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Abstract—As an emerging social dynamic system, geo-social
network can be used to facilitate viral marketing through the
wide spread of targeted advertising. However, unlike traditional
influence spread problem, the heterogeneous spatial distribu-
tion has to incorporated into geo-social network environment.
Moreover, from the perspective of business managers, it is
indispensable to balance the tradeoff between the objective
of influence spread maximization and objective of promo-
tion cost minimization. Therefore, these two goals need to be
seamlessly combined and optimized jointly. In this paper, con-
sidering the requirements of real-world applications, we develop
a multiobjective optimization-based influence spread framework
for geo-social networks, revealing the full view of Pareto-optimal
solutions for decision makers. Based on the reverse influence sam-
pling (RIS) model, we propose a similarity matching-based RIS
sampling method to accommodate diverse users, and then trans-
form our original problem into a weighted coverage problem.
Subsequently, to solve this problem, we propose a greedy-based
incrementally approximation approach and heuristic-based par-
ticle swarm optimization approach. Extensive experiments on two
real-world geo-social networks clearly validate the effectiveness
and efficiency of our proposed approaches.
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I. INTRODUCTION

W ITH the rapidly increasing popularity of online social
medias [1], for example, Twitter and Facebook, viral

marketing has become one of the most cost-effective marketing
tool to promote products and services through the word-of-
mouth effects. A fundamental problem in viral marketing is
influence maximization (IM) [2] which strives to identify a
seed set of k influential nodes, called seed users, over one
social network G to trigger a maximum expected number
of nodes influenced. In the past decade, IM problem has
received considerable attention in both academic and industrial
communities [3], [4].

In most of existing works concerning IM problem, two
assumptions are enclosed: 1) the benefit achieved by influencing
any user is equal and 2) all the initial seed users can be recruited
with the same cost (unit one). The proliferation of position
enabled devices imports spatial information into the traditional
social networks, that is, geo-social networks [3], [5]. Based
on the exposed locations and associated semantic meaning,
users’ profile can be captured to improve the performance of
marketing campaigns. However, to launch a location-aware
promotion in geo-social networks, the first assumption may
not be true due to users’ diverse spatial distributions. For
instance, users who are close to a target location have a
greater probability to adopt the promoted product [6], [7], for
example, a restaurant or a gym, and so on. Therefore, it is
necessary to differentiate these potential customers from other
users, and attach more importance to them; otherwise, it may
direct “wrong audiences” who are not profitable.

Moreover, due to the different influence capability of users
in social networks, the recruited seed users often incur dif-
ferent recruiting costs. It goes without saying that the cost
to incentivize high-profile individuals should be substantially
higher than common users. For example, the famous sport
star Cristiano Ronaldo’ worth per tweet is estimated as
$1 613 309 [8]. Thus, if we follow the second assumption,
it may result in infeasible scheme with unaffordable budget.
In summary, to achieve a successful promotion in geo-social
networks, it is essential to recognize targeted customers from
available users, and consider seed users’ different recruiting
cost resulted from their ranks.

Fig. 1 illustrates our motivation. A geo-social network con-
sists of a group of nodes and edges (e.g., friend relationship).
Each user has his/her geographical location distribution and
personal preference to locations of different categories (e.g.,
soccer, fitness, etc.). For ease of exposition, the recruiting cost
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Fig. 1. Toy example for motivation.

of a user is proportional to the size of its icon. Given a gym
club located at q, its managers plan to promote the business
on geo-social networks. Intuitively, only the users who reside
near q and are interested in fitness may be potential consumers.
In other words, the targeted users are determined considering
the factors of both geographical location and advertising topic.
In view of the diversity in benefits and incentive costs, it is
natural for business owners to seek a subset of seed users with
maximum influence spread and minimum promotion cost.

However, this problem is intractable in practice. The rea-
son lies in the fact that influence spread and promotion
costs are like two sides of one coin, both of them cannot
be optimized simultaneously [9]. Thus, business managers
have to balance the tradeoff between these two objectives,
and make a more suitable decision. By imposing a pre-
given promotion budget, several research efforts transfer it
into a single optimization problem with a bounded constraint.
Unfortunately, subjectively determining one appropriate bud-
get without a priori knowledge is not an easy task, and remains
an open question. Therefore, it is indispensable to provide a
wide range of choices (i.e., a set of Pareto-optimal solutions
where each one represents a tradeoff between these two objec-
tives) for decision makers. The importance has been seen in
real-world scenarios, and recognized by management science
literatures [10]. Unfortunately, there is little work focusing on
a comprehensive analysis with respect to the involved goals,
and most existing works treat all the users equally (i.e., having
equal influence benefit and incentive cost). To bridge this gap,
in this paper, we aim at developing a framework for influ-
ence spread and promotion cost optimization in geo-social
networks.

As a result, the problem we studied is inherently more
complicated than the traditional IM problem, and calls for
more sophisticated algorithms. In response to the concerns
mentioned above, we make the following contributions.

1) To approach realistic applications better, we identify and
formulate the targeted influence spread-promotion cost
(TIS-PC) optimization problem in geo-social networks.

2) We propose a conceptual framework to solve our TIS-
PC problem. Based on the technique of reverse influence
sampling (RIS), we devise a similarity matching-based
weighted RIS (SMW-RIS) strategy, and transform the
original problem into a weighted coverage problem.

3) To thoroughly disclose the full view of feasible
Pareto-optimal solutions, we propose two optimization
algorithms, that is, greedy-based incrementally search

algorithm (GIS-TIM) and heuristic-based particle
swarm optimization (PSO) algorithm IS-MOPSO+,
respectively.

4) We conduct extensive experiments on two real-world
data sets, and show the efficiency and effectiveness of
our proposed methods.

II. RELATED WORK

A. Influence Maximization in Social Networks

A large amount of literature has studied IM problem [2].
Kempe et al. are the first formally define influence prop-
agation model, and prove the hardness of IM problem.
Moreover, they propose a greedy-based search algorithm
with a (1 − 1/e − ε) approximation ratio [2]. As a semi-
nal paper, it motivates a plethora of research to study IM
problem in the past decade [11], [12]. To improve the run-
time efficiency, Leskovec et al. [13] utilized the submodularity
property, and devise a lazy-forward heuristic algorithm CELF.
Based on it, Goyal et al. [14] proposed an improved ver-
sion, namely CELF++, to further promote query efficiency.
Chen et al. [11] proposed a heuristic-based approach which is
scalable to millions of nodes and edges.

Borgs et al. [15] made a breakthrough for IM problem on
IC model. By employing a random reverse reachable (RR) set,
they propose a near-linear time approach RIS, which can return
a (1−1/e−ε) approximate-ratio solution with a probability of
1 − n−l. Subsequently, Tang et al. [16] devised more efficient
algorithms, TIM and IMM, by incorporating novel heuris-
tics. Most recently, Nguyen et al. [17], [18] developed SSA
and D-SSA algorithms to improve IMM approach in terms
of empirical efficiency and theoretical threshold. Although
the heterogeneous distribution of users’ influence weights or
incentive cost is considered in existing works [12], [19], [20],
they usually optimize influence spread to achieve just one solu-
tion, without comprehensively investigating the relationship
between those two competitive objectives.

Several research study the profit maximization problem
in social networks [9], [21], [22]. From the perspective
of products’ pricing strategy, Zhu et al. [9] demonstrated
that influence and profit are like two sides of one coin.
Wei and Lakshmanan [21] employed an unbudgeted greedy
framework to maximize expected profit by incorporating prices
and valuations. Xu et al. [22] recognized the most valuable
customers for profit maximization. Yang and Liu [23] studied
an IM-cost minimization problem in social networks based on
multiobjective PSO algorithm. However, it adopts one simple
influence spread model in which promotion information could
only diffuse from a seed user within 2-hops in social network,
instead of the whole network.

B. Influence Maximization in Geo-Social Networks

By incorporating spatial dimension, Li et al. [24] searched a
seed set to maximize the influence propagation in a predefined
region. Wang et al. [3] proposed distance-aware IM (DAIM)
problem in geo-social networks, and propose two novel index-
based approaches to support online query. Li et al. [5] identi-
fied a geo-social influence spanning maximization problem,
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which attempts to find the maximum geographic spanning
region with a predefined regional acceptance rate. The most
relevant work to ours is [3]. However, since it assumes that all
the initial seed nodes are acquired with same cost, the problem
is still a classical IM problem with heterogeneous weights in
nature. In particular, the proposed approaches are unable to
search a group of Pareto-optimal solutions, but only one solu-
tion with k seed nodes. Thus, it cannot be directly applied to
address our problem.

III. RESEARCH BACKGROUND

A. Preliminary

To simulate influence propagation process, in this paper, we
focus on the independent cascade (IC) model as it is a widely
adopted propagation model in [3], [11], and [24]. Nonetheless,
our proposed framework can be easily extended to other
models, including linear threshold model, general triggering
model [2], etc. Considering a directed graph G = (V, E),
where V denotes a set of nodes and E denotes a set of edges
(friendships or “follow” relationships between nodes), with
|V| = n and |E| = m. For any two nodes u and v in V , if
(u, v) ∈ E, v is regarded as an outgoing neighbor of u, and u is
an incoming neighbor of v. Moreover, the directed edge (u, v)
is associated with a propagation probability p(u, v) ∈ (0, 1]
to quantify the influence from node u to v. In practice, the
propagation probability p(u, v) is usually set to 1/Nv, where
Nv denotes the in-degree of node v [3], [19], [24]. And the
cost of propagation probability computation is O(|V|2).

1) Influence Maximization: Under IC model, assuming we
have a set of seed nodes S ⊆ V , influence diffusion happens
in a discrete-time stochastic process as follows.

1) At round t = 0, all nodes in S are activated and the other
nodes are inactivated.

2) At round t � 1, once a node u gets activated, it remains
in active state for the subsequent rounds, and it has only
one chance to activate its each inactive neighbor node v
with influence probability p(u, v).

3) The influence diffusion process terminates until no more
nodes can be activated.

After the above propagation process stops, let I(S) rep-
resents the number of activated nodes, that is, influence
spread. Mathematically, the expected value of I(S), denoted
by E[I(S)], can be calculated by

∑
v∈V p(S �→ v), where

p(S �→ v) is the probability that node v can be activated by
seed node set S. Given one social network G and an integer k,
IM problem strives to seek a seed set S with k influential nodes
to maximize E[I(S)], which can be formalized as follows:

S = arg max
S:|S|=k

E[I(S)] = arg max
S:|S|=k

∑

v∈V

p(S �→ v). (1)

2) Reverse Influence Sampling: Since IM problem is NP-
hard, Kempe et al. [2] formulated it as a combinatorial
optimization problem; as a solution, they propose a greedy-
based approach to yield a near-optimal seed set S. However,
this approach suffers from a long computation time, especially
on the process of estimating influence spread. To attack this
efficiency issue, a state-of-the-art approach, namely RIS, is
proposed by Borgs et al. [15]. Specifically, it employs a con-
cept of random RR set [16], [25], which we will explain as

Fig. 2. RR set.

follows: let g be a subgraph instance obtained by removing
each edge (u, v) in G with probability 1 − p(u, v). Given a
sampled instance g and a node v, the RR set R(g, v) repre-
sents the set of nodes in g which can reach the selected source
node v. If source node v is picked randomly from G, R(g, v)
is called a random RR set [4]. Fig. 2 shows a toy example of
a reverse reachable set. Here, we list three subgraph instances:
g1, g2, and g3, where the number associated with each edge
indicates the corresponding propagation probability. The RR
set for node c in g1, that is, R(g1, c), is {c, d, e}, since these
three nodes can reach c in subgraph instance g1.

Based on random RR set, Borgs et al. [15] proposed a
lemma to prove that random RR sets can be utilized to estimate
the expected influence spread.

Lemma 1 [15]: Given a seed set S, a sampled instance g
from G, and a random RR set R(g, v). Let p1 be the probability
that S can activate v in a propagation process, and p2 be the
probability that R(g, v) intersect with S, then p1 = p2.

Intuitively, a node u in RR set R(g, v) must have at least
one connected path from u to the given source node v among
network G. It indicates that u has a probability to influence
v in propagation process. According to Lemma 1, if a node
u has a greater influence on other nodes in G, u must have a
higher probability to appear in a group of random RR sets for
different random nodes.

Let R be a group of random RR sets, R = {R1, R2, . . . , Rθ },
CR(S) be the number of RR sets in R that intersect with S,
that is Ri ∩ S �= ∅, 1 � i � θ . According to Lemma 1, an
unbiased estimation of seed set S’s expected influence spread
can be employed as (n/|R|)CR(S), which can be formalized
as follows:

E

[
n

|R|CR(S)

]

= E[I(S)]. (2)

In other words, if a given seed set S can cover most of the
RR sets, S is likely to maximize E[I(S)]. Based on this idea,
the original IM problem can be converted into a coverage
maximization problem.

B. Problem Definition

Consider a marketing promotion query Q = (q, T#), where
q and T# denote a specific location and an advertisement
topic, respectively. In geo-social networks, not all the users
are potential customers for Q. Intuitively, users who are close
to location q and interested in T# have a greater probability to
adopt it [6], [7]. As a result, it is natural to attach more impor-
tance to those targeted users. In the following, with respect
to these two key factors, that is, spatial proximity and topic
interest, we will quantify users’ weights for query Q.

1) Spatial Proximity: Following the practice in previous
works [3], we employ a widely used decay function as below
to measure the probability that user v may visit the promoted
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location q, in which the measurement of distance adopts
Euclidean distance

sp(v, q) = αe−βdist(v,q). (3)

Clearly, according to (3), users who are close to q would have
higher probability of visiting q. Considering the skew distri-
bution of users’ historical check-ins [24], [26], we determine
user v’s place as the visited position which is nearest to the
promoted location in advertising query. It should be pointed
out that our proposed approaches are orthogonal to the choice
of user place. Based on the calculation of spatial proximity, our
proposed approaches could be easily extended to any choice
of user place determination.

2) Topic Interest: Here, we leverage a vector space model
to capture advertisement topics and user profiles [27]–[29].
Formally, given a topic space T = (kw1, kw2, . . . , kwm), where
kwi, 1 � i � m, represents one keyword, for example, restau-
rant, gym, etc., a promoted advertisement’s topic T# can be
formalized as a binary vector 	X = (x1, x2, . . . , xm). If key-
word kwi is contained in T#, the entry xi in 	X equals to one;
otherwise, it is zero. In other words, advertisement’s topic can
be formally represented as: T# = T ∗ 	X. With respect to user
profile, each user v is associated with a weighted term vector
	Y= (y1, y2, . . . , ym), where yi indicates user v’s preference to
keyword kwi, and

∑m
i=1 yi = 1. Based on the shared check-ins,

weighted term vector can be learned directly from the distri-
bution of location semantic. Hence, the interest degree of an
advertisement to user v can be calculated as the dot product
of binary vector 	X and weighted term vector 	Y

ti
(
v, T#) = 	X · 	Y =

m∑

i=1

xi ∗ yi. (4)

Therefore, we weight each user v for a given promo-
tion Q = (q, T#), by integrating both spatial proximity and
advertisement topic interest

w(v, Q) = w
(
v,

(
q, T#)) = sp(v, q) ∗ ti

(
v, T#). (5)

Based on (5), the potential users can be identified. As dis-
cussed above, our main goal is to disseminate the promotion
information to targeted users. Next, we will formally define
the concept of targeted influence spread.

Definition 1 (Targeted Influence Spread): Given a geo-social
network G = (V, E) and a promotion query Q = (q, T#),
the targeted influence spread of a set of seed nodes S ⊆ V ,
denoted by TIQ(S), is computed as

∑
v∈V p(S �→ v)w(v, Q),

where w(v, Q) is the weight of user v for Q.
To initiate promotion campaign, it is necessary to provide

seed users with certain incentives. In general, each user’s
recruiting cost is not the same, which depends on its rank
in social network, for example, degree centrality [20]. Here,
in order to generalize the related applications, we employ
PageRank centrality to indicate each user’s recruiting cost,
denoted as c∗(v) for user v, rather than real price (e.g.,
$10 000). Note that, to enhance the adaptability, we con-
duct normalization operation upon the obtained centrality
values as follows:

c(v) = c∗(v) − c∗
min

c∗
max − c∗

min
(6)

where c∗
min and c∗

max indicate the minimum and maximum cen-
trality of all nodes in V , and c(v) is the normalized centrality
value. Thus, the promotion budget is set as the sum of all seed
users’ dimensionless centralities, that is, C(S) = ∑

v∈S c(v).
However, influence spread and promotion cost could not

be optimized simultaneously. If one objective is improved,
the other will be degenerated accordingly. In most cases,
with respect to different purposes, it is difficult to precisely
determine a suitable preference weight between these two
competing objectives. As a result, it is indispensable to
uncover the full view of targeted influence spread and promo-
tion cost goals for managers to make a more suitable decision.
We now define our TIS-PC optimization problem as follows.

Definition 2 (TIS-PC Optimization Problem): Given a geo-
social network G = (V, E), each node v ∈ V is attached with
check-in history, the TIS-PC optimization problem attempts to
search a set of optimal solutions S with respect to maximizing
targeted influence spread and minimizing promotion cost, for
a given promotion query Q = (q, T#). Formally, the TIS-PC
optimization problem can be represented as follows:

arg
S

{
max : TIQ(S) = ∑

v∈V p(S �→ v)w(v, Q)

min : C(S) = ∑
v∈S c(v).

(7)

Due to latent influence overlap, targeted influence spread
function TIQ(S) has been proven to be monotonic and sub-
modular in [3]. Theoretically, there exists one upper bound
(i.e., saturation point) for TIQ(S), which could be formulated
as TIQ(

⋃n
i=1 vi). Specifically, when targeted influence spread

arrives at its saturation, TIQ could not be further improved.
With regard to promotion cost objective, its loose upper bound
could be intuitively derived as

∑n
i=1 c(vi), which is the sum of

all nodes’ recruiting cost. However, on the basis of the satu-
ration influence spread, we could derive its tight upper bound,
such as

∑
v∈S∗ c(v), where S∗ is one user set whose influence

spread has just reached saturation in influence spread.
Remarks: TIS-PC problem generalizes IM problem in the

following ways: 1) TIS-PC problem has heterogeneous distri-
bution over both users’ weight and recruited costs instead of
being equal to 1 [15], [16], thus the scale of desired seed
users is arbitrary, rather than constant, for example, k and
2) TIS-PC problem is dual-objectives optimization [30], [31],
which strives to discover Pareto-optimal solutions as much
as possible, rather than searching just one solution. And the
desired Pareto solutions would cover the whole feasible region
with respect to these two objectives. Furthermore, without
the size restriction of seed user, such as k in classical IM
problem, the variable space has dramatically extended from
Ck

n to
∑n

i=1 Ci
n. In other words, not just investigating the

combinations of length k nodes, it is required to examine all
the combinations of nodes in V . For the enormous searching
space, it is fairly intractable to efficiently solve this problem.
Therefore, TIS-PC problem is more realistic and complicated
than the IM problem. In addition, some research efforts focus
on discovering a part of Pareto-optimal solutions, which are
usually located at the middle of Pareto front, namely knee solu-
tions [32]. However, considering the complex characteristic
of decision space and business managers’ different promotion
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Fig. 3. Conceptual framework for TIS-PC problem.

purposes, it is better to provide a wide range of choices to
assist the decision making.

IV. CONCEPTUAL FRAMEWORK

A conceptual framework of TIS-PC is presented in Fig. 3,
which consists of six components. Specifically, the data collec-
tion module is responsible for collecting users’ social relations
and historical check-ins. Each check-in is associated with a
user ID, a time stamp, a location and its semantic meaning
(e.g., bar, restaurant, and so on). The data processing mod-
ule is used to formulate and aggregate gathered raw data.
Based on preprocessed data, the hidden knowledge is extracted
in an offline manner and recorded into repository, which
includes user-topic correlation, user-location distribution, and
user recruit cost evaluation. In addition, the subgraph instances
SG = {g1, g2, . . . , gn} are also generated and stored in the
repository in advance. While the computation cost of produc-
ing subgraph instances is as follows: its time complexity and
space complexity are O(|SG|) and O(|SG|∗|V|2), respectively,
where |SG| denotes the scale of desired subgraph instances.
When a promotion query Q arrives, by leveraging user-topic
correlation and user-location distribution, the module of tar-
geted influence distribution is in charge of deriving promotion
query’s weight distribution over all users. And then, accord-
ing to the obtained weight distribution, the RR set sampling
module samples a subset of source nodes Ṽ from V , and pro-
duces random RR set by selecting subgraph instance in SG and
source node in Ṽ . After obtaining a group of random RR sets
R, the original problem could be transformed into a weighted
coverage maximization problem with cost constraints. Toward
the dual-objective optimization, the core module, that is, solu-
tion engine, is used to retrieve a solution space, and return a
set of Pareto solutions.

V. APPROACHES FOR TIS-PC PROBLEM

A. User-Topic Correlation Calculation

In this part, based on users’ historical check-in records,
the correlation between each user v and topic space T can
be derived. In essence, the role of user-topic correlation is to
characterize and quantify user’s preference for different adver-
tisement keywords kwi, 1 � i � m, in T . And then, for a given

promoted advertisement topic T# combined by any keywords,
it facilitates the computation of the topic interest degree of
users. In the following, we will elaborate user-topic correlation
calculation in detail.

By aggregating all users’ historical check-ins, a latent topic
space T which contains explicit keywords can be constructed
by using topic modeling technique, such as [27]–[29]. For the
built topic space T = {kw1, kw2, . . . , kwm}, we extract each
user’s activity semantic, and count the frequency in existing
keywords. Based on the obtained empirical distribution over
the topic space, each user’s profile can be captured. Afterward,
by the means of normalization, the correlation between user v
and topic space T can be qualified by a weighted term vector
	Y , such as 	Y = (y1, y2, . . . , ym) and

∑m
j=1 yj = 1, in which yj

indicates v’s preference degree for keyword kwj. For ease of
retrieval, we employ a matrix UT to denote the user-topic cor-
relation, in which the row and column denote registered users
and keywords, respectively. And each entry ut(i, j) indicates
user vi’s preference to advertisement keyword kwj.

B. Similarity Matching-Based Weighted RIS Sampling

In classical IM problem, all nodes are treated equally. While
in our problem scenario, the targeted users are more rele-
vant to promotion query Q, and thus they should be sampled
with a higher probability. So, the uniform RIS sampling tech-
nique in [4], [16], and [25] cannot be directly applied into
our problem, and the unbiased estimation of expected influ-
ence spread derived by (2) no longer holds. In this paper,
we propose an SMW-RIS sampling approach. The main dif-
ference of SMW-RIS sampling from traditional RIS is that
it chooses source nodes in accordance with their weight
distribution rather than uniformly random selection in RIS.
Specifically, one node v is sampled with the probability of
w(v, Q)/�, where � is the sum of all nodes’ weight for query
Q: � = ∑

v∈V w(v, Q). Moreover, to ensure that the sampled
source nodes will follow the users’ weight distribution, we
devise similarity-based matching to coordinate the sampling
process. Therefore, the expected targeted influence spread can
be estimated by Lemma 2.

Lemma 2: Given a set of seed nodes S, the expected targeted
influence spread can be estimated as

E
[
TIQ(S)

] = � ∗ E

[
CR(S)

θ

]

(8)

where θ denotes the cardinality of random RR sets, θ = |R|.
Proof: Let g ∼ G represents that subgraph instance g is

constructed from a geo-social network G

E
[
TIQ(S)

] =
∑

v∈V

p(S �→ v) ∗ w(v, Q)

=
∑

v∈V

Pg∼G
[∃u ∈ S and u ∈ R(g, v)

] ∗ w(v, Q)

= � ∗ Pg∼G,v∈V
[∃u ∈ S and u ∈ R(g, v)

]

= � ∗ Pg∼G,v∈V
[
S ∩ R(g, v) = ∅

]

= � ∗ E

[
CR(S)

θ

]

. (9)
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In IM problem, based on Chernoff bound, most existing
works derive a tight bound of θ with greedy-based algo-
rithm [16], [19]. However, our problem differs from the
previous works in two aspects: 1) we need a larger feasible
search space to discover Pareto-optional solutions for business
owners as much as possible, rather than one single solution
and 2) the imported spatial proximity and topic interest con-
straints can remarkably shrink the scale of candidate targeted
users, compared with all other users. Consequently, more RR
set samplings are required in our TIS-PC problem. In this
paper, we adopt a theoretical bound of sampling θ for IM
problem in [16], and adjust it to accommodate our problem
scenario.

Lemma 3: Given a promotion query Q = (q, T#), ε > 0,
and δ ∈ (0, 1), if the size of RR set samplings θ satisfies the
following equation:

θ � (8 + 2 ∗ ε) ∗ � ∗ ln2/δ + ln
( n

k0

)

ε2OPTk0

. (10)

Then, we have the following equation holds with at least
1 − δ probability, where OPTk0 denotes the optimal targeted
influence spread with k0 seed nodes

∣
∣
∣
∣� ∗ CR(S)

θ
− E

[
TIQ(S)

]
∣
∣
∣
∣ � ε

2
∗ OPTk0 . (11)

Proof: We follow the procedure in [19] to prove the correct-
ness of the lemma. Consider a promotion query Q = (q, T#),
let ρ = Pg∼G,v∈V [S ∩ R(g, v) = ∅], and then CR(S) can be
regarded as the sum of θ independent identically distributed
Bernoulli variables with mean ρ

P

[∣
∣
∣
∣� ∗ CR(S)

θ
− E

[
TIQ(S)

]
∣
∣
∣
∣ � ε

2
∗ OPTk0

]

= P

[∣
∣
∣
∣� ∗ CR(S)

θ
− ρ ∗ �

∣
∣
∣
∣ � ε

2
∗ OPTk0

]

= P

[

|CR(S) − ρ ∗ θ | � ε ∗ θ

2 ∗ �
∗ OPTk0

]

= P

[

|CR(S) − ρ ∗ θ | � ε ∗ OPTk0

2 ∗ � ∗ ρ
∗ ρ ∗ θ

]

. (12)

Let ε0 = [(ε ∗ OPTk0)/(2 ∗ � ∗ ρ)]. According to
Chernoff bounds, and the fact that ρ = [(E[TIQ(S)])/�] �
[(OPTk0)/�], the above equation will be transformed into the
following representation:

right hand side of (12) � 2 ∗ exp

(
−ε2

0

2 + ε0
∗ ρ ∗ θ

)

= 2 ∗ exp

(

− ε2 ∗ OPT2
k0

8 ∗ �2 ∗ ρ + 2 ∗ � ∗ ε ∗ OPTk0

∗ θ

)

� 2 ∗ exp

(

− ε2 ∗ OPT2
k0

8 ∗ � ∗ OPTk0 + 2 ∗ � ∗ ε ∗ OPTk0

∗ θ

)

= 2 ∗ exp

(

− ε2 ∗ OPTk0

8 ∗ � + 2 ∗ � ∗ ε
∗ θ

)

� δ/

(
n

k0

)

. (13)

Fig. 4. Matching comparison of different sampled source node sets.

Finally, we have

θ � (8 + 2 ∗ ε) ∗ � ∗ ln2/δ + ln
( n

k0

)

ε2OPTk0

. (14)

Note that, the role of k0 in Lemma 3 can be regarded as
an upper bound of predefined size of nodes for each solu-
tion S. With respect to OPTk0 , in order to find adequate
Pareto-optimal solutions, just a loose lower bound of OPTk0

is adequate. Hence, we directly choose Top-k0 users in V , and
take the summation of their weights as the estimated OPTk0 .

We utilize matching degree calculation to guide the sam-
pling process. Based on a distance measurement, the match-
ing degree Sd(Ṽ, V) between sampled source nodes’ weight
distribution and existing nodes’ can be computed as

Sd
(
Ṽ, V

) =
∑

v∈V

d(v) (15)

where the distance function d(v) is defined as follows:

d(v) =
{

w(v, Q), if v ∈ Ṽ
0, otherwise.

(16)

During sampling process, we search a set of candidate nodes
Ṽ which can maximize the matching degree of Sd(Ṽ, V),
where |Ṽ| = θ . That is, we strive to achieve a set of θ nodes
Ṽ which include more source nodes with high weight in V

arg : max
Ṽ

Sd
(
Ṽ, V

)
. (17)

Concretely, based on the weight distribution of V , a group of
sampled source node sets Ṽ = {Ṽ1, Ṽ2, . . . , Ṽγ } is generated.
Note that γ could be determined from 1 to |Ṽ|, when it equals
to 1, it is degraded into the conventional RIS. And then, by
leveraging matching calculation by (15), the one having max-
imum value will be chosen as the final sampled node set Ṽ .
As shown in Fig. 4, compared with Ṽ2, Ṽ1 should be deter-
mined as the final sampled node set Ṽ , as more high-weighted
source nodes are sampled in Ṽ1. For each node v ∈ Ṽ , we
randomly select a subgraph instance g from G to generate
random RR set R(g, v). Finally, a group of random RR set
R = {R(g, v), v ∈ V} can be obtained. The pseudocode of
SMW-RIS is shown in Algorithm 1.

Lemma 4: The time complexity of SMW-RIS algorithm is
O((θ+1)∗|V|+θ∗|E|), the space complexity is O((θ+1)∗|V|),
where θ denotes the number of sampled source nodes, and |V|
and |E| denote the number of nodes and edges in network G.
Please refer to the supplementary material, available online,
for detailed proofs.
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Algorithm 1: SMW-RIS Algorithm
Input: Promotion Query: Q; Social network: G = (V, E);

Parameters: ε, δ, k0, γ ;
Output: RR Set R;

1 Calculate each node’s weight for Q: w(v, Q);
2 Determine sampling threshold θ based on Eq. (10);
3 for i=1 to γ do
4 for j=1 to θ do
5 Choose vj as source node with probability w(vj,Q)

�
;

6 Ṽi = Ṽi ∪ vj;
7 end
8 Calculate similarity degree for Ṽi: Sd(Ṽi, V);
9 end

10 Select final sampled node set Ṽ based on Eq. (17);
11 foreach node v in Ṽ do
12 Randomly select a subgraph g from G;
13 Generate RR set: R(g, v); R = R ∪ R(g, v);
14 end

C. Greedy-Based Approximate Optimization Approach

Based on sampled random RR set, our problem can be trans-
formed into a discrete coverage maximization problem. Once
a user is added into seed node set S, the expected targeted
influence spread and total promotion cost will increase accord-
ingly. The increment of promotion cost is directly determined
by newly added user’s recruiting cost, while the increment
in targeted influence spread depends on not only influenced
user’s weight but also the selecting order. Thus, we con-
sider to loose the original multiobjective optimization into
a single-objective optimization problem with constraints, that
is, budget constraint targeted influence spread maximization
(BTIM) problem. In other words, we strive to optimize the
goal of the targeted influence spread, under the constraint of
a pregiven promotion budget. And then, by utilizing greedy-
based search strategy [33], it can cautiously grow with respect
to these two involved objectives, that is, incrementally choose
seed users.

Specifically, the BTIM problem is formalized as follows:

arg : max
S

E
[
TIQ(S)

]
(18)

subject to
∑

v∈S c(v) � B0, where B0 indicates a pregiven bud-
get bound. Generally, the greedy-based search strategy could
return a near-optimal solution S with certain approximate-
ratio for IM problem [4], [15], [16]. In each iteration, if we
can effectively balance between these two involved goals, the
iterative trace could be regarded as a group of “optimal solu-
tions.” Based on these achieved solutions, it is possible to
approximate Pareto-optimal solutions.

As shown in Fig. 5, the Pareto frontier denotes a set of
Pareto-optimal solutions S = {S1, S2, . . . , Sn} with respect
to involved optimized objectives: targeted influence spread
and promotion cost. While the curve in pink represents the
greedy-based optimization strategy’s iterative search trace,
and the point A in green indicates a final returned solu-
tion for BTIM problem. Based on hill-climbing method, we

Fig. 5. Greedy-based search trace and Pareto frontier.

devise a GIS-TIM algorithm. By driving the search curve
growing with small increment on both multiobjective dimen-
sions, we can move toward Pareto frontier. Moreover, since
targeted influence spread may reach saturation, the greedy-
based approach would generate many non-Pareto solutions.
Thus, budget bound constraint is given in advance to ter-
minate iteration process. As a result, BTIM problem could
only retrieve a feasible space in blue restricted by the budget
constraint. In realistic application, it can also be regarded as
business owners’ maximum expenditure.

We will elaborate GIS-TIM’s workflow in detail. At each
iteration, GIS-TIM examines and picks every remaining node
that has not been chosen into seed set S, that v ∈ R/S. For
each node v ∈ R/S, it first check whether the budget con-
straint is satisfied after recruiting user v into S. If the total
recruit cost is not more than the given budget bound, that is,
C(S ∪ v) � B0, user v can be regarded as a valid candidate.
While the users who could not meet the hard budget constraint
will be skipped immediately. And then, for each valid candi-
date v, an utility function is constructed to balance these two
involved objectives

utility(v) = [
TIQ(S ∪ v) − TIQ(S)

]
/c(v). (19)

Substantially, in order to maximize the integrated utility
function, GIS-TIM algorithm strives to cautiously determine
a tradeoff between these two objectives, that is, incremen-
tally increase the influence spread and promotion cost in each
step. Among all the valid users, the one having maximum util-
ity is chosen in current iteration. For example, consider two
nodes, v1 and v2, the incremental benefit, that is, expected
targeted influence spread, of these two nodes are 2.7 and
1.9, respectively, such as TIQ(S

⋃
v1) − TIQ(S) = 2.7 and

TIQ(S
⋃

v2) − TIQ(S) = 1.9. While their recruiting costs are
0.7 and 0.4, thus their utility values can be derived based on
(19): utility(v1) = 3.86 and utility(v2) = 4.75. Since node
v1’s utility is less than v2’s, it is better to choose v2 in current
iteration. Note that, since using an integrated utility function, it
no longer has the submodularity nature. Finally, the seed user
set S will be updated, that S = S ∪ v. The procedure will con-
tinue until budget constraint B0 is exhausted. The pseudocode
of GIS-TIM is shown in Algorithm 2.

Lemma 5: The time complexity of GIS-TIM algorithm
is O([(∂ ∗ (2 ∗ |V| − ∂ − 1))/2] + ∑|V|

i=|V|−∂+1 i ∗ log2 i),
where ∂ = (B0/rcave) denotes the average number of itera-
tions, rcave indicates the average recruiting cost of all users
in V .

∑|V|
i=|V|−∂+1 i ∗ log2 i refers to the operation in line 10.

The space complexity of GIS-TIM algorithm is O(θ ∗ |V|).
Please refer to the supplementary material, available online,
for detailed proofs.
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Algorithm 2: GIS-TIM Algorithm
Input: Budget Constraint: B0, Nodes set: V;
Output: Optimization trace S;

1 Initializing Seed Set S = ∅;
2 while

∑
v∈S c(v) < B0 do

3 Initializing valid candidate node set Vvalid = ∅;
4 for each node v ∈ V/S do
5 if c(S ∪ v) � B0 then
6 Merge v into valid candidate nodes Vvalid;
7 Calculate node v’s utility based on Eq. (19);
8 end
9 end

10 Search node v ∈ Vvalid with maximum utility:
arg : max

v
utility(v);

11 Merge v into S and record the trace of S into S;
12 end

D. Heuristic-Based Particle Swarm Optimization Approach

In order to exploit the whole problem space, we turn to a
heuristic-based evolutionary method, PSO [34]. It drives a pop-
ulation of candidate solutions (i.e., particles) to move around
in the search space based on particle’s position and velocity.
Note that, as a stochastic algorithm, it may produce good solu-
tions but do not come with a guarantee on the quality of their
solution.

By leveraging the classical PSO algorithm, we devise our
influence spread multiobjective PSO (IS-MOPSO+) algo-
rithm. First, a group of initializing solutions are randomly
generated in feasible solution space. For each solution Si, 1 �
i � pop, where pop denotes the population size, we use S(i,j)
to denote whether the node vj ∈ R is selected into seed set
Si: if node vj is selected in solution Si, S(i,j) = 1; otherwise,
it is zero. And the fitness of each solution Si is calculated
according to (7). Next, based on the concept of dominated
relationship, we conduct a pairwise comparison operation to
pick out the desired Pareto solution in the current iteration.
Given two solution Si and Sj, if two involved objective func-
tions of Si are both better than Sj’s, it is considered that Sj
is dominated by Si, that is Si � Sj. Note that the picked out
solutions are recorded into an external storage set, and serve
as global best particle pg. Moreover, in each iteration, if par-
ticle Si’s current position is better than its historical position
pl, then the value of pl will be replaced by current position.
And then, each particle’s position will be updated according
to (20) as below, where b1 denotes an inertia weight of par-
ticle’s velocity vel (in the first iteration, vel is initialized to
zero), b2 and b3 are two positive constants, and Z1 and Z2 are
random values in the range of [0, 1]. Following the previous
work [34], the parameters of b1, b2, and b3 are set as 0.729,
1.495, and 1.995, respectively

p∗ = p + b1 ∗ v + b2 ∗ Z1 ∗ (pl − p)

+ b3 ∗ Z2 ∗ (
pg − p

)
. (20)

The procedure will continue until it reaches a predefined max-
imum iterations. To improve its performance, we develop three
strategies in our IS-MOPSO+ algorithm.

1) In order to accelerate convergence, we devise a hybrid
strategy to generate initial particle population. First, a
part of initial solutions are randomly chosen from nodes
in R, instead from V . The reason is that nodes in V
but not in R have no chance to influence source nodes.
Second, a portion of initial solutions are imported from
the results obtained by GIS-TIM. In this way, initial-
ized particles can directly move close to Pareto frontier
in GIS-TIM, thus the performance of IS-MOPSO+ can
be improved. Here, we set a parameter r to represent
the scale of imported GIS-TIM algorithm’s achieved
solutions.

2) To improve the search efficiency, a micro-clusters-based
mechanism is proposed by exploiting the correlation
between candidate nodes. Concretely, based on the
overlapped influence spread calculation, the implicit
correlation in candidate nodes could be extracted.
Mathematically, the correlation could be quantified by
the overlapping targeted influence spread between these
two involved nodes, such as vi and vj

rd = TIQ
(
vi

⋃
vj

)

TIQ(vi) + TIQ
(
vj

) (21)

where max{TIQ(vi), TIQ(vj)} � TIQ(vi
⋃

vj) �
TIQ(vi) + TIQ(vj). And then, on the basis of correlation
calculation rd, all candidate nodes could be grouped into
different micro-clusters, where the nodes in the same
micro-cluster have larger overlapping ratios than those
in other ones. In the subsequent population evolution,
the partitioned micro-clusters could be leveraged from
the following two aspects. First, in the process of pop-
ulation initialization, instead of randomly select nodes
from all the candidate ones, we choose it with respect to
the constructed micro-clusters. Concretely, for one ini-
tialized solution, the contained nodes should come from
different micro-clusters. Second, the particles fly across
the micro-cluster space, that is, updating their current
locations by a varied velocity value. And both the rep-
resentations of particle location and velocity are built
in micro-cluster space, rather than the dimension of all
candidate nodes. In this way, the comparison operation
could be implemented on lower-dimensional space, since
the scale of micro-clusters is far less than the candidate
nodes.

3) After position updating, the newly generated position
may become a continuous value, not 0-1 discrete value.
Based on the mechanism formulated in (22), we can
revise newly generated solution into correct format.
The basic idea is that if the entry S(i,j) in Si is close
to 0 or 1, the probability that it is really 0 or 1 is
largest, otherwise it would be opposite value. The pseu-
docode of IS-MOPSO+ is presented in Algorithm 3.
And the workflow of IS-MOPSO+ is demonstrated
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Fig. 6. Workflow of GIS-TIM and IS-MOPSO+ algorithm.

Algorithm 3: IS-MOPSO+ Algorithm
Input: RR Set: R, population size: pop, maximum

number of iterations: mt
Output: A set of Pareto solutions: Spareto

1 Initialize particle population S, |S| = pop;
2 Set local best position posl as initialized particle;
3 Initial velocity vel equals to zeros vector;
4 while not meet iteration mt do
5 foreach particle Si ∈ S do
6 Calculate fitness of objective functions;
7 Update local best position pl for each particle;
8 end
9 Determine Pareto solutions in S;

10 Update external storage set Spareto;
11 foreach particle Si ∈ S do
12 Select a particle randomly from Spareto as pg;
13 Update and calibrate newly generated position;
14 end
15 end

as shown in Fig. 6

Si,j =
{

1, Si,j � 0.5
0, Si,j � 0.5.

(22)

Lemma 6: The time complexity of IS-MOPSO+ algorithm
is O(mt ∗ ([(pop ∗ (pop − 1))/2] + pop ∗ |S|ave)), where |S|ave
represents the average number of nodes contained in particle
S across mt iterations. And the most computation time is spent
on the process of fitness calculation, that is, pop ∗ |S|ave. Its
space complexity is O((θ + pop) ∗ |V|). Please refer to the
supplementary material, available online, for detailed proofs.

VI. EVALUATION AND DISCUSSION

We conduct an extensive evaluation on real-world geo-
social network datasets to demonstrate the effectiveness and
efficiency of our proposed techniques. Our experiments are
conducted on a standard server (Windows), with Intel Core
i7-6700HQ CPU, 2.60 GHz, and 32-GB main memory.

A. Experimental Setup and Baselines

1) Data Set: We use two real-world geo-social networks
in which users share their check-ins [35]. The two networks
are directed graphs due to friend relationship, and the detail

Fig. 7. Spatial distribution of check-ins.

information is shown as follows: 1) the first one is a small-
scale network collected from Foursquare in New York, in
which 5100 nodes, 11 933 edges, and 706 344 check-ins are
included and 2) another larger-scale network is collected from
Gowalla in Boston, in which 145 381 nodes, 546 335 edges,
and 8 427 156 check-ins are included. Moreover, a part of
check-in records collected from Foursquare are visualized in
Fig. 7.

2) Baseline Algorithms: To the best of our knowledge,
there is little work focusing on multiobjective optimization
of influence spread in geo-social networks. To evaluate the
performance of our approaches, we devise three competing
baseline algorithms: 1) MODPSO [23]; 2) MOEA/DD [36];
and 3) NSGA-III [37], by adjusting three recent multiobjective
optimization methods. As mentioned previously, MODPSO
is a state-of-the-art technique to search Pareto solution for
IM-cost minimization problem in social networks [23]. While
the latter two ones, that is, MOEA/DD and NSGA-III, are
recent multiobjective evolutionary algorithms. For the visit-
ing probability sp(v, q) in (3), α and β are empirically set
to 1, respectively. For the parameters of required samplings
θ , ε = 0.3, δ = 1/n, and k0 is set to 0.1 × n.

B. Experimental Results

1) Experiments on Foursquare Dataset: We first conduct
experiments on small-scale geo-social networks, by comparing
different optimization search techniques. In GIS-TIM algo-
rithm, the upper bound of budget B0 is set as 10. And in
the remaining evolution algorithms (MODPSO, MOEA/DD,
NSGA-III, and IS-MOPSO+), the parameters of population
size and iterations are set to pop = 150 and mt = 60,
respectively.

The experimental results are presented as shown in Fig. 8.
It is obvious that our proposed GIS-TIM and IS-MOPSO+
algorithms remarkably outperform three baseline algorithms,
as they can better approximate the involved two optimization
objectives. For example, among the results obtained from
these three baseline algorithms, when the goal of targeted
influence spread arrives at 40, the incurred promotion cost
reaches up to about 30; while our proposed approaches’
are just about 2. This verifies the fact that these main-
stream evolution algorithms are incapable of attacking the
issue of “curse of dimensionality” in larger-scale combina-
torial problem, for example, our problem with decision space∑|V|

i=1 Ci|V|. Concretely, they could not rapidly move close to
the Pareto front by means of stochastic evolution mechanism
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Fig. 8. Results of all achieved solutions.

TABLE I
RESULT ANALYSIS USING WILCOXON SIGNED-RANK TEST

and random initial inputs. While by adopting an incremen-
tal iterative strategy, our GIS-TIM algorithm can directly
approximate optimization objectives across the broad decision
space.

For the purposes of quantitative evaluation, we indepen-
dently run each algorithm 30 times, and compare their
performance in terms of convergence and diversity indices,
where the results are analyzed using Wilcoxon signed-rank
tests [38]. Because the true Pareto frontier is unknown, we
adopt one index: error ratio (ER) [39] to evaluate the conver-
gence performance among these approaches. Specifically, the
measurement ER is formalized as follows:

ER =
∑|S|

i=1 es

|S| (23)

where es is zero if solution S belongs to Pareto solutions
and one otherwise, and |S| denotes the size of returned solu-
tions. Note that, we aggregate all these involved approaches’
returned solutions, and develop the common Pareto solutions.
For diversity measure, we adopt � metric as follows:

� = df + dl + ∑|S|−1
i=1

∣
∣di − d

∣
∣

df + dl + (|S| − 1)d
(24)

where di corresponds to the Euclidian distance between con-
secutive solutions in S, d stands for the average of di, and
df and dl denote the Euclidian distance between the extreme
solution of the Pareto solutions S and the boundary solution
in the approximation regarding each of the two objectives,
respectively [40]. The results are presented in Table I.

As a deterministic algorithm, the performance of GIS-TIM
algorithm should remain unchanged. The fluctuation in ER
metric is resulted from the effect of stochastic evolution algo-
rithm IS-MOPSO+, since the Pareto solutions are derived

Fig. 9. Results obtained from baseline approaches.

Fig. 10. Results of two sampling strategies.

from all these approaches’ results. In particular, it is found
that, by feeding the solutions from GIS-TIM, stochastic algo-
rithm IS-MOPSO+’s performance, that is, convergence and
diversity, has been improved remarkably, compared to these
baseline evolutionary algorithms. Specifically, with respect to
the measurement of ER index, it shows that IS-MOPSO+
algorithm can probe more Pareto-optimal solutions, since it
benefits from the fed GIS-TIM’s results. Furthermore, as
implemented Pareto-optimal comparison operation in evolu-
tion process, non-Pareto solutions have been eliminated from
the traversed solutions in IS-MOPSO+ algorithm. While GIS-
TIM algorithm is incapable of distinguishing Pareto-optimal
solutions from its resultant solutions. As shown in the right of
Fig. 8, when targeted influence spread reaches saturation, for
example, the goal of targeted influence spread remains sta-
tionary at about 50, while its total promotion cost steadily
increases, GIS-TIM will produce many non-Pareto solutions.
Moreover, the iterative search process will not stopped until
all the nodes are selected into S. It is also why we set
a budget bound constraint B0 as a termination condition.
Among these three baseline algorithms, the optimization abil-
ity of MODPSO algorithm is the worst, its solutions are far
away from the solution curves determined by MOEA/DD and
NSGA-III algorithms. And the results are demonstrated in
Fig. 9.

In the following, we verify the effect of our proposed SMW-
RIS sampling strategy by comparing with weighted sampling
in [19]. The parameter of γ equals to 20. For the simplic-
ity of explanation, we just conduct GIS-TIM algorithm on
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Fig. 11. Impact of different centrality choices.

Fig. 12. Results of all achieved solutions.

these two strategies. The corresponding results are shown
in the left of Fig. 10. Obviously, as the solutions achieved
from Weighted RIS strategy is dominated by SMW-RIS strat-
egy’s returned solutions, we can draw the conclusion that our
proposed SMW-RIS strategy is better than the Weighted RIS
strategy. Moreover, we investigate the impact of parameter γ

in SMW-RIS sampling algorithm, by varying the value of γ

within 5, 10, and 20. The experimental results are reported in
the right of Fig. 10. It is clearly that, with the increasing of γ ,
the performance of achieved Pareto solutions can be improved
significantly as the obtained Pareto frontiers become closer to
these involved optimization objectives.

In addition, we also examine the impact of centrality
choices on the final solution performance, with the GIS-TIM
algorithm. Specifically, we conduct experiments under three
centrality choices: 1) Betweenness; 2) PageRank; and 3) Hubs,
respectively. The experimental results are presented in Fig. 11.
Obviously, the output results of betweenness centrality can
achieve “less promotion cost,” due to the fact that its recruit-
ing cost is generally smaller than the remaining two. But it
does not mean that the quality of between centrality’s results
outperforms the others. As adopted different promotion cost
measurements, it could not compare these three measurements’
returned results, on the basis of Pareto dominance relationship.

2) Experiments on Gowalla Dataset: In the part, we con-
duct experiments on larger-scale geo-social networks collected
from Gowalla. First, we implement query processing with
our proposed approaches and three baseline algorithms. The
obtained results are presented as shown in Figs. 12 and 13.
Apparently, the results are consistent with the experimental
result analysis in Foursquare data set.

Fig. 13. Results obtained by baseline approaches.

Fig. 14. Impact of promotion budget on GIS-TIM algorithm.

Next, we investigate the effect of budget bound B0 on GIS-
TIM algorithm, by varying B0 from 1 to 8 with 1 increment.
The achieved results are reported in Fig. 14. From the chart,
the Pareto optimal front could be driven by the parameter B0,
that is, the solution curve grows with the increase of promo-
tion budget B0. However, since the targeted influence spread
has reached saturation when B0 ≈ 4, the subsequent iterations
cannot continue to optimize it, but only increase promotion
costs by recruiting ineffective seed users. In practice, the satu-
ration threshold varies with different queries, that is, promoted
location and user-topic correlation distribution, and the struc-
ture of networks. So, if we simply tackle TIS-PC problem
as a single-objective optimization problem, for example, bud-
geted max-coverage in [18], it is possible to obtain an inferior
solution with limited expected influence spread, but too high
promotion cost. And the result once again verifies that it is
necessary to explore full view of all Pareto-optimal solutions.

We also investigate the impact of the parameter θ (i.e.,
the scale of sampled source nodes) on the final solution
performance. By varying the size of sampled source nodes Ṽ
from 100 to 500 with 200 increments, we conduct optimization
search by GIS-TIM algorithm. The experimental results are
presented as shown in Fig. 15. From the present results, the
quality of solutions could be improved significantly by increas-
ing the parameter θ , that is, the results achieved from larger
θ are closer to the optimized objectives. The hidden reason
is that, with larger θ , the scale of involved nodes in RR Set
would increase accordingly, and the candidate nodes could be
expanded. While more running time is also required, such as
28.53, 95.71, and 163.84 s, respectively.

By varying the value of budget bound B0 from 1 to 8, the
running time and obtained solutions of GIS-TIM algorithm
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TABLE II
RUNTIME EFFICIENCY OF GIS-TIM ALGORITHM

Fig. 15. Impact of different sampled source nodes.

Fig. 16. Runtime efficiency comparison of evolution algorithms.

are reported in Table II. It is obvious that both of computation
time and achieved solutions grow with the increasing of B0.
As the budget bound increase, more seed users are required to
meet the given budget, thus more iterations will be required
accordingly.

Besides, we also examine the runtime efficiency of base-
line evolution algorithms and our IS-MOPSO+ algorithm.
As shown in Fig. 16, the experimental results are present
detailedly. More specifically, the runtime efficiency of our
proposed IS-MOPSO+ algorithm has been verified, by varying
the parameters of population size and iterations, respec-
tively. Not surprisingly, the computation time grows with the
increasing of population size and iteration, as more popula-
tions and operations are required. Moreover, the efficiency
of IS-MOPSO+ algorithm significantly outperforms other
evolution algorithms. The reason is that, by leveraging the
micro-cluster-based strategy and the returned solutions of GIS-
TIM, its performance in terms of runtime efficiency and
convergence has been improved significantly.

VII. CONCLUSION

In this paper, we study one influence spread problem in
geo-social networks. Considering the heterogeneity distribu-
tion of influenced benefit and recruiting cost, our task is to

discover adequate Pareto-optimal solutions to tradeoff between
the goals of maximizing targeted influence spread and mini-
mizing promotion cost. Two optimization algorithms, greedy-
based incrementally approximate algorithm GIS-TIM and
heuristic-based algorithm ISMOPSO+, are proposed. Finally,
the efficiency and effectiveness of proposed approaches are
demonstrated by extensive experiments on two real-world geo-
social networks. In the future, we will apply our proposed
approaches into practical applications, and solidly justify its
usability. In addition, we will further exploit mechanism to
improve the efficient performance without compromising the
optimization quality.
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