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Training Methods
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Abstract—Graph embedding aims to transfer a graph into vec-
tors to facilitate subsequent graph analytics tasks like link predic-
tion and graph clustering. Most approaches on graph embedding
focus on preserving the graph structure or minimizing the recon-
struction errors for graph data. They have mostly overlooked the
embedding distribution of the latent codes, which unfortunately
may lead to inferior representation in many cases. In this paper,
we present a novel adversarially regularized framework for graph
embedding. By employing the graph convolutional network as
an encoder, our framework embeds the topological information
and node content into a vector representation, from which a
graph decoder is further built to reconstruct the input graph.
The adversarial training principle is applied to enforce our latent
codes to match a prior Gaussian or Uniform distribution. Based
on this framework, we derive two variants of adversarial models,
the adversarially regularized graph autoencoder (ARGA) and its
variational version, adversarially regularized variational graph
autoencoder (ARVGA), to learn the graph embedding effectively.
We also exploit other potential variations of ARGA and ARVGA
to get a deeper understanding on our designs. Experimental
results compared among twelve algorithms for link prediction
and twenty algorithms for graph clustering validate our solutions.

Index Terms—Graph Embedding, Graph Clustering, Link
Prediction, Graph Convolutional Networks, Adversarial Regu-
larization, Graph Autoencoder.

I. INTRODUCTION

RAPHS are essential tools to capture and model compli-
cated relationships among data. In a variety of graph ap-
plications, such as social networks, citation networks, protein-
protein interaction networks, graph data analysis plays an
important role in various data mining tasks including clas-
sification [1], clustering [2], recommendation [3], [4], [5],
and graph classification [6], [7]. However, the high compu-
tational complexity, low parallelizability, and inapplicability
of machine learning methods to graph data have made these
graph analytic tasks profoundly challenging [8], [9]. Graph
embedding has recently emerged as a general approach to these
problems.
Graph embedding transfers graph data into a low dimen-
sional, compact, and continuous feature space. The fundamen-
tal idea is to preserve the topological structure, vertex content,
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and other side information [10], [11]. This new learning
paradigm has shifted the tasks of seeking complex models for
classification, clustering, and link prediction [12] to learning
a compact and informative representation for the graph data,
so that many graph mining tasks can be easily performed by
employing simple traditional models (e.g., a linear SVM for
the classification task). This merit has motivated many studies
in this area [4], [13].

Graph embedding algorithms can be classified into three
categories: probabilistic models, matrix factorization-based
algorithms, and deep learning-based algorithms. Probabilistic
models like DeepWalk [14], node2vec [15] and LINE [16] at-
tempt to learn graph embedding by extracting different patterns
from the graph. The captured patterns or walks include global
structural equivalence, local neighborhood connectivities, and
other various order proximities. Compared with classical meth-
ods such as Spectral Clustering [17], these graph embedding
algorithms perform more effectively and are scalable to large
graphs.

Matrix factorization-based algorithms, such as GraRep [18],
HOPE [19], M-NMF [20] pre-process the graph structure into
an adjacency matrix and obtain the embedding by factoriz-
ing the adjacency matrix. It has been recently shown that
many probabilistic algorithms including DeepWalk [14], LINE
[16], node2vec [15], are equivalent to matrix factorization
approaches [21], and Qiu et al. propose a unified matrix
factorization approach NetMF [21] for graph embedding. Deep
learning approaches, especially autoencoder-based methods,
are also studied for graph embedding (a most up-to-date survey
on graph neural networks can be found here [22]). SDNE [23]
and DNGR [24] employ deep autoencoders to preserve the
graph proximities and model the positive pointwise mutual
information (PPMI). The MGAE algorithm utilizes a marginal-
ized single layer autoencoder to learn representation for graph
clustering [2]. The DNE-SBP model is proposed for signed
network embedding with a stacked auto-encoder framework
[25].

The approaches above are typically unregularized ap-
proaches which mainly focus on preserving the structure
relationship (probabilistic approaches) or minimizing the re-
construction error (matrix factorization or deep learning meth-
ods). They have mostly ignored the latent data distribution
of the representation. In practice, unregularized embedding
approaches often learn a degenerate identity mapping where
the latent code space is free of any structure [26], and can
easily result in poor representation in dealing with real-world
sparse and noisy graph data. One standard way to handle
this problem is to introduce some regularization to the latent
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codes and enforce them to follow some prior data distribution
[26]. Recently generative adversarial based frameworks [27],
[28], [29], [30] have also been developed for learning robust
latent representation. However, none of these frameworks is
specifically for graph data, where both topological structure
and content information are required to be represented into a
latent space.

In this paper, we propose a novel adversarially regularized
algorithm with two variants, adversarially regularized graph
autoencoder (ARGA) and its variational version, adversari-
ally regularized variational graph autoencoder (ARVGA), for
graph embedding. The theme of our framework is to not only
minimize the reconstruction errors of the topological structure
but also to enforce the learned latent embedding to match a
prior distribution. By exploiting both graph structure and node
content with a graph convolutional network, our algorithms
encode the graph data in the latent space. With a decoder
aiming at reconstructing the topological graph information, we
further incorporate an adversarial training scheme to regularize
the latent codes to learn a robust graph representation. The
adversarial training module aims to discriminate if the latent
codes are from a real prior distribution or the graph encoder.
The graph encoder learning and adversarial regularization
learning are jointly optimized in a unified framework so that
each can be beneficial to the other and finally lead to a better
graph embedding. To get further insight into the influence
of prior distribution, we have varied it with the Gaussian
distribution and Uniform distribution for all models and tasks.
Moreover, we have examined the different ways to construct
the graph decoders as well as the target of the reconstructions.
By doing so, we have obtained a comprehensive view of the
most influential factor of the adversarially regularized graph
autoencoder models for different tasks. The experimental
results on three benchmark graph datasets demonstrate the su-
perb performance of our algorithms on two unsupervised graph
analytic tasks, namely link prediction and node clustering. Our
contributions can be summarized below:

« We propose a novel adversarially regularized framework
for graph embedding, which represents topological struc-
ture and node content in a continuous vector space.
Our framework learns the embedding to minimize the
reconstruction error while enforcing the latent codes to
match a prior distribution.

« We develop two variants of adversarial approaches, ad-
versarially regularized graph autoencoder (ARGA) and
adversarially regularized variational graph autoencoder
(ARVGA) to learn the graph embedding.

o We have examined different prior distributions, the ways
to construct decoders, and the targets of the reconstruc-
tions to point out the influence of the factors of the
adversarially regularized graph autoencoder models on
various tasks.

o Experiments on benchmark graph datasets demonstrate
that our graph embedding approaches outperform the
others on different unsupervised tasks.

The paper is structured as follows. Section II reviews the
related work. Section III outlines the problem definition and

our overall framework. Section IV presents the proposed
algorithm and Section V describes the experimental results.
We conclude the paper in Section VL.

II. RELATED WORK
A. Graph Embedding Models

Graph embedding, also known as network embedding [4]
or network representation learning [10], transfers a graph
into vectors. From the perspective of information exploration,
graph embedding algorithms can be separated into two groups:
topological network embedding approaches and content en-
hanced network embedding methods.

Topological network embedding approaches Topological
network embedding approaches assume that there is only
topological structure information available, and the learning
objective is to preserve the topological information maxi-
mumly [31], [32]. Inspired by the word embedding approach
[33], Perozzi et al. propose a DeepWalk model to learn the
node embedding from a collection of random walks [14].
Since then, many probabilistic models have been developed.
Specifically, Grover et al. propose a biased random walks
approach, node2vec [15], which employs both breadth-first
sampling (BFS) and Depth-first sampling (DFS) strategies to
generate random walk sequences for network embedding. Tang
et al. propose a LINE algorithm [16] to handle large-scale
information networks while preserving both first-order and
second-order proximity. Other random walk variants include
hierarchical representation learning approach (HARP) [34],
and discriminative deep random walk (DDRW) [35], and
Walklets [36].

Because a graph can be mathematically represented as
an adjacency matrix, many matrix factorization approaches
are proposed to learn the latent representation for a graph.
GraRep [18] integrates the global topological information of
the graph into the learning process to represent each node into
a low dimensional space; HOPE [19] preserves the asymmetric
transitivity by approximating high-order proximity for a better
performance on capturing topological information of graphs
and reconstructing from partially observed graphs; DNE [37]
aims to learn discrete embedding which reduces the storage
and computational cost. Recently deep learning models have
been exploited to learn the graph embedding. These algorithms
preserve the first and second order of proximities [23], or
reconstruct the positive pointwise mutual information (PPMI)
[24] via different variants of autoencoders.

Content enhanced network embedding methods Content
enhanced embedding methods assume node content infor-
mation is available and exploit both topological information
and content features simultaneously. TADW [38] proved that
DeepWalk can be interpreted as a factorization approach and
proposed an extension to DeepWalk to explore node features.
TriDNR [39] captures structure, node content, and label in-
formation via a tri-party neural network architecture. UPP-
SNE [40] employs an approximated kernel mapping scheme
to exploit user profile features to enhance the embedding
learning of users in social networks. SNE [41] learns a
neural network model to capture both structural proximity
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and attribute proximity for attributed social networks. DANE
[42] deals with the dynamic environment with an incremental
matrix factorization approach, and LANE [43] incorporates
label information into the optimization process to learn a
better embedding. Recently, BANE [44] is proposed to learn
binarized embedding for an attributed graph which has the
potential to increase the efficiency for latter graph analytic
tasks.

Although these algorithms are well-designed for graph-
structured data, they have largely ignored the embedding
distribution, which may result in poor representation in real-
graph data. In this paper, we explore adversarial training
approaches to address this issue.

B. Adversarial Models

Our method is motivated by the generative adversarial
network (GAN) [45]. GAN plays an adversarial game with
two linked models: the generator G and the discriminator D.
The discriminator discriminates if an input sample comes from
the prior data distribution or from the generator we built.
Simultaneously, the generator is trained to generate the sam-
ples to convince the discriminator that the generated samples
come from the prior data distribution. Typically, the training
process is split into two steps: (1) Train the discriminator D
for iterations to distinguish the samples from the expected
data distribution from the samples generated via the generator.
Then (2) train the generator to confuse the discriminator
with its generated data. However, the original GAN does not
fit the unsupervised data encoding, as the absence of the
precise structure for inference. To implement the adversarial
structure in learning data embedding, existing works like
BiGAN[27], EBGAN][28] and ALI[29] arrive at extending the
original adversarial framework with external structures for the
inference, which have achieved non-negligible performance
in applications, such as document retrieval[46] and image
classification[27]. Other solutions manage to generate the
embedding from the discriminator or generator for semi-
supervised and supervised tasks via reconstructed layers. For
example, DCGAN[30] bridges the gap between convolutional
networks and generative adversarial networks with particu-
lar architectural constraints for unsupervised learning; and
ANE[47] combines a structure-preserving component and an
adversarial learning scheme to learn a robust embedding.

Makhzani et al. proposed an adversarial autoencoder (AAE)
to learn the latent embedding by merging the adversarial
mechanism into the autoencoder [26]. However, AAE is de-
signed for general data rather than graph data. Recently there
are some studies on applying the adversarial mechanism to
graphs such as AIDW [47] and NetRA [48]. However, their
approach can only exploit the topological information [47],
[49], [48]. In contrast, our algorithm is more flexible and can
handle both topological and content information for graph
data. Furthermore, these models, such as NetRA, can only
reconstruct the graph structure, while ARGA_AX reconstructs
both topological structure and node characteristics, smoothly
persevering the integrity of the given graph through entire
encoding and decoding processing. Most recently, Ding et

al. proposed a GraphSGAN [50] for semi-supervised node
classification with the GAN principle, and Hu et al. proposed
the HeGAN [51] for heterogeneous information network em-
bedding.

Though many adversarial models have achieved impressive
success in computer vision, they cannot effectively and directly
handle the graph-structured data. With some preliminary study
in [52], we try to thoroughly exploit the graph convolutional
models with different adversarial models to learn a robust
graph embedding in this paper.

In particular, we have proposed four new algorithms to
handle networks with limited labeled data. These algorithms
aim to reconstruct different content in a network, including
topological structure only or both the topological structure and
node content, by using general graph encoder or variational
graph encoder as a building block. We also conducted more
extensive experiments to validate the proposed algorithms with
a wide range of metrics including NMI, ACC, F1, Precision,
ARI and Recall.

C. Graph Convolutional Nets based Models

Graph convolutional networks (GCN) [1] is a semi-
supervised framework based on a variant of convolutional
neural networks, which attempt to operate the graphs directly.
Specifically, the GCN represents the graph structure and the
interrelationship between node and feature with an adjacent
matrix A and node-feature matrix X. Hence, GCN can di-
rectly embed the graph structure with a spectral convolutional
function f(X,A) for each layer and train the model on a
supervised target for all labelled nodes. Because of the spectral
function f(e) on the adjacent matrix A of the graph, the
model can distribute the gradient from the supervised cost and
learn the embedding of both the labelled and unlabelled nodes.
Although GCN is powerful on graph-structured data sets
for semi-supervised tasks like node classification, variational
graph autoencoder VGAE [53] extends it into unsupervised
scenarios. Specifically, VGAE integrates the GCN into the
variational autoencoder framework [54] by framing the en-
coder with graph convolutional layers and remodeling the
decoder with a link prediction layer. Taking advantage of
GCN layers, VGAE can naturally leverage the information
of node features, which expressively muscle the predictive
performance. Recently GCN is used to learn the binary codes
for improving the efficiency of information retrieval [55].

III. PROBLEM DEFINITION AND FRAMEWORK

A graph is represented as G = {V,E, X}, where V =
{vi}; =1,--- ,n is constitutive of a set of nodes in a graph
and e; ; =< v;,v; >€ E represents a linkage coding the
citation edge between the papers (nodes). The topological
structure of graph G can be represented by an adjacency
matrix A, where A;; = 1 if e; ; € E, otherwise A;; = 0.
x; € X encodes the textual content features associated with
each node v;.

Given a graph G, our purpose is to map the nodes v; € V
to low-dimensional vectors z; € R? with the formal format
as follows: f : (A,X) — Z, where z; is the i-th row of

%
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Fig. 1: The architecture of the adversarially regularized graph autoencoder (ARGA). The upper tier is a graph convolutional
autoencoder that reconstructs a graph A from an embedding Z which is generated by the encoder which exploits graph structure
A and the node content matrix X. The lower tier is an adversarial network trained to discriminate if a sample is generated from
the embedding or from a prior distribution. The adversarially regularized variational graph autoencoder (ARVGA) is similar
to ARGA except that it employs a variational graph autoencoder in the upper tier (See Algorithm 1 for details).

the matrix Z € R"*%. n is the number of nodes and d is the
dimension of embedding. We take Z as the embedding matrix
and the embeddings should well preserve the topological
structure A as well as content information X.

A. Overall Framework

The objective is to learn a robust embedding for a given
graph G = {V, E, X}. To this end, we leverage an adversarial
architecture with a graph autoencoder to directly process
the entire graph and learn a robust embedding. Figure 1
demonstrates the workflow of ARGA which consists of two
modules: the graph autoencoder and the adversarial network.

o Graph convolutional autoencoder. The autoencoder
takes in the structure of graph A and the node content
X as inputs to learn a latent representation Z, and then
reconstructs the graph structure A from Z. We will
further explore other variants of graph autoencoder in
Section IV-D.

o Adversarial regularization. The adversarial network
forces the latent codes to match a prior distribution by an
adversarial training module, which discriminates whether
the current latent code z; € Z comes from the encoder
or from the prior distribution.

IV. PROPOSED ALGORITHM
A. Graph Convolutional Autoencoder

Our graph convolutional autoencoder aims to embed a graph
G = {V,E, X} in a low-dimensional space. Two fundamental
questions arise (1) how to simultaneously integrate graph
structure A and content feature X in an encoder, and (2) what
sort of information should be reconstructed via a decoder?

Graph Convolutional Encoder Model G(X, A). To
represent both graph structure A and node content X in
a unified framework, we develop a variant of the graph

convolutional network (GCN) [1] as a graph encoder. GCN
introduces the convolutional operation to graph-data from the
spectral area, and leverages a spectral convolutional function
F(ZW, A|lW®) to build a layer-wise transformation:
AGE . f(Z(l),A|W(l)) (1)
Here, Z! and Z("+1) are the input and output of the convolution
respectively. We set Z0 = X € R™*™ (n indicates the number
of nodes and m indicates the number of features) for our
problem. We need to learn a filter parameter matrix W) in
the neural network, and if the spectral convolution function
is well defined, we can efficiently construct arbitrary deep
convolutional neural networks.
Each layer of our graph convolutional network can
be expressed with the the spectral convolution function
F(ZO, AW D) as follows:

f(z0, AWD) = (D2 AD2ZOWD), ()

where D; Zj Aij and A = A +1 Iis the identity matrix
of A and ¢ is an activation function such as sigmoid(t) =
Tlet or Relu(t) max(0,¢). Overall, the graph encoder
G(X, A) is constructed with a two-layer GCN. In our paper,
we develop two variants of the encoder, e.g., Graph Encoder

and Variational Graph Encoder.
The Graph Encoder is constructed as follows:

20 = frau(X, A|WO);
Z(Q) = flinear(z(l)a A|W(1))

3)
“4)

Relu(-) and linear activation functions are used for the first and
second layers. Our graph convolutional encoder G(Z,A) =
q(Z])X, A) encodes both graph structure and node content into
a representation Z = ¢(Z|X,A) = Z®.
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A Variational Graph Encoder is defined by an inference
model:

4(Z|X, A) Hq z|X, A), 5)

q(z:|X, A) = (zilm, diag(c?)) (©)

Here, p = 72 is the matrix of mean vectors z; ; similarly

1020 = fiinear(Z), A|]W’()) which shares the weights W (©)
with g in the first layer in Eq. (3).
Decoder Model. Our decoder model is used to reconstruct
the graph data. We can reconstruct either the graph structure
A, content information X, or both. In the basic version of
our model (ARGA), we propose to reconstruct graph structure
A, which provides more flexibility in the sense that our
algorithm will still function properly even if there is no content
information X available (e.g., X = I). We will provide several
variants of decoder model in Section IV-D. Here the ARGA
decoder p(A|Z) predicts whether there is a link between two
nodes. More specifically, we train a link prediction layer based
on the graph embedding:

p(A|Z) = H Hp Aijlzi,2)); (7)
1=17=1
p(A” = 1|z;,2z;) = 51gm01d( ,Z5), 8)

here the prediction A should be close to the ground truth A.

Graph Autoencoder Model.  The embedding Z and the
reconstructed graph A can be presented as follows:

A = sigmoid(ZZ"), here Z = q(Z|X, A) 9)

Optimization.  For the graph encoder, we minimize the
reconstruction error of the graph data by:

Lo = Eqyz|x,a) llog p(A|Z)] (10)

For the variational graph encoder, we optimize the variational
lower bound as follows:

KL[¢(Z[X, A) || p(Z)]
Y
where KL[g(e)||p(e)] is the Kullback-Leibler divergence be-
tween ¢(e) and p(e). p(e) is a prior distribution which can
be a uniform distribution or a Gaussian distribution p(Z) =

[L; p(zi) = [1; N(2:0,T) in practice.

B. Adversarial Model D(Z)

The fundamental idea of our model is to enforce latent rep-
resentation Z to match a prior distribution, which is achieved
by an adversarial training model. The adversarial model is
built on a standard multi-layer perceptron (MLP) where the
output layer only has one dimension with a sigmoid function.
The adversarial model acts as a discriminator to distinguish
whether a latent code is from the prior p, (positive) or
graph encoder G(X, A) (negative). By minimizing the cross-
entropy cost for training the binary classifier, the embedding
will finally be regularized and improved during the training
process. The cost can be computed as follows:

Ly = Eqz)x,a) llog p(A|Z)] -

— 3 Fany 0gD(Z) — JBxlog(1 - DG, A)),  (12)

Algorithm 1 Adversarially Regularized Graph Embedding

Require:
G = {V,E, X}: a Graph with links and features;
T': the number of iterations;
K: the number of steps for iterating discriminator;
d: the dimension of the latent variable
Ensure: Z € R"*¢
1: for iterator = 1,2,3, , T do
2:  Generate latent variables matrix Z through Eq.(4);

3 fork=12,------ , K do

4 Sample m entities {z", ..., z(™} from latent matrix Z

5 Sample m entities {a"), ..., a™} from the prior distri-
bution p.

6: Update the discriminator with its stochastic gradient:

v— Z log D(a') + log (1 — D(z")))

7:  end for

8:  Update the graph autoencoder with its stochastic gradient by
Eq. (10) for ARGA or Eq. (11) for ARVGA;

9: end for

10: return Z € R"*¢

In our paper, we have examined both Gaussian distribution
and Uniform distribution as p, for all models and tasks.

Adversarial Graph Autoencoder Model. The equation for
training the encoder model with Discriminator D(Z) can be
written as follows:

it 1025 B, [108D(2)] + By log(1 = DIGX, A)))]

(13)
where G(X, A) and D(Z) indicate the generator and discrim-
inator explained above.

C. Algorithm Explanation

Algorithm 1 is our proposed framework. Given a graph
G, step 2 gets the latent variables matrix Z from the graph
convolutional encoder. Then we take the same number of
samples from the generated Z and the real data distribution
p. in step 4 and 5 respectively, to update the discriminator
with the cross-entropy cost computed in step 6. After K runs
of training the discriminator, the graph encoder will try to
confuse the trained discriminator and update itself with the
generated gradient in step 8. We can update Eq. (10) to train
the adversarially regularized graph autoencoder (ARGA),
or Eq. (11) to train the adversarially regularized variational
graph autoencoder (ARVGA), respectively. Finally, we will
return the graph embedding Z € R™*? in step 9.

D. Decoder Variations

In ARGA and ARVGA models, the decoder is merely a
link prediction layer which performs as a dot product of the
embedding Z. In practice, the decoder can also be a graph
convolutional layer or a combination of link prediction layer
and graph convolutional decoder layer.

GCN Decoder for Graph Structure Reconstruction
(ARGA_GD) We have modified the encoder by adding two
graph convolutional layers to reconstruct the graph structure.
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Fig. 2: The architecture of adversarially regularized graph autoencoder with a graph convolutional decoder (ARGA_GD) to
reconstruct the topological structure A.The upper tier is a standard graph convolutional autoencoder. The decoder employs
the graph convolutional networks. The lower tier keeps the same with both Gaussian distribution and Uniform distribution.
ARVGA_GD is similar to ARGA_GD except that it employs a variational graph autoencoder in the upper tier.
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Fig. 3: The architecture of the ARGA_AX which simultaneously reconstructs the graph topological structure A and the node
content matrix X. The lower tier keeps the same, and we also exploit the variational version of the ARVGA_AX.

This variant of approach is named ARGA_GD. Fig. 2 demon-
strates the architecture of ARGA_GD. In this approach, the
input of the decoder will be the embedding from the encoder,
and the graph convolutional decoder is constructed as follows:

Zp = fincar(Z, A]WH). (14)
O = finear(Zp, A]W). (15)

where Z is the embedding learned from the graph encoder
while Z p and O are the outputs from the first and second layer
of the graph decoder. The number of the horizontal dimension
of O is equal to the number of nodes. Then we calculate the
reconstruction error as follows:

Larca_ap = Eqo|x,a) llog p(A]O)] (16)

GCN Decoder for both Graph Structure and Content
Information Reconstruction (ARGA_AX) We have further

modified our graph convolutional decoder to reconstruct both
the graph structure A and content information X. The ar-
chitecture is illustrated in Fig 3. We fixed the dimension of
second graph convolutional layer with the same number of the
features associated with every node, thus the output from the
second layer O € IR"*f 5 X. In this case, the reconstruction
loss is composed of two errors. First, the reconstruction error
of graph structure can be minimized as follows:

L4 =Eqo(x,a) llog p(A]O)],

Then the reconstruction error of node content can be mini-
mized with a similar formula:

Lx =Eyo|x,a)llog p(X]O)].

The final reconstruction error is the sum of the reconstruction
error of graph structure and node content:

Lo=La+ Lx.

7)

(18)

19)
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V. EXPERIMENTS

We report our results on both link prediction and node clus-
tering tasks. The benchmark graph datasets used in the paper,
Cora [56], Citeseer [57] and Pubmed [58], are summarized
in table 1. Each dataset consists of scientific publications as
nodes and citation relationships as edges. The features are
unique words in each document.

TABLE I: Real-world Graph Datasets Used in the Paper

Data Set # Nodes # Links # Content Words # Features

Cora 2,708 5,429 3,880,564 1,433
Citeseer 3,327 4,732 12,274,336 3,703
PubMed 19,717 44,338 9,858,500 500

A. Link Prediction

Baselines. Twelve algorithms in total are compared for the
link prediction task:

e DeepWalk [14] is a network representation approach
which encodes social relations into a continuous vector
space.

« Spectral Clustering [17] is an effective approach to learn
social embedding.

« GAE [53] is the most recent autoencoder-based unsuper-
vised framework for graph data, which naturally leverages
both topological structure A and content information X.
GAE" is the version of GAE which only considers the
topological information A, i.e., X = 1.

« VGAE [53] is the variational graph autoencoder for graph
embedding with both topological and content informa-
tion. Likewise, VGAE™ is a simplified version of VGAE
which only leverages the topological information.

« ARGA is our proposed adversarially regularized autoen-
coder algorithm which uses graph autoencoder to learn
the embedding.

o ARVGA is our proposed algorithm, which uses a varia-
tional graph autoencoder to learn the embedding.

« ARGA_DG is a variant of our proposed ARGA which
takes graph convolutional layers as its decoder to re-
construct graph structure. ARVGA_DG is the variational
version of ARGA_DG.

o ARGA_AX is a variant of our proposed ARGA which
takes graph convolutional layers as its decoder to simul-
taneously reconstruct graph structure and node content.
ARVGA_AX is the variational version of ARGA_AX.

Metric. We report the results concerning AUC score (the area
under a receiver operating characteristic curve) and average
precision (AP) [53] score which can be computed as follow:

_ le Ejl pred(z;)>pred(y;)

AUC N+M

where pred(e) is the outputs from the predictor and N and
M are the number of positive samples x; € X and the number
of negative samples y; € Y respectively. We also report the
Average Precision (AP) which indicates the area under the
precision-recall curve:

true_positive
true_positive+false_positive

Precision =

_ >, Precision(k)
~ #{positive_sample}

AP

where k is an index for the class k.

We conduct each experiment 10 times and report the mean
values with the standard errors as the final scores. Each dataset
is separated into a training, testing set, and a validation set. The
validation set contains 5% citation edges for hyperparameter
optimization, the test set holds 10% citation edges to verify
the performance, and the rest are used for training.

Parameter Settings. For the Cora and Citeseer data sets,
we train all autoencoder-related models for 200 iterations and
optimize them with the Adam algorithm. Both the learning
rate and discriminator learning rate are set as 0.001. As the
PubMed dataset is relatively large (around 20,000 nodes),
we iterate 2,000 times for adequate training with a 0.008
discriminator learning rate and 0.001 learning rate. We con-
struct encoders with a 32-neuron hidden layer and a 16-
neuron embedding layer for all the experiments and all the
discriminators are built with two hidden layers(16-neuron, 64-
neuron respectively). For the rest of the baselines, we retain
the settings described in the corresponding papers.

Experimental Results.  The details of the experimental
results on the link prediction are shown in Table 2. The results
show that by incorporating an effective adversarial training
module into our graph convolutional autoencoder, ARGA and
ARVGA achieve outstanding performance: all AP and AUC
scores are as higher as 92% on all three data sets. Compared
with all the baselines, ARGA increased the AP score from
around 2.5% compared with VGAE incorporating with node
features, 11% compared with VGAE without node features;
15.5% and 10.6% compared with DeepWalk and Spectral
Clustering respectively on the large PubMed data set.

The approaches which use both node content and topo-
logical information are always straightforward to get better
performance compared to those only consider graph structure.
The gap between ARGA and GAE models demonstrates that
regularization on the latent codes has its advantage to learn a
robust embedding. The impact of various distributions, archi-
tectures of the decoder as well as the reconstructions will be
discussed in Section V-C: ARGA Architectures Comparison.

(A) Varying Embedding-Dim for AP
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Fig. 4: Average performance on different dimensions of the
embedding. (A) Average Precision score; (B) AUC score.

Parameter Study. We conducted experiments on Cora
dataset by varying the dimension of embedding from 8 neurons
to 1024 and report the results in Fig 4.

The results from both Fig 4 (A) and (B) reveal similar
trends: when adding the dimension of embedding from 8-
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TABLE II: Results for Link Prediction. GAE* and VGAE" are variants of GAE and VGAE, which only explore topological

structure, i.e., X = I.

Approaches Cora Citeseer PubMed

AUC AP AUC AP AUC AP
SC 84.6 £ 0.01 88.5 £ 0.00 80.5 £ 0.01 85.0 £ 0.01 84.2 + 0.02 87.8 £ 0.01
DW 83.1 + 0.01 85.0 = 0.00 80.5 + 0.02 83.6 £+ 0.01 84.4 + 0.00 84.1 £ 0.00
GAE”" 84.3 + 0.02 88.1 + 0.01 78.7 £ 0.02 84.1 + 0.02 82.2 £+ 0.01 87.4 £ 0.00
VGAE* 84.0 + 0.02 87.7 £ 0.01 78.9 £ 0.03 84.1 + 0.02 82.7 £ 0.01 87.5 £ 0.01
GAE 91.0 £ 0.02 92.0 £+ 0.03 89.5 + 0.04 89.9 + 0.05 96.4 £ 0.00 96.5 £ 0.00
VGAE 91.4 £ 0.01 92.6 £ 0.01 90.8 £ 0.02 92.0 £ 0.02 944 £ 0.02 94.7 £ 0.02
ARGA 924 £ 0.003 932 £ 0.003 919 4+ 0.003 93.0+ 0.003 96.8 + 0.001 97.1 + 0.001
ARVGA 92.4 + 0.004 92.6 + 0.004 924 £+ 0.003 93.0 = 0.003 96.5+ 0.001  96.8+ 0.001
ARGA_DG 779 £0.003 789 £+ 0.003 744 +£0.003 762+ 0.003 95.1 £ 0.001 952 + 0.001
ARVGA_DG  88.0 £0.004 87.9 £+ 0.004 89.7 &£ 0.003 90.5 + 0.003  93.2+ 0.001  93.6 £ 0.001
ARGA_AX 913 £0.003 91.3 £0.003 919 £ 0.003 9344+ 0.003 96.6 + 0.001 96.7 &+ 0.001
ARVGA_AX 90.2 +£0.004 89.2 +0.004 89.8 +0.003 90.4 £ 0.003 96.7+ 0.001  97.1 £ 0.001

TABLE III: Algorithm Comparison

K-means Spectral BigClam GraphEncoder DeepWalk DNGR Circles RTM RMSC TADW GAE* VGAE® GAE ARGA ARGA_DG ARGA_AX

_ _Comtent K _ _ _ _ _ _ _ ____________ * _
_ Stueture * Kk kK _k__%x_
Adversarial

Recover X

Kk _kx________ * ko ok x

K _Kk_ Kk ok k_ x X kx|

e * o kX

el X k. __ kx X

el X

e X _ Kk ko k kK
*

neuron to 16-neuron, the performance of embedding on link
prediction steadily rises; when we further increase the number
of the neurons at the embedding layer to 32-neuron, the
performance fluctuates, however, the results for both the AP
score and the AUC score remain good.

It is worth mentioning that if we continue to set more neu-
rons, for examples, 64-neuron, 128-neuron and 1024-neuron,
the performance rises dramatically.

B. Node Clustering

For the node clustering task, we first learn the graph
embedding, and after that, we perform the K-means clustering
method based on the embedding.

Baselines We compare both embedding based approaches
as well as approaches directly for graph clustering. Except
for the baselines we compared for link prediction, we also
include baselines which are designed for clustering. Twenty
approaches in total are compared in the experiments. For
a comprehensive validation, we take the algorithms which
only consider one perspective of the information source, say,
network structure or node content, as well as algorithms
considering both factors.
Node Content or Graph Structure Only: The baselines
which leverage only one source of information are listed as
follows.
1) K-means is a classical method and also the foundation
of many clustering algorithms.
2) Big-Clam [17] is a community detection algorithm based
on NMF.

3) Graph Encoder [59] learns graph embedding for spectral
graph clustering.

4) DNGR [24] trains a stacked denoising autoencoder for
graph embedding.

Both Content and Structure The baselines which simultane-
ously consider both topological structure and node character-
istics are listed as follows.

5) Circles [60] is an overlapping graph clustering algorithm
which treats each node as ego and builds the ego graph
with the linkages between the ego’s friends.

6) RTM [61] learns the topic distributions of each document
from both text and citation.

7) RMSC [62] is a multi-view clustering algorithm which
recovers the shared low-rank transition probability matrix
from each view for clustering. In this paper, we treat node
content and topological structure as two different views.

8) TADW [38] applies matrix factorization for network
representation learning.

Table III gives the detailed comparison of most of the
baselines. For space saving, we did not list the variational
versions of our models. Recovering A and X in the table
demonstrates whether the model reconstructs the graph struc-
ture (A) and node content (X). Please note that we do not
report the clustering results from Circle on PubMed dataset as
the single experiment have been running more than three days
without any outcome and error. We think this is because of
the large size of the PubMed dataset (around 20,000 nodes).
Note that the Circle algorithm works well on the other two
datasets.
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Fig. 5: Average node clustering performance on different dimensions of the embedding.

TABLE IV: Clustering Results on Cora TABLE V: Clustering Results on Citeseer
Cora Acc NMI F1 Precision ~ ARI Citeseer Acc NMI F1 Precision  ARI
K-means 0492 0.321 0.368 0.369 0.230 K-means 0.540 0.305 0.409 0.405 0.279
Spectral 0367 0.127 0.318 0.193 0.031 Spectral 0.239 0.056 0.299 0.179 0.010
BigClam 0.272  0.007 0.281 0.180 0.001 BigClam 0.250 0.036 0.288 0.182 0.007
GraphEncoder  0.325 0.109 0.298 0.182 0.006 GraphEncoder  0.225 0.033  0.301 0.179 0.010
DeepWalk 0.484 0.327 0.392 0.361 0.243 DeepWalk 0.337 0.088 0.270 0.248 0.092
DNGR 0419 0.318 0.340 0.266 0.142 DNGR 0.326 0.180 0.300 0.200 0.044
Circles 0.607 0.404 0.469 0.501 0.362 Circles 0.572 0301 0424 0.409 0.293
RTM 0.440 0.230 0.307 0.332 0.169 RTM 0451 0239 0.342 0.349 0.203
RMSC 0.407 0.255 0.331 0.227 0.090 RMSC 0.295 0.139 0.320 0.204 0.049
TADW 0.560 0.441 0.481 0.396 0.332 TADW 0455 0291 0414 0.312 0.228
GAE" 0439 0.291 0.417 0.453 0.209 GAE" 0.281 0.066 0.277 0.315 0.038
VGAE" 0.443 0.239 0.425 0.430 0.175 VGAE" 0.304 0.086 0.292 0.331 0.053
GAE 0.596 0429 0.595 0.596 0.347 GAE 0.408 0.176 0.372 0.418 0.124
VGAE 0.609 0.436 0.609 0.609 0.346 VGAE 0.344 0.156 0.308 0.349 0.093
ARGA 0.640 0.449 0.619 0.646 0.352 ARGA 0.573 0350 0.546 0.573 0.341
ARVGA 0.638 0.450 0.627 0.624 0.374 ARVGA 0.544 0.261 0.529 0.549 0.245
ARGA_DG 0.604 0425 0.594 0.600 0.373 ARGA_DG 0479 0.231 0.446 0.456 0.203
ARVGA_DG 0463 0387 0455 0.524 0.265 ARVGA_DG 0448 0.256 0.410 0.496 0.149
ARGA_AX 0.597 0455 0.579 0.593 0.366 ARGA_AX 0.547 0.263 0527 0.549 0.243
ARVGA_AX 0711 0.526 0.693 0.710 0.495 ARVGA_AX 0.581 0.338 0.525 0.537 0.301

ARGA GAE ¥

Metrics:  Following [62], we employ five metrics to vali-

» date the clustering results: accuracy (Acc), F-one score (F1),

~%" normalized mutual information (NMI), precision and average
rand index (ARI).

T Experimental Results. The clustering results on the Cora,
3 Citeseer and Pubmed data sets are given in table IV, table V
' and table VI. The results show that ARGA and ARVGA have
achieved a dramatic improvement on all five metrics compared
with all the other baselines. For instance, on Citeseer, ARGA
has increased the accuracy from 6.1% compared with K-means
to 154.7% compared with GraphEncoder; increased the F1

Fig. 6: Visualization with edges of the latent space of unsu-
pervised ARGA and GAE trained on Cora data set. Colors
indicate different clusters, and edges are represented with the
links between nodes. Best view for both models
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Fig. 7: The ARGA related models comparison on the clustering task with different prior distributions.
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TABLE VI: Clustering Results on Pubmed
Pubmed Acc NMI F1 Precision  ARI
K-means 0.398 0.001 0.195 0.579 0.002
Spectral 0.403 0.042 0.271 0.498 0.002
BigClam 0.394 0.006 0.223 0.361 0.003
GraphEncoder  0.531 0.209 0.506 0.456 0.184
DeepWalk 0.684 0.279 0.670 0.686 0.299
DNGR 0458 0.155 0467 0.629 0.054
RTM 0.574 0.194 0.444 0.455 0.148
RMSC 0.576  0.255 0.521 0.482 0.222
TADW 0.354 0.001 0.335 0.336 0.001
GAE” 0.581 0.196 0.569 0.636 0.162
VGAE* 0.504 0.162 0.504 0.631 0.088
GAE 0.672 0.277 0.660 0.684 0.279
VGAE 0.630 0.229 0.634 0.630 0.213
ARGA 0.668 0.305 0.656 0.699 0.295
ARVGA 0.690 0.290 0.678 0.694 0.306
ARGA_DG 0.630 0.212 0.629 0.631 0.209
ARVGA_DG 0.630 0.226 0.632 0.629 0.212
ARGA_AX 0.637 0.245 0.639 0.642 0.231
ARVGA_AX 0.640 0.239 0.644 0.639 0.226

score from 31.9% compared with TADW to 102.2% compared
with DeepWalk; and increased NMI from 14.8% compared
with K-means to 124.4% compared with VGAE.

Furthermore, as we can see from the three tables, the cluster-
ing results from approaches BigClam and DeepWalk, which
only consider one perspective information of the graph, are

inferior to the results from those which consider both topologi-
cal information and node content of the graph. However, both
purely GCNs-based approaches or the methods considering
multi-view information still only obtain sub-optimal results
compared to the adversarially regularized graph convolutional
models.

The wide margin in the results between ARGA and GAE
(and the others) has further demonstrated the superiority of
our adversarially regularized graph autoencoder.

Parameter Study. We conducted experiments on Cora
dataset with varying the dimension of embedding from 8
neurons to 1024 and report the results in Fig 5. All metrics
demonstrated a similar fluctuation as the dimension of the
embedding is increased. We cannot extract apparent trends to
represent the relations between the embedding dimensions and
the score of each clustering metric. This observation indicates
that the unsupervised clustering task is more sensitive to the
parameters compared to the supervised learning tasks (e.g.,
link prediction in Section V-A).

Graph Visualization with Linkages.

Inspired by [53], we visualized the well-learned latent space
with the linkages of both GAE and our proposed ARGA
trained on Cora data set. As shown in Fig. 6, many nodes in the
latent space of GAE (Right side) which belong to the GREEN
cluster have been located nearer to the PINK cluster. Similar
circumstance happened in the bond between the RED cluster
and the BLUE cluster, where some of nodes of RED mixed in
the BLUE cluster. This could be caused by the unregularized
embedding space, which is free for any structure. Adversarially
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Fig. 8: The ARGA related models comparison on the link prediction task with different prior distributions.

regularized embedding shows better visualization with clear
boundary line between two clusters. Considering the only
difference between ARGA and the GAE is the adversarial
training regularization scheme, it is reasonable to claim that
adversarial regularization is helpful to enhance the quality of
graph embedding.

C. ARGA Architectures Comparison

In this section, we construct six versions of the model:
adversarially regularized graph autoencoder (ARGA), adver-
sarially regularized graph autoencoder with graph convolu-
tional decoder (ARGA_DG) and adversarially regularized
graph autoencoder for reconstructing both graph structure
and node content (ARGA_AX) and their variational versions.
Meanwhile, we conduct all experiments with a prior Gaussian
distribution and a prior Uniform Distribution respectively for
every model. We analyze the comparison experiments and try
to figure out the reasons behind the results. The experimental
results are illustrated in Fig, 7 and 8.

Gaussian Distribution vs Uniform Distribution. The
performance of the proposed models is not very sensitive to the
prior distributions, especially for the node clustering task. As
shown in Fig. 7, if we compare the results of two distributions
with the same metric, the results from one same model, in most
cases, are very similar.

As for the link prediction (Fig. 8), the Uniform distribution
dramatically lowers the performance of ARGA_DG on all
datasets and metrics, compared to the results with Gaussian
distribution. ARGA and its variational version are not as
sensitive to the different distributions as ARGA_DG models.
The standard version of ARGA with Gaussian distribution
slightly outperforms the ones with Uniform distribution. The
situation reversed with the variational ARGA models.
Decoders and Reconstructions. As shown in Fig 8,
the ARGA with the Gaussian distribution and inner product
decoder for reconstructing graph structure has a significant

advantage in link prediction since p(A;; = 1|z;,2;) is

designed to predict whether there is a link between two nodes.
Simply replacing the decoder with graph convolutional layers
to reconstruct adjacency matrix A (ARGA_DG) has a sub-
optimal performance in link prediction compared to ARGA.
According to the statistic in Fig. 7, although the performance
of ARGA_DG on clustering is comparable with original
ARGA, there is still a gap between these two variations. Two
graph convolutional layers in the decoder cannot effectively
decode the topological information of the graph, which leads
to the sub-optimal results. The model with graph convolutional
decoder for reconstructing both topological information A
and node content X (ARGA_AX) may prove this hypothesis.
As can be seen in Fig. 7 and 8, ARGA_AX has dramati-
cally improved the performance on both link prediction and
clustering compared to ARGA_DG which purely reconstructs
the topological structure. ARGA and ARGA_AX have very
similar performances on both link prediction and clustering.
The variational version of ARGA_AX (ARVGA_AX) has out-
standing performance on clustering which has achieved 12.2%
improvement on clustering accuracy on Cora dataset and 5.4%
improvement on Citeseer dataset compared to ARVGA.

D. Time Complexity on Convollution

Our graph encoder requires the computation 7 =
p(D~2AD~2ZOW®), which can be computed efficiently
using sparse matrix computation. Specifically, let P =
D 2AD"z , which is the Laplacian matrix. As D is a
diagonal matrix, the inverse of D is the inverse of its diagonal
values with time complexity O(|V|). Let W) € R™*?, and
Z0) ¢ R<™, The complexity of our convolution operation
is O(|E|md), as AZ(® can be efficiently implemented as a
product of a sparse matrix with a dense matrix (See [53] for
details).

We conducted experiments with six ARGA models and
two GAE models for the training time comparison. We con-
ducted 200 training epochs for link prediction task of each
model on Cora data set and report the average time for the



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2018

comparison. The results are shown in Fig. 9. The results
show that ARGA models take more time than original GAE
models due to the additional regularization module in the
architecture. ARGA_AX model requires more computation for
simultaneously reconstructing both topological structure (A)
and node characteristics (X).

0.4 LINK PREDICTION TRAINING TIME ON CORA

0.3 =ARGA =ARGA_AX =ARGA_DG =GAE
0.190 0.178

0.2 0.132 0.149 0.125 0.129

0.1 0.073

0.0

s/epoch Original Varitional

Fig. 9: Average training time per epoch of link prediction.
(Left) Original Architectures; (Right) Varitional Architectures.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel adversarial graph embed-
ding framework for graph data. We argue that most existing
graph embedding algorithms are unregularized methods that
ignore the data distributions of the latent representation and
suffer from inferior embedding in real-world graph data. We
proposed an adversarial training scheme to regularize the latent
codes and enforce the latent codes to match a prior distribu-
tion. The adversarial module is jointly learned with a graph
convolutional autoencoder to produce a robust representation.
We also exploited some interesting variations of ARGA like
ARGA_DG and ARGA_AX to discuss the impact of graph
convolutional decoder for reconstructing both graph structure
and node content. Experiment results demonstrated that our
algorithms ARGA and ARVGA outperform baselines in link
prediction and node clustering tasks.

There are several directions for the adversarially regularized
graph autoencoders (ARGA). We will investigate how to use
the ARGA model to generate some realistic graphs [63], which
may help discover new drugs in biological domains. We will
also study how to incorporate label information into ARGA
to learn robust graph embedding.
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