential pattern of user
influence, we define the independent cascade influence of all

the users who rated item j as follows:

1−
∏
i∈Γj

(
1− 1

1 + e−V T
j yi

)
(16)

where Γj is the set of users who rated item j. A natural and
straightforward way to combine the implicit cascade influence
with explicit influence from MF is given by:

r̂u,j = bu + bj +µ+V T
j Uu +α

(
1−

∏
i∈Γj

(1− 1

1 + e−V T
j yi

)

)
(17)

Similar to linear superposition, α is a positive constant which
controls the extent of implicit influence, and yi is the implicit
influence vector of user i in Γj .

D. Explicit trust influence

On social media, users can label or add other users as their
trusted friends, and then, a trust network is generated. Assume
that there are m users on a trust network. For the network,
we get an adjacency matrix C = [cu,v]m×m to describe the
structure of the network, where cu,v = 1 means that user u
specifies user v as a trustworthy friend and cu,v = 0 indicates
no trust relationship. Similar to the rating matrix in MF, the
trust matrix also can be used in MF. We denote Uu and Wv

as truster u’s latent factor vector and trustee v’s latent vector.
Aiming to bridge the rating matrix R and trust matrix C
together, we limit the truster in C and the active user in R
to share the same latent vector Uu. Then, we can use Uu and
Wv to recover the trust matrix by:

L =
1

2

∑
u

∑
v∈C+

u

(ĉu,v−cu,v)2+
λ

2

(∑
u

||Uu||2+
∑
v

||Wv||2
)

(18)
where ĉu,v is the predicted trust relationship between user u
and v by the inner product of truster and trustee vectors ĉu,v =
WT

v Uu, and C+
u is the set of users who are trusted by user u

or the trustees of user u.
As explained before, we factorize the rating matrix and trust

matrix together. With these two types of information, a new
objective function is given by:

L =
1

2

∑
u

∑
j∈Iu

(r̂u,j − ru,j)
2 +

λt

2

∑
u

∑
v∈C+

u

(ĉu,v − cu,v)
2

(19)
where λt controls the extent of trust regularization. In consid-
eration of regularization terms, a unified objective function is
proposed as follows:

L =
1

2

∑
u

∑
j∈Iu

(r̂u,j − ru,j)
2 +

λt

2

∑
u

∑
v∈C+

u

(ĉu,v − cu,v)
2

+
λ

2

(∑
u

||Uu||2 +
∑
j

||Vj ||2 +
∑
v

||Wv||2 +
∑
i

||yi||2

+ b2u + b2j

)
(20)
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where r̂u,j is defined in Equation 14 with linear superposi-
tion propagation or in Equation 17 with independent cascade
propagation. || ∗ || is the Euclidean norm.

In summary, by making full use of the rating matrix and
trust matrix, we blend the two kinds of information together,
thereby making the prediction of r̂u,j more appropriate. In
addition, the implicit user influence based on information
propagation is included in the prediction of r̂u,j .

E. Model learning

To optimize the objective function and determine a local
minimum for Equation 20, we perform the following stochas-
tic gradient descent (SGD) on different parameters across all
the users and items in the training dataset. The rule of SGD
is:

θ = θ − η ∗ ∇θJ(θ) (21)

In our paper, J(θ) is the objective function in Equation 20.
Then the task of calculating∇θJ(θ) means to calculate∇UuL,
∇VjL, ∇buL, ∇bjL, ∇yiL, and ∇WvL (see supplementary
materials).

For linear superposition:

Uu ← Uu − η

( ∑
j∈Iu

eu,j ∗ Vj + λt ∗
∑

v∈C+
u

su,v ∗Wv + λ ∗ Uu

)

Vj ← Vj − η

( ∑
u∈Γj

eu,j ∗ (Uu + αYj
e−V T

j Yj

(1 + e−V T
j Yj )2

) + λ ∗ Vj

)
bu ← bu − η

( ∑
j∈Iu

eu,j + λ ∗ bu
)

bj ← bj − η

( ∑
u∈Γj

eu,j + λ ∗ bj
)

yi ← yi − η

(
α ∗

∑
j∈Ii,u∈Γj

eu,j ∗ Vj ∗
e−V T

j Yj

(1 + e−V T
j Yj )2

+ λ ∗ yj
)

Wv ←Wv − η

(
λt ∗

∑
u∈C−

v

su,v ∗ Uu + λ ∗Wv

)
(22)

where Yj =
∑

i∈Γj
yi is an auxiliary variable. eu,j = r̂u,j −

ru,j is the error of the estimated rating for user u on item j,
and su,v = ĉu,v − cu,v is the error of estimated trust for user
u to trustee v. C+

u is the set of users who are trusted by user
u, and C−

u is the set of users who trust user u.
For independent cascade, the update equations of Uu, bu,

bj , and Wv are the same as those for linear superposition. We
only list the updates of Vj and yi for independent cascade as
follows:

Vj ← Vj − η

( ∑
u∈Γj

eu,j ∗ (Uu + αDj) + λ ∗ Vj

)
yi ← yi − η

(
α ∗

∑
j∈Ii,u∈Γj

eu,j ∗
Vj

1 + e−V T
j yi
∗Qj + λ ∗ yi

)
(23)

where the auxiliary variables are Qj =
∏

i∈Γj

(
1 −

1

1+e
−V T

j
yi

)
and Dj =

∑
i∈Γj

(
yi

1+e
−V T

j
yi
∗ Qj

)
. The whole

training algorithm is shown in Algorithm 1. Several arguments
are taken as input, including the rating matrix R, trust matrix
C, learning rate η, regularization parameter λ, trust regular-
ization λt and user influence parameter α.

F. Complexity analysis

The computation mainly is caused by calculating the objec-
tive function in Equation 20 and its gradients versus different
variables. We have defined m as the number of users, n as
the number of items, and d as the number of latent factors.
The average number of ratings received by an item is given
by M. |R| represents the number of observed ratings, and |C|
denotes the number of observed trust relationships.

For recommendation with linear superposition, during an
iteration, it takes O(dnM) to calculate Yj for all the items.
The computational complexities for the update of Uu, Vj and
yi are O(d|R|+d|C|), O(d|R|), and O(d|R|M), respectively.
Therefore, the complexity for linear superposition in an itera-
tion is O(d|R|M). For independent cascade, the complexities
of calculating Qj and Dj are O(dnM). The update of yi
during an iteration also costs O(d|R|M). Since n≪ |R|, the
computational complexity for independent cascade is the same
as that for linear superposition.

The complexity of TrustSVD in an iteration is O(d|R|l +
d|C|l), where l = max(M,k+, k−). k+ and k− are the
average number of trust statements given and received, re-
spectively, by a user [28]. From the above analysis, the pro-
posed recommendation method results in lower computational
complexity than TrustSVD, and the computational time is
linear with respect to the number of observed ratings. The
complexity of TrustANLF [33] in an iteration is O(d2|R|).
The average number of ratings M received by an item in
our datasets is less than 40, so M is close to d which in
our experiments is set to 20. Therefore, the complexity of the
proposed method approaches TrustANLF, and our method is
scalable for practical use.

IV. EVALUATION

In this section, we evaluate the effectiveness of the proposed
method by extensive experiments, and we compare the results
with those of other state-of-the-art recommendation models.
We also discuss our findings in detail. All the experiments
are performed on a PC with an Intel 2.9GHz CPU and 16GB
RAM.

A. Datasets

Our datasets were collected from Ciao and Epinions, which
are well-known and publicly available datasets1 for social
recommendation systems. Ciao2 is a popular online website
that works by critically reviewing and rating millions of

1https://www.cse.msu.edu/˜tangjili/trust.html
2http://www.ciao.co.uk
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Algorithm 1: Learning parameters in SoInp
Input: Rating matrix R, trust matrix C, λ, λt, η, α
Output: User factor matrix U and item factor matrix V

1 Randomly initialize each Uu, Vj and yi with small values in (0,0.01)
2 while not convergence do
3 for each item j in the item set do
4 if linear superposition: calculate Yj =

∑
i∈Γj

yi

5 if independent cascade: calculate Qj =
∏

i∈Γj

(
1− 1

1+e
−V T

j
yi

)
and Dj =

∑
i∈Γj

(
yi

1+e
−V T

j
yi
∗Qj

)
6 end
7 calculate r̂u,j using Equation 14 for linear superposition
8 using Equation 17 for independent cascade
9 calculate eu,j = r̂u,j − ru,j

10 calculate su,v = ĉu,v − cu,v
11 Update bu, bj , Uu, Wv according to Equation 22
12 if linear superposition: update Vj , yi using Equation 22
13 if independent cascade: update Vj , yi using Equation 23
14 end

TABLE III
STATISTICS OF THE CIAO AND EPINIONS DATASETS

Ciao Epinions

Users 7267 7411
Items 11,211 8,728
Ratings 149,147 276,116
Trust Relationships 110,755 52,982

products for the benefit of the global population, and Epinions3

is a well-known product review website established in 1999. In
both websites, users can rate products by one of five discrete
ratings from 1-5. Users observe ratings about a variety of items
to help them decide on their actions. When a user is rating an
item, he/she is influenced by other customers’ ratings.

The Ciao dataset contains 149,147 ratings from 7,267 users
on 11,211 items, and the Epinions dataset contains 276,116
ratings of 8,728 items made by 7,411 users. Users in Epinions
and Ciao can specify others as their trustworthy friends by
evaluating the quality of others’ ratings and textual reviews.
Therefore, in these two datasets we also obtain trust informa-
tion which makes Ciao and Epinions become ideal sources
for social recommendation experiments. Table III shows the
statistics of these two datasets.

B. Experimental settings

We use two well-known metrics to evaluate the quality of
recommendation, i.e., Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE), defined by:

MAE =

∑
ru,j∈Rtest

|r̂u,j − ru,j |
|Rtest|

(24)

RMSE =

√∑
ru,j∈Rtest

(r̂u,j − ru,j)2

|Rtest|
(25)

3http://www.epinions.com

where Rtest is the test set, and |Rtest| is the number of ratings
in the test set. From the definitions, we can see that a smaller
MAE or RMSE value means better performance.

We apply several representative recommendation models on
these two datasets, and compare their results with our method.
The models include:

UserAverage: This baseline method predicts a user’s rating
on any item by the average of his/her historical ratings.

ItemAverage: This baseline method uses the mean value of
ratings on each item to predict missing ratings.

NMF [39]: This method only uses the user-item rating
matrix for recommendation with the assumption that factorized
low-rank matrices have no negative element.

PMF [8]: This method is a basic probabilistic MF model,
and it only uses the rating matrix.

RSTE [40]: This method makes trust-based recommenda-
tion that models one user’s rating as the balance between
his/her own favor and the tastes of his/her trusted users.

SocialMF [41]: This method makes social recommendation
for a user based on ratings of the users that have direct or
indirect social relationships with the target user.

TrustMF [34]: This method works to improve the perfor-
mance of recommendation by integrating sparse rating data
and sparse trust relationship data.

SVD++ [42]: This method is a state-of-the-art model based
only on ratings, in which the implicit influence of items
already rated by a user contributes to the prediction of missing
ratings.

TrustSVD [28]: This method extends SVD++, and further
incorporates both the explicit and implicit influence of trusted
users on the recommendation.

TrustANLF [33]: This method incorporates users’ trust
information in a nonnegative MF framework.

For the propagation of linear superposition, our method is
simplified as SoInp-LS, while for the propagation of indepen-
dent cascade, it is written as SoInp-IC.

Parameter settings: We randomly select 80% of data in each
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dataset as the training set, and the remaining data are used as
the test set. All results are averaged over five independent
experiments. We implement some baselines by LibRec. To
make a fair comparison, we set the same number of latent
factors d = 20 for all the methods. We use cross-validation
to determine the optimal parameters. All experiments are
conducted under optimal settings for each model. In the
following, the common setting of state-of-the-art models is
the learning rate η = 0.01. The regularization parameter is
λ = 0.1 for all the methods except TrustMF, TrustSVD and
TrustANLF. The other settings are listed as follows:

1) RSTE: λt = 1.8 in Ciao, and λt = 1 in Epinions;
2) SocialMF: λt = 1 in Ciao, and λt = 0.4 in Epinions;
3) TrustMF: λt = 2, λ = 0.05 in Ciao, and λt = 3, λ =

0.05 in Epinions;
4) TrustSVD: λt = 1, λ = 0.5 in Ciao, and λt = 0.5,

λ = 0.5 in Epinions;
5) TrustANLF: λt = 1, λ = 0.5 in Ciao, and λt = 1,

λ = 0.5 in Epinions;
6) SoInp-LS: λt = 5, α = 1, η = 0.001 in Ciao, and λt = 4,

α = 1, η = 0.001 in Epinions;
7) SoInp-IC: λt = 5, α = 0.8, η = 0.001 in Ciao, and

λt = 4, α = 1, η = 0.001 in Epinions.

C. Impact of parameters

We investigate the impacts of parameters α, λt and d. These
parameters have a significant role in our method.

Fig. 2. Effect of parameter α in Ciao.

The parameter α determines the extent of implicit influence
of users who rated the target item before. Figure 2 and
Figure 3 show that, in both datasets, as α increases, the values
of MAE for our method initially decrease, and then increase
beyond a certain point of α. For very small α, only explicit
user-item ratings dominate in the prediction task, and the
implicit user influence fails to take effect in recommendation.
However, for very large α, the implicit user influence has an
excessive role in the training process and leads to over fitting.
Increasing α makes the performance even worse. In addition,
SoInp-LS in the Ciao dataset outperforms SoInp-IC for large
α, while the results are contrary in other cases. The reason is
that the rating matrix in Ciao is sparser, so large α promotes

Fig. 3. Effect of parameter α in Epinions.

over fitting more easily in the dataset. From Eqs. (13) and (16),
the value of independent cascade usually is larger than that
of linear superposition. Therefore, the implicit user influence
dominates in the rating prediction of SoInp-IC, resulting in
relatively worse performance. To determine the optimal α for
different datasets, we fix parameter λt at the best value, and
tune α in the range (0.2,2). As depicted in the figures, the
results show that our method achieves relatively low MAE in
the range (0.8,1) for SoInp-LS and SoInp-IC in both datasets.
The complexity of our method can be reduced, since it is
convenient to set the parameter in different datasets.

Fig. 4. Effect of parameter λt in Ciao.

The trust regularization parameter λt determines the extent
of explicit social influence. Figure 4 and Figure 5 illustrate
the impact of λt on MAE in our method. From the results,
incorporating social information improves the performance of
recommender systems. Similarly to α, if we use very small
λt, we only leverage the rating matrix for the prediction of
missing ratings, and social information is ignored. However,
if we use very large λt, the contribution of observed ratings
is restricted and the accuracy also is degraded. It is dramatic
that in Ciao data, our method with large λt performs better
than it does with small λt, but the result is just opposite
in Epinions data. Compared with Ciao, Epinions data have
sparser trust relationships, and therefore, too large λt harms
the performance more prominently in Epinions. In addition,
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Fig. 5. Effect of parameter λt in Epinions.

we find the suitable value of λt is in the range (4,5) both for
SoInp-LS and SoInp-IC, irrespective of the dataset.

Fig. 6. Effect of dimensionality d in Ciao.

Fig. 7. Effect of dimensionality d in Epinions.

Here, we investigate the effect of the dimensionality of
latent vectors d. Figure 6 and Figure 7 show the variations of
MAE versus the dimensionality. It is observed that the value
20 of d is always optimal both for SoInp-LS and SoInp-IC in
the two datasets. In fact, when the dimensionality surpasses
a certain value, the model becomes overly complicated, and

TABLE IV
PERFORMANCE COMPARISON OF SOINP-LS AND SOINP-IC

Ciao Epinions

MAE RMSE MAE RMSE

SoInp-LS 0.7221 0.9703 0.7987 1.0411
SoInp-IC 0.7108 0.9680 0.7855 1.0350

TABLE V
PERFORMANCE COMPARISON ON MAE AND RMSE OVER DIFFERENT

RECOMMENDATION MODELS

Ciao Epinions

MAE RMSE MAE RMSE

UserAverage 0.8325 1.0993 0.9593 1.2119
ItemAverage 0.8588 1.1045 0.9302 1.1671
NMF 0.7844 1.0799 0.8725 1.1693
PMF 0.7665 1.0092 0.8734 1.1340
RSTE 0.7973 1.8994 0.8751 1.0951
SocialMF 0.7663 0.9829 0.8283 1.0567
TrustMF 0.7750 1.0976 0.8476 1.1149
SVD++ 0.7375 0,9765 0.8054 1.0471
TrustSVD 0.7334 0.9710 0.8076 1.0430
TrustANLF 0.7285 0.9702 0.8068 1.0417
SoInp-IC 0.7108 0.9680 0.7855 1.0350

large dimensionality turns out to exert a negative impact on
the prediction accuracy.

D. Comparison for normal users

We compare the accuracy of SoInp-LS and SoInp-IC in
both datasets. The results are presented in Table IV. Here,
we use optimal parameter settings. We conclude that the
method with cascade information propagation consistently
achieves better performance. Therefore, it is reasonable to
assume that the influence of users who rated the same items
is independent of each other, and the overall outcome is
a cascade of different user influence. Independent cascade
influence exists more extensively in real situations where users
and their friends interact with each other and have an impact
on others’ decisions.

To demonstrate the performance improvement of our
method, we compare it to representative state-of-the-art rec-
ommendation models. Parameters are assigned as mentioned
earlier. The random split of data is conducted 5 times and the
average experimental results are presented in Table V.

In fact, even small improvements in MAE and RMSE
produce much better recommendation in practice. The baseline
methods such as UserAverage and ItemAverage perform the
worst among all the methods. Therefore, when the dataset
is really sparse, these methods cannot be used for the task
of personalized recommendation. In general, recommendation
models with social information except RSTE have better
performance than the models which depend only on ratings.
RSTE utilizes social trust ensemble and requires more re-
lationship data. Therefore, it cannot perform well with a
sparse user-user trust matrix, especially for the Ciao dataset.
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Furthermore, SVD++, despite social information, outperforms
RSTE, SocialMF and TrustMF both in Ciao and Epinions.
This result implies that the implicit influence of rated items
identifies the actual interaction process on social media and
makes adequate use of observed ratings. Therefore, the implicit
influence can help improve the recommendation. TrustSVD
is superior to SVD++ across both datasets, indicating that
recommender systems can make further progress by incorpo-
rating the explicit and implicit influence of trust relationships
with ratings. TrustANLF performs the best among these state-
of-the-art models. In addition, our method outperforms other
recommendation models in both datasets, demonstrating the
effectiveness of leveraging the mechanism of information
propagation to represent the implicit use influence. SoInp-IC in
Ciao data decreases MAE by 3.08% in contrast to TrustSVD,
and 2.74% in Epinions data. In addition, SoInp-IC has lower
computational complexity than TrustSVD.

To illustrate the importance of information propagation, we
present the Pearson correlation coefficient (PCC) between a
user’s ratings on different items and implicit user influence
towards these items in Equation 13 and Equation 16, as shown
in Figure 8 and Figure 9. A large portion (about 65% in
Ciao and 77% in Epinions) of the correlations are above 0,
implying that a user’s ratings are positively correlated with
implicit user influence both for SoInp-LS and SoInp-IC. The
distributions for SoInp-LS and SoInp-IC in both datasets are
approximately the same. Therefore, it is obvious that implicit
user influence from information propagation can be utilized
for rating prediction.

Fig. 8. Correlations between a user’s ratings on items and implicit user
influence towards these items in Ciao.

The experimental results suggest that the implicit user
influence based on information propagation improves the
recommendation accuracy. Further experiments can be found
in supplementary materials.

E. Time analysis

In this section, the recommendation models are compared
in terms of time consuming, and the results are shown in
Figure 10 for Ciao and Epinions, respectively. We select 6
most competitive recommendation models that perform well

Fig. 9. Correlations between a user’s ratings on items and implicit user
influence towards these items in Epinions.

in experiments. As shown in Figure 10, SoInp-LS and SoInp-
IC both require less execution time than TrustSVD while they
achieve lower MAE and RMSE (in Table V). Although the
proposed method spends more time than SocialMF, SVD++
and TrustANLF, the accuracy of our method is much better
than these models. Therefore, the additional execution time
is worth achieving better recommendation performance. In
addition, our method is also sufficiently scalable (see supple-
mentary materials).

Fig. 10. Execution time of different models.

F. Comparison for cold-start users

In this subsection, we analyze the ability of addressing cold-
start problems for our method. Users who have given few
ratings are considered as cold-start users. In both datasets, we
choose the users who have rated less than 10 items as cold-
start users. Table VI shows the MAE and RMSE performance
of different models for cold-start users in both datasets.

In cold-start situations, our method performs the best among
these recommendation models. RSTE for cold-start users out-
performs PMF, but the result is opposite to that for all users.
TrustMF even has slightly smaller MAE than SVD++ in both
datasets. The reason is that trust information becomes more
important in rating prediction, when observed ratings are not
enough to train a predictive model in cold-start situations. In
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TABLE VI
PERFORMANCE COMPARISON FOR COLD-START USERS OVER DIFFERENT

RECOMMENDATION MODELS

Ciao Epinions

MAE RMSE MAE RMSE

UserAverage 0.8479 1.1521 1.0067 1.3147
ItemAverage 0.8409 1.1680 0.9880 1.2370
NMF 0.8167 1.1494 0.9079 1.2412
PMF 0.7993 1.0954 0.9606 1.2103
RSTE 0.7677 1.1411 0.9500 1.1731
SocialMF 0.7779 0.9862 0.9003 1.1439
TrustMF 0.7635 1.0501 0.8933 1.1991
SVD++ 0.7676 0.9883 0.8995 1.1405
TrustSVD 0.7410 0.9752 0.8662 1.1299
TrustANLF 0.7398 0.9689 0.8388 1.1009
SoInp-IC 0.7152 0.9612 0.7886 1.0431

addition, since trust relationships are much sparser in Epinions
than in Ciao, our method performs much better than other
state-of-the-art recommendation models in Epinions. In terms
of MAE, SoInp-IC in Ciao improves the accuracy by 3.48% in
contrast to TrustSVD, and by 8.96% in Epinions. Therefore,
our method efficiently leverages trust information when rating
data are sparse.

V. CONCLUSION

User connections on online social networks are different and
diverse. Users seem to interact more frequently with others
they trust. In addition, users’ ratings also are influenced by
the users who rated the same items even if there is no direct
connection among them. In this paper, we focused on the
measure of implicit influence propagation during users’ inter-
actions, which often was overlooked by existing recommender
systems. We studied the effect of implicit user influence based
on information propagation, and we concluded the concrete
function of implicit influence by theoretical analysis. Then, we
combined the implicit influence and explicit trust information
with the MF framework. Our experiments on two datasets
indicate that our method achieves more accurate recommen-
dation than state-of-the-art models. Furthermore, the proposed
method is quite general, since it also can be applied even when
social networks are not available.

There are several ways to improve the recommendation
in the future. In our current work, we just simply take into
account all the users who rated the same items. In fact,
a user who has different similarities with others may have
different influence on those users, so we will investigate how
to take advantage of user similarities and the implicit influence
for recommendation. Meanwhile, users’ social relationships
change over time, and trust networks are likely to evolve since
new members may join and old members may leave. There-
fore, we will seek to use temporal information of both ratings
and social relationships to improve the recommendation.
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APPENDIX A

In an uncorrelated network, the degree correlation of the
network can be written as P (k′|k) = k′P (k′)/k̄, where k̄ is
the average degree of the network. We multiply both sides of
Equation 12 with kP (k)/k̄ and sum over different k, as:

∂ϕ(t)/∂t =
∑
k

kP (k)(1− ρi(k, 0)e
−εϕ(t))/k̄ (26)

We calculate the partial derivative of Equation 26, and obtain
the following equation:

∂2ϕ(t)/∂t2 = ∂ϕ(t)/∂t
∑
k

εe−εϕ(t)ρi(k, 0)kP (k)/k̄ (27)

Considering Equation 26 and Equation 27, we have:

∂2ϕ(t)/∂t2 = ε∂ϕ(t)/∂t(1− ∂ϕ(t)/∂t) (28)

We solve the above equation as:

∂ϕ(t)/∂t =
1

1 + eln(1/∂tϕ(0)−1)−εt
(29)

where ∂tϕ(0) =
∑

k kP (k)ρa(k, 0)/k̄. According to
Equation 4, an inactive user with degree k is influenced by
others with the following probability:

ε
∑
k′

P (k
′
|k)ρa(k

′
, t) = ε

∂ϕ(t)

∂t
=

ε

1 + eln(1/∂tϕ(0)−1)−εt

(30)
If initial active users are uniformly distributed over differ-
ent degrees, the time evolution of ρa(k, t) is reduced to
Equation 9. According to above analysis, user influence in-
creases exponentially.

APPENDIX B

In Proposition 3, analogously to the case of linear superpo-
sition, we can obtain the evolution of ρa(t) for independent
cascade:

ρa(t) =
1

1 + eln(1/ρa(0)−1)−kεt
(31)

According to Equation 5, each user is influenced by others
with the following probability:

1−
∏
k

(1−ερa(t)) = 1−
∏
k

(1− ε

1 + eln(1/ρa(0)−1)−kεt
) (32)

Therefore, for the propagation of independent cascade, user
influence increases exponentially.
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