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a b s t r a c t 

Node clustering aims to partition the vertices in a graph into multiple groups or communities. Exist- 

ing studies have mostly focused on developing deep learning approaches to learn a latent representation 

of nodes, based on which simple clustering methods like k -means are applied. These two-step frame- 

works for node clustering are difficult to manipulate and usually lead to suboptimal performance, mainly 

because the graph embedding is not goal-directed, i.e., designed for the specific clustering task. In this 

paper, we propose a clustering-directed deep learning approach, Deep Neighbor-aware Embedded Node 

Clustering ( DNENC for short) for clustering graph data. Our method focuses on attributed graphs to suf- 

ficiently explore the two sides of information in graphs. It encodes the topological structure and node 

content in a graph into a compact representation via a neighbor-aware graph autoencoder, which progres- 

sively absorbs information from neighbors via a convolutional or attentional encoder. Multiple neighbor- 

aware encoders are stacked to build a deep architecture followed by an inner-product decoder for re- 

constructing the graph structure. Furthermore, soft labels are generated to supervise a self-training pro- 

cess, which iteratively refines the node clustering results. The self-training process is jointly learned and 

optimized with the graph embedding in a unified framework, to benefit both components mutually. Ex- 

perimental results compared with state-of-the-art algorithms demonstrate the good performance of our 

framework. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The development of networked applications has resulted in 

n overwhelming number of scenarios in which data is naturally 

epresented in graph format rather than flat-table or vector for- 

at. Attributed graph-based representation characterizes individ- 

al properties through node attributes, and at the same time cap- 

ures the pairwise relationship through the graph structure. Many 

eal-world tasks, such as the analysis of citation networks, social 

etworks, protein-protein interaction and knowledge graphs [1] , 

ll rely on graph-data analytics skills. However, the complexity of 

raph structure has imposed significant challenges on these graph- 

elated learning tasks, including clustering, which is one of the 

ost popular topics. 
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Node clustering aims to partition the nodes in the graph into 

isjoint groups [2–4] . It’s an important and basic task in graph 

nalysis and can be widely applied to real-world network mining. 

ypical applications include community detection [5–7] , group seg- 

entation [8] , and functional group discovery in enterprise social 

etworks [9] . Further for attributed graphs, a key problem is how 

o capture the structural relationship between nodes and exploit 

he node content information. 

To solve this problem, more recent studies have resorted to 

eep learning techniques to learn compact representation or em- 

edding to exploit the rich information of the graph data [10–12] . 

ased on the learned graph embedding, simple clustering algo- 

ithms such as k -means are applied to obtain the clustering result. 

utoencoder is a mainstream solution for this kind of embedding- 

ased approach [13,14] . An autoencoder consists of an encoder 

hat encodes the input data into low-dimensional space, and a 

ecoder that reconstructs the input data from the encoded em- 

edding. Such autoencoder-based hidden representation learning 

pproaches are specialized in dimension reduction, and can be 

pplied to purely unsupervised environments. Many autoencoder 

https://doi.org/10.1016/j.patcog.2021.108230
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108230&domain=pdf
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Fig. 1. The difference between two-step embedding learning models and our model. 
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ased node clustering algorithms already exist: Tian et al. con- 

idered the similarity of autoencoder and spectral clustering and 

earned a latent representation for clustering through sparse au- 

oencoder [14] . Cao, Lu, and Xu proposed a deep graph repre- 

entation model for clustering by capturing structure information 

hrough random surfing [13] . The recently developed GAE and 

GAE [15] based on graph convolutional network (GCN) can also 

e adopted for node clustering analysis. 

Nevertheless, all these embedding-based methods separate the 

mbedding learning and clustering as two steps. The drawback is 

hat the learned embedding may not be the best fit for the sub- 

equent node clustering task, and the node clustering task is not 

eneficial to the graph embedding learning. To achieve mutual 

enefit for these two steps, a goal-directed training framework is 

ighly desirable. However, traditional goal-directed training models 

re mostly designed for the classification task. We are not aware 

f any studies on goal-directed node clustering, to the best of our 

nowledge. 

Our Approach Motivated by the above observations, we pro- 

ose a Deep Neighbor-aware Embedded Node Clustering framework 

DNENC) with two variants, namely DNENC-Att (with graph atten- 

ional autoencoder) and DNENC-Con (with graph convolutional au- 

oencoder) in this paper. To exploit the interrelationship of various- 

yped graph data, we develop a neighbor-aware graph autoencoder 

o learn latent representation, which integrates both content and 

tructure information. The encoder progressively aggregates infor- 

ation from its neighbor via a convolutional style or an attentional 

echanism, and multiple layers of encoders are stacked to build 

 deep architecture for embedding learning. The decoder on the 

ther side, reconstructs the topological graph information and ma- 

ipulates the latent graph representation. Furthermore, a carefully 

esigned self-training module, which takes the “confident ” clus- 

ering assignments as soft labels, is employed to guide the op- 

imizing procedure. By forcing the current clustering distribution 

o approach a hypothetical better distribution, in contrast to the 

eparated two-steps embedding learning-based methods (shown in 

ig 1 ), this specialized clustering component makes it possible to 

imultaneously learn the embedding and perform clustering in a 

nified framework, thereby achieves better clustering performance. 

ur contributions can be summarized as follows: 

• We introduce a neighbor-aware framework, by developing the 

first graph attention-based autoencoder, as well as a graph 

convolution-based autoencoder, to effectively integrate both the 

structure and content information for attributed graph repre- 

sentation learning. 
2 
• We propose a new end-to-end deep learning framework for 

node clustering. The framework jointly optimizes the embed- 

ding learning and node clustering for graph data, to the mutual 

benefit of both components. 
• The experimental results show that our algorithm outperforms 

state-of-the-art node clustering methods. 

The remainder of the paper is organized as follows: 

ection 2 reviews the related works. Section 3 defines the 

ode clustering problem and briefly describes our framework. 

ection 4 presents our solution to the problem, and Section 5 de- 

ails the experimental results. We conclude the paper in Section 6 . 

. Related work 

Our work is closely related to deep graph neural networks, the 

utoencoder-based deep clustering algorithms and node clustering 

lgorithms. We briefly review some of these works in this section. 

.1. Deep neural networks for graphs 

Deep learning has made remarkable achievements in many do- 

ains like voice recognition and image processing. Recently deep 

earning has also been generalized to graph structured data [16] . 

The graph convolutional network, in particular, attracts wide 

ttention in the community. Bruna et al. made the first attempt 

s we are aware of in [17,18] . By using the recurrent Chebyshev 

olynomials, Defferrard et al. [19] further optimized the filter- 

ng scheme and avoided the expensive computation of the Lapla- 

ian eigenvectors. Graph convolutional networks (GCN) [20] fur- 

her simplified the filtering for only 1-step neighborhood nodes 

nd, convolution is thereby considered as a multiplication of the 

ourier-transform of a signal in the spectral domain. Several other 

ecent works perform convolution on graphs [21,22] , vary as they 

se different convolutional filtering strategies. 

Graph attention can be considered a special kind of graph con- 

olution which place more value on the most relevant parts. Graph 

ttention networks (GATs) was presented for node classification of 

raph-structured data [23] . It performs self-attention on the graph, 

omputing the hidden representation of each graph node by inte- 

rating its neighbor attributes with different weights. 

.2. Autoencoder and deep clustering algorithms 

Autoencoder has been a widely used tool in the deep learn- 

ng area long before adopted to the graph domain. It is special- 

zed in dimension reduction in unsupervised learning tasks such 
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Fig. 2. The conceptual framework of Deep Neighbor-aware Embedded Node Clustering (DNENC). Given a graph G = (V, E, X ) , DNENC learns a hidden representation Z through 

a graph autoencoder, which reconstructs the graph structure A with ˆ A (There’s not a ˆ X reconstructing X in our model as explained in 4.1.3) to optimize Z. The representation 

Z is manipulated with a self-training clustering module, which is optimized together with the autoencoder and perform clustering during training. The two variants share 

similar framework and differ as their autoencoder encode the inputs through different strategy. 
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s clustering and anomaly detection [24] . The autoencoder basi- 

ally consists of an encoder mapping the input feature X to some 

idden low-dimensional representation h (X ) and a decoder map- 

ing it back to reconstruct the input feature. The parameters of 

he autoencoder can be learned by minimizing the reconstruction 

rror. 

Deep Embedded Clustering (DEC) is an autoencoder-based clus- 

ering technique for plain data [25] . It employs a stacked denoising 

utoencoder learning approach. After obtaining the hidden repre- 

entation of the autoencoder with the pre-train, rather than min- 

mizing the reconstruction error through a decoder, the encoder 

athway is fine-tuned by a defined Kullback-Leibler divergence 

lustering loss. Guo et al. considered that the defined clustering 

oss could corrupt the feature space, leading to non-representative 

eatures and a reduction in clustering performance. They improved 

he DEC algorithm by adding back the decoder and minimizing the 

econstruction error as well as the clustering loss [26] . 

There have since been many algorithms based on such deep 

lustering framework [27,28] . However, as far as we know, they 

re only designed for data with flat-table representation. For graph 

ata, complex structure and content information need to be care- 

ully exploited, and end-to-end clustering for graph data is still an 

pen problem in this area. 

.3. Node clustering in graphs 

Node clustering has been a long-standing research topic in the 

raph domain. It can find communities and help with the recogni- 

ion of partial structural patterns in large networks. 

Early methods have taken various approaches to node cluster- 

ng. Girvan and Newman used centrality indices to find commu- 

ity boundaries and detect social communities [29] . Hastings ap- 

lied belief propagation to community detection and determined 

he most likely arrangement of communities [30] . Newman com- 

uted the eigenvectors of the graph Laplacian to perform cluster- 

ng [31,32] . 

To handle attributed graphs with both content and structure in- 

ormation, NMF(non-negative matrix factorization)-based methods 

33,34] , probabilistic model [35] , relational topic models [36,37] , 

nd content propagation [38] have also been widely used. 

The limitations of these methods could be summarized as fol- 

ow: (1) They fail to employ deep architecture to model the inter- 

lay between the graph structure and the node content, or even 

apture only parts of the network information. We hold common 

pinion that deep learning surpasses traditional methods by learn- 

ng informative representation through multi-layer message pass- 
3 
ng. Therefore, these methods are relatively not effective in gen- 

ral; (2) They are mostly applied on original sparse graphs, in 

hich information is not well extracted. As a result, their use of 

he global graph structure information is usually inefficient, and 

ome of them are limited to the local structure only. This fact leads 

o the result that such methods cannot effectively exploit the topo- 

ogical information as deep representations do. 

Benefiting from the development of deep learning, graph node 

lustering has progressed significantly in recent years. Many algo- 

ithms employ a deep architecture, adopting either sparse autoen- 

oder [14,39] or denoising autoencoder [13] to exploit the deep 

tructure information for clustering. For attributed graphs, graph 

onvolution-based autoencoders are also developed [15] , and are 

ombined with marginalized process [40] , adversarial regulariza- 

ion [41] , etc. for node clustering, link prediction, and other un- 

upervised tasks. However, these methods are two-step methods, 

hereas the algorithm presented in this paper is a joint learning 

pproach. 

. Problem definition and overall framework 

We consider clustering task on attributed graphs in this paper. 

n attributed graph is represented as G = (V, E, X ) , where V = { v i }
onsists of a set of n nodes ( i ∈ { 1 , . . . , n } ), E = { e i j } is a set of

dges between these nodes ( j ∈ { 1 , . . . , n } and i � = j). The topolog-

cal structure of graph G can be represented by an adjacency ma- 

rix A , where A i j = 1 if e i j ∈ E; otherwise A i j = 0 . X = { x i } are the

 attribute values where x i ∈ R 

m is a real-value attribute vector as- 

ociated with vertex v i . 
Given the graph G and cluster number k , node clustering aims 

o partition the nodes in G into k disjoint groups { G 1 , G 2 , . . . , G k } ,
o that nodes within the same cluster are generally: (1) close to 

ach other in terms of graph structure while distant otherwise; 

nd (2) more likely to have similar attribute values. The trade- 

ff between these two trends is depending on real-world scenarios 

nd people’s perceptions. There is no general conclusion. 

.1. Overall framework 

In this paper, we construct a graph-based neighbor-aware net- 

ork to solve this problem. Our framework is shown in Fig 2 and 

onsists of two parts: a graph autoencoder and a self-training clus- 

ering module. 

• Graph Autoencoder: Our neighbor-aware autoencoder takes the 

attribute values and graph structure as input, and learns the la- 

tent representation by minimizing the reconstruction loss. 
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Fig. 3. Parameters study on clustering coefficient γ . The X-axis is the choice of γ and the Y-axis shows the ACC or NMI performance. 

Fig. 4. Parameters study on embedding size. 
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• Self-training Clustering: The module performs clustering based 

on the learned representation, optimizes the clustering scheme 

and in return, manipulates the latent representation according 

to the current clustering result. Since the optimization relies on 

no label supervision and is totally based-on the current repre- 

sentation, we call it the ”self-training clustering” module. 

We jointly learn the graph embedding and perform clustering 

n an end-to-end manner, so that each component benefits the 

ther. 

. Details of proposed method 

In this section, we present our proposed Deep Neighbor-aware 

mbedded Node Clustering ( DNENC ). We will first develop a graph 

utoencoder which effectively integrates both structure and con- 

ent information to learn a latent representation. Based on the rep- 

esentation, a self-training module is proposed to guide the clus- 

ering algorithm towards better performance. 
4 
.1. Graph autoencoder 

The graph autoencoder aims to learn a low-dimension embed- 

ing of the graph G based on both the node content and the graph 

tructure. The basic idea is to progressively aggregate neighbor in- 

ormation (sum up their attribute values) to learn a more informa- 

ive representation in a deep neural network architecture. To this 

nd, we develop two variants, namely graph attentional encoder 

nd graph convolutional encoder. They differ as they employ an 

ttentional mechanism or a convolutional style respectively in their 

ncoding strategies. 

.1.1. Graph attentional encoder 

To represent both graph structure A and node content X in a 

nified framework, we develop a variant of the graph attention 

etwork [23] as a graph encoder for DNENC-Att. The idea is to 

earn hidden representations of each node by integrating its neigh- 

or node attributes, to combine the attribute values with the graph 

tructure in the latent representation. The most straightforward 

trategy to integrate the neighbors of a node is to combine its 
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Fig. 5. Parameters study on number of layers. 
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epresentation equally with all its neighbors. However, in order to 

easure the importance of various neighbors, different weights are 

iven to the neighbor representations in our layer-wise graph at- 

ention strategy: 

 

(l+1) 
i 

= σ ( 
∑ 

j∈ N i 
αi j W 

(l) z (l) 
j 

) . (1) 

Here for layer l, z (l+1) 
i 

denotes the output representation of 

ode i , and N i denotes the neighbors of i . αi j is the attention coef-

cient that indicates the importance of neighbor node j to node i , 

 

l ∈ R 

m 2 ×m 1 is the parameter matrix for our autoencoder to learn, 

ith m 1 and m 2 being the input and output dimension of the layer 

espectively, and σ is a nonlinerity function. To calculate the atten- 

ion coefficient αi j , we measure the importance of neighbor node 

j from both the aspects of the attribute value and the topological 

istance. 

From the perspective of attribute values, the attention coeffi- 

ient αi j can be represented as a single-layer feedforward neural 

etwork on the concatenation of x i and x j (represented by || ) with 

eight vector a ∈ R 

2 m 2 : 

 i j = a T [ W x i || W x j ] . (2) 

Topologically, neighbor nodes contribute to the representation 

f a target node. GAT considers only the 1-hop neighboring nodes 

first-order) for graph attention [23] . As graphs have complex 

tructure relationships, we propose to exploit high-order neighbors 

n our encoder. We obtain a proximity matrix by considering t- 

rder neighbor nodes in the graph: 

 = (B + B 

2 + · · · + B 

t ) /t, (3) 

ere B ∈ R 

n ×n is the transition matrix where B i j = 1 /d i if e i j ∈ E

nd B i j = 0 otherwise. d i is the degree of node i . B i j can be re-

arded as the possibility a single-step random walk from node i 

oes to node j. (B 2 ) i j represents the possibility the random walk 

rom node i goes to j in 2 steps. (B 3 ) i j for 3 steps and so on. There-

ore M ∈ R 

n ×n is a possibility matrix whose entry M i j denotes the 
5 
opological relevance of node j to node i up to t orders (perform- 

ng a random walk from node i , then node j has approximate the 

ossibility of M i j to be reached within t steps). 

The attention coefficients are usually normalized across all 

eighborhoods j ∈ N i with a softmax function to make them easily 

omparable across nodes: 

i j (original) = softmax j (c i j ) = 

exp (c i j ) ∑ 

r∈ N i exp (c ir ) 
. (4) 

Adding the topological weights M and an activation function δ
here LeakyReLU is used), the coefficients can be expressed as: 

i j = 

exp (δ(M i j (a T [ W x i || W x j ]))) ∑ 

r∈ N i exp (δ(M ir (a T [ W x i || W x r ]))) 
. (5) 

We have z (0) 
i 

= x i as the input for our problem, and stack two 

raph attention layers: 

 

(1) 
i 

= σ ( 
∑ 

j∈ N i 
αi j W 

(0) x j ) , (6) 

 

(2) 
i 

= σ ( 
∑ 

j∈ N i 
αi j W 

(1) z (1) 
j 

) , (7) 

n this way, our encoder encodes both the graph structure and the 

ode attributes into a hidden representation, i.e., we will have z i = 

 

(2) 
i 

. 

.1.2. Graph convolutional encoder 

On the other hand for DNENC-Con, the encoder is defined as a 

ariant of convolutional network from graph data. It extends the 

peration of convolution to graph data in a spectral domain and 

as formerly used in semi-supervised classification tasks [20] . Our 

raph convolutional encoder aims to learn a layer-wise transfor- 

ation combining both the adjacency matrix A representing the 

raph structure and the feature matrix X by a spectral convolution 

unction f (z (l) 
i 

, A ) : 

 

(l+1) 
i 

= f (z (l) 
i 

, A ) . (8) 
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Fig. 6. 2D visualization of various methods using the t-SNE algorithm on the Cora and Citeseer dataset. 
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ere, z l 
i 
∈ R 

m ( m features) is the input for convolution and z (l+1) 
i 

s the convolution output. We view the convolution part from the 

raph level, therefore define Z l ∈ R 

n ×m and Z l = 

∏ n 
i =1 z 

l 
i 

for later 

se. 

We first consider each feature of the graph s ∈ R 

n as a signal,

he convolution function can be defined as the multiplication of 

he signal with a filter such as: 

 θ � s = U g θU 

T s, (9) 

here g θ is a filter parameterized by θ ∈ R n , U is the eigenvec- 

ors of the normalized graph Laplacian L = U �U 

T = I N − D 

− 1 
2 AD 

− 1 
2 ,

ith D ii = 

∑ 

j A i j , and I N the identity matrix, � represents a diag- 

nal matrix where the diagonal elements are the eigenvalues of L . 

e can consider g θ to be a function of the eigenvalues g θ (�) , and

 

T s be the graph Fourier transform of s . 

Computing the eigen-decomposition of L could be expensive for 

arge graphs. Hence, Hammond et al. suggested g(�) to be approx- 
6 
mated in terms of Chebyshev polynomials [42] : 

 θ (�) ≈
Y ∑ 

y =0 

θy T y ( ̃  �) , (10) 

here ˜ � = 

2 
λmax 

� − I N . λmax is the largest eigenvalue of L . θ is 

he Chebyshev coefficients, T 0 (a ) = 1 and T 1 (a ) = a . By further con-

traint Y = 1 and approximate λmax ≈ 2 , a linear function on the 

raph Laplacian spectrum is obtained: 

 θ � s ≈ θ (I N + D 

− 1 
2 AD 

− 1 
2 ) s, (11) 

here θ is the shared filter over the whole graph and I N + 

 

− 1 
2 AD 

− 1 
2 could be approximated by ̃  D 

− 1 
2 ̃  A ̃

 D 

− 1 
2 with ̃

 A = A + I N and 

 

 ii = 

∑ 

j ̃
 A i j . 

To extend this function to the graph level, or in other words 

or multiple features Z l ∈ R 

n ×m , the convolution function could be 

djusted as: 

 = g W 

� Z (l) = ̃

 D 

− 1 
2 ̃  A ̃

 D 

− 1 
2 Z (l) W, (12) 
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Fig. 7. 2D visualization of the DNENC-Att algorithm using the t-SNE algorithm on the Cora and Citeseer dataset during training (the top line for the Cora dataset, and 

the bottom line for the Citeseer dataset). The first visualization of each line illustrates the embedding training with the graph autoencoder only, followed by visualizations 

showing subsequent equal epochs in which the self-training component is included, till the last one being the final embedding visualization. 
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here H ∈ R 

n ×m is the convolved signal matrix, and W is a matrix

f filter parameters replacing θ . Then the layer-wise propagation of 

he GCN is: 

f (Z (l) , A ) = σ ( ̃  D 

− 1 
2 ̃  A ̃

 D 

− 1 
2 Z (l) W 

(l) ) , (13) 

ith σ being an activation function such as Relu (t) = max (0 , t) or 

igmoid (t) = 

1 
1+ e −t . This convolution propagation function can be 

omputed efficiently in O(| E| m 

2 ) . 

We adopt this convolution propagation function and construct 

 two-layer encoder for our autoencoder: 

 

(1) = f Relu (X, A | W 

(0) ) ; (14) 

 

(2) = f linears (Z (1) , A | W 

(1) ) . (15) 

Our encoder encodes both node content and graph structure 

nto a unified hidden representation Z = Z (2) . 

.1.3. Inner product decoder 

There are various kinds of decoders, which reconstruct either 

he graph structure, the attribute value, or both. In our method, 

e choose to reconstruct the graph structure, as our algorithm will 

e more flexible and will thus fit situations in which no content 

nformation is available. The decoder reconstruction aims to opti- 

ize the encoded embedding, which already consists of informa- 

ion from both sides. Therefore, the choice of reconstructing the 
7 
raph structure will not result in information loss of the node at- 

ributes. We use a simple inner product decoder which predicts 

hether there is a link between two nodes. The reconstructed link 

rediction layer is trained based on the hidden graph representa- 

ion: 

ˆ 
 i j = sigmoid ( z i 

� z j ) , (16) 

here ˆ A is the reconstructed structure matrix of the graph. 

.1.4. Reconstruction loss 

We minimize the reconstruction error by measuring the differ- 

nce between A and 

ˆ A : 

 r = 

n ∑ 

i =1 

loss (A i j , ˆ A i j ) . (17) 

n our paper, the binary cross-entropy loss function is used as the 

econstruction loss. By optimizing the autoencoder reconstruction, 

e can learn the encoder parameter W 

(0) and W 

(1) , and thereupon 

he optimized latent embedding Z. 

.2. Self-optimizing embedding 

One of the main challenges for node clustering methods is the 

onexistence of label guidance. The node clustering task is nat- 

rally unsupervised and feedback during training as to whether 
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he learned embedding is well optimized cannot, therefore, be ob- 

ained. To confront this challenge, we develop a self-training clus- 

ering algorithm as a solution, which can gradually optimize the 

mbedding for better clustering adaptation, totally by itself with- 

ut any further information provided for supervision. 

Apart from optimizing the reconstruction error, we input our 

idden embedding into a self-optimizing clustering module which 

ptimizes a KL (Kullback-Leibler) divergence [25] based clustering 

oss L c to help improve the embedding: 

 c = KL (P || Q ) = 

∑ 

i 

∑ 

u 

p iu log 
p iu 
q iu 

, (18) 

here q iu measures the similarity between node embedding z i and 

luster center embedding μu . We measure it with a Student’s t- 

istribution so that it could handle different scaled clusters and is 

omputationally convenient [43] : 

 iu = 

(1 + || z i − μu || 2 ) −1 ∑ 

k (1 + || z i − μk || 2 ) −1 
, (19) 

t can be seen as a soft clustering assignment distribution of each 

ode with the current embedding. On the other hand, p iu is the 

arget distribution defined as: 

p iu = 

q 2 
iu 
/ 
∑ 

i q iu ∑ 

k (q 2 
ik 
/ 
∑ 

i q ik ) 
. (20) 

oft assignments with high probability (nodes close to the cluster 

enter) are considered to be trustworthy in Q . So the target dis- 

ribution P raises Q to the second power to emphasize the role of 

hose “confident assignments”. The minimizing of the KL distance 

hen force the current distribution Q to approach the target distri- 

ution P , so as to set these “confident assignments” as soft labels 

o supervise Q ’s embedding learning. 

To this end, we first train the autoencoder without the self- 

ptimize clustering part to obtain a meaningful embedding z as 

escribed in Eqs. (7) and (15) . Self-optimizing clustering is then 

erformed to improve this embedding. To obtain the soft cluster- 

ng assignment distributions of all the nodes Q through Eq. (19) , 

he k -means clustering is performed just once on the embedding z

efore training with the self-optimize clustering part, to obtain the 

nitial cluster centers μ. 

It is worth mentioning that in the following iterative training, 

he k -means clustering is never used again, and the cluster centers 

are updated using Stochastic Gradient Descent (SGD) based on 

he gradients of the clustering loss L c with respect to μ: 

u = μu − ϕ 

∂L c 

∂μu 
, (21) 

here ϕ is the step size. Similarly, ∂ L c /∂ z i is also computed and

assed down to update the parameter matrix W in the encoder 

ogether with the gradient from the reconstruction loss of the au- 

oencoder, so as to benefit the embedding learning. 

We calculate the target distribution P according to Eq. (20) , and 

he clustering loss L c according to Eq. (18) . 

The target distribution P works as “ground-truth labels” in the 

raining procedure, but also depends on the current soft assign- 

ent Q which updates at every iteration. It would be hazardous to 

pdate P at every iteration with Q as the constant change of tar- 

et would obstruct learning and convergence. To avoid instability 

n the self-optimizing process and offer Q time to learn from P , we 

pdate P every T iterations. As the detailed choice of T will not 

bservably affect clustering performance according to our experi- 

ents (unless too extreme), we simply set it to 5 in our experi- 

ents. 

In summary, we minimize the clustering loss to help the au- 

oencoder manipulate the embedding space using the embedding’s 

wn characteristics and scatter embedding points to obtain better 

lustering performance. 
8 
.3. Joint embedding and clustering optimization 

We jointly optimize the autoencoder embedding and clustering 

earning, and define our total objective function as: 

 = L r + γ L c , (22) 

here L r and L c are the reconstruction loss and clustering loss re- 

pectively, γ ≥ 0 is a coefficient that controls the balance in be- 

ween. It can be optimized by directly back-propagate the gradient 

rom both L r and L c to update W , or utilize the unrolled optimiza-

ion strategy [44–46] . It is worth mentioning that we could gain 

ur clustering result directly from the last optimized Q , and the 

abel estimated for node v i could be obtained as: 

 i = arg max 
u 

q iu , (23) 

hich is the most likely assignment from the last soft assignment 

istribution Q . 

Our method is summarized in Algorithm 1 . Our algorithm has 

lgorithm 1 Unsupervised Deep Neighbor-aware Embedded 

raph Clustering. 

equire: ~~

Graph G with n nodes, each node with m -dimension attribute 

value;Number of clusters k ;Number of iterations Iter;Target dis- 

tribution update interval T ;Clustering Coefficient γ . 

nsure: ~~

Final clustering results. 

Update the autoencoder by minimizing Eq. (17) to get the au- 

toencoder hidden embedding Z; 

Compute the initial cluster centers μ based on Z; 

for l = 0 to Iter − 1 do 

Calculate soft assignment distribution Q with Z and μ accord- 

ing to Eq. (19); 

if l% T == 0 then 

Calculate target distribution P with Q by Eq. (20); 

end if 

Calculate reconstruction loss L r according to Eq. (17) 

Calculate clustering loss L c according to Eq. (18); 

Update the embedding Z by minimizing Eq. (22); 

end for 

Get the clustering results with final Q by Eq. (23) 

he following advantages: 

• Interplay Exploitation. The graph neural network-based au- 

toencoder efficiently exploits the interplay between both the 

graph structure and the node content information. 
• Clustering Specialized Embedding. The proposed self-training 

clustering component manipulates the attributed graph embed- 

ding to improve the clustering performance. 
• End-to-end Learning. The framework jointly optimizes the two 

parts of the loss functions, learns the embedding and performs 

clustering in an end-to-end manner. 

. Experimental data and methods 

.1. Benchmark datasets 

We use three benchmark datasets in our experiments, which 

re widely used in assessment of attributed graph-based algo- 

ithms [20,23] , summarized in Table 1 . All these datasets consist 

f scientific publications as nodes, citation relationships as edges 

nd unique words in the documents as features. Publications in 

hese datasets are labeled as they could be assigned to different 
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Table 1 

Benchmark Graph Datasets. 

Dataset Nodes Features Clusters Links Content Words 

Cora 2708 1433 7 5429 3,880,564 

Citeseer 3327 3703 6 4732 12,274,336 

Pubmed 19,717 500 3 44,338 9,858,500 
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ub-fields. The numbers of clusters of these datasets k are known 

nd required by all the baselines. 

.2. Baseline methods 

We compared a total of 13 algorithms with our method in our 

xperiments. The node clustering algorithms include approaches 

hat use only node attributes or network structure information, 

nd also approaches that combine both. Deep representation 

earning-based node clustering algorithms were also compared. 

hese algorithms are summarized in Table 2 . 

.2.1. Methods using structure or content only 
• K-means is the base of many clustering methods. Many ad- 

vanced clustering algorithms involve some kind of transforma- 

tion of k-means clustering or use k-means on their embeddings. 

Here we run k-means on our original content data as a bench- 

mark. 
• Spectral clustering uses the eigenvalues of the similarity ma- 

trix to perform dimensionality reduction before clustering and 

is widely used in node clustering. 
• DeepWalk [47] is a structure-only representation learning 

method. It obtains random walks on graphs and then trains the 

representation through neural networks. 
• GraphEncoder [14] employs deep learning into node clustering 

by training a stacked sparse autoencoder and gets representa- 

tion for later clustering. 
• DNGR [13] is recent work which uses stacked denoising autoen- 

coders and encodes each vertex into a low dimensional vector 

representation. 
• M-NMF [48] is a Nonnegative Matrix Factorization model tar- 

geted at community-preserved embedding. 

.2.2. Methods using both structure and content 
• RTM [37] is a relational topic model capturing both structure 

and content information to learn the topic distributions of doc- 

uments. 
• RMSC [49] , the robust multi-view spectral clustering method 

via low-rank and sparsity decomposition, recovering a shared 

low-rank transition probability matrix for clustering with a 

transition probability matrix from each view. We regard struc- 

ture and content data as two views of information. 
• TADW [50] , text-associated DeepWalk. It re-interprets Deep- 

Walk as a matrix factorization method and adds the features 

of vertices into representation learning. 
• GAE & VGAE [15] are representation learning algorithms. They 

combine the graph convolutional network with the (variational) 

autoencoder. 
• ARGA & ARVGA [41] are graph convolutional autoencoder-based 

methods that manipulate GAE & VGAE learned embedding with 

an adversarial regularizer. 
• AGC [51] is an adaptive graph convolution method that exploits 

high-order graph convolution and captures global cluster struc- 

ture. 
• DNENC-Con is our proposed unsupervised deep neighbor-aware 

embedded node clustering with graph convolutional autoen- 

coder. 
9 
• DNENC-Att is our proposed unsupervised deep neighbor-aware 

embedded node clustering with graph attentional autoencoder. 

For representation learning algorithms such as DeepWalk, 

ADW and DNGR which do not specify the clustering algorithm, 

e first learned the representation from these algorithms, and 

hen applied the k -means algorithm on their respective representa- 

ions, but for algorithms like RMSC which require spectral cluster- 

ng or an alternative algorithm, we followed their preference and 

sed the specified algorithms. The best results we got are reported 

n this paper. 

.3. Evaluation metrics & parameter settings 

Evaluation Metrics: We use seven metrics to evaluate the clus- 

ering result namely Accuracy (ACC), Normalized Mutual Informa- 

ion (NMI), F-score (F), Precision (P), Recall (R), Average Entropy 

AE) and Adjusted Rand Index (ARI). These values can be calcu- 

ated based upon the algorithm obtained clustering scheme and 

he ground-truth clustering scheme (provided in the datasets). A 

ood clustering scheme should be consistent with the ground-truth 

cheme, which will lead to a lower value of average entropy and 

igher values for all the other metrics. These evaluation matri- 

es differ as they measure consistency differently [49] . A baseline 

erforming novel clustering should stay ahead on most evaluation 

etrics. 

• ACC is the average performance of label matching clustering re- 

sults and can be represented as 
∑ 

i (y i == f (l i )) /n , where f is

the mapping function which maps category labels to cluster la- 

bels. 
• NMI measures the mutual information entropy between the re- 

sulting cluster labels and ground truth labels followed by a nor- 

malization operation. 
• F-score is the harmonic mean value of P recision and Recal l ; 
• Precision is the fraction of correctly clustered nodes among the 

retrieved nodes; 
• Recall is the fraction of correctly clustered nodes that have 

been retrieved over the total number of relevant nodes; 
• Average Entropy = 

∑ k 
i =1 

m i 
m 

e i , where k is the cluster number 

and m is the number of nodes, and e i = −∑ k 
j=1 

m i j 

m i 
log 2 

m i j 

m i 
, with 

m i representing the number of nodes in cluster i and m i j rep- 

resenting the number of nodes in cluster i and labeled j. 
• ARI is the adjusted rand index ( RI) that guarantees a value close 

to 0, where RI measures the percentage of correct clustering 

decisions. While RI yield a value between 0 and 1, ARI could be 

negative. 

Parameter Settings: For the baseline algorithms, we carefully 

elect the parameters for each algorithm, following the procedures 

n the original papers, to achieve their best performance on the 

atasets. In TADW, for instance, we set the dimension of the factor- 

zed matrix to 80, the dimension of the text feature to 200 and the 

egularization parameter to 0.2; For the DNGR algorithm, we build 

 three-layers denoising autoencoder with the number of nodes set 

s 512 and 256 in the hidden layers; For the RMSC algorithm, we 

egard graph structure and node content as two different views of 

he data and construct a Gaussian kernel on them. We run the k - 

eans algorithm 50 times for all embedding learning methods for 

air comparison. 

For our method, we set the clustering coefficient γ to 10 for 

NENC-Att and 1 for DNENC-con. For the variant DNENC-Att with 

ttentional encoder, we consider second-order neighbors and set 

 = (B + B 2 ) / 2 . The encoder is constructed with a 256-neuron

idden layer and a 16-neuron embedding layer for all datasets. 

or DNENC-Con with convolutional encoder, a 32-neuron hidden 

ayer and a 16-neuron embedding layer is used instead. All these 
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Table 2 

Algorithm Comparison. 

Content Structure Self-training GCN encoder GAT encoder Recover A 

K-means � 

Spectral � 

GraphEncoder � � 

DeepWalk � � 

DNGR � � 

M-NMF � 

RTM � � 

RMSC � � 

TADW � � 

GAE&VGAE � � � � 

ARGA&ARVGA � � � � 

AGC � � 

DNENC-Att � � � � � 

DNENC-Con � � � � � 

Table 3 

Experimental Results on Cora Dataset. 

Variable ACC( ↑ ) NMI( ↑ ) F( ↑ ) P( ↑ ) R( ↑ ) AE( ↓ ) ARI( ↑ ) 
K-means X 0.500 0.317 0.376 0.376 0.376 1.810 0.239 

Spectral A 0.398 0.297 0.332 0.312 0.355 1.871 0.174 

GraphEncoder A 0.301 0.059 0.230 0.214 0.253 2.496 0.046 

DeepWalk A 0.529 0.384 0.435 0.392 0.504 1.681 0.291 

DNGR A 0.419 0.318 0.340 0.266 0.480 1.882 0.142 

M-NMF A 0.423 0.256 0.320 0.304 0.342 1.977 0.162 

RTM X&A 0.440 0.230 0.307 0.332 0.285 2.021 0.169 

RMSC X&A 0.466 0.320 0.347 0.345 0.352 1.808 0.203 

TADW X&A 0.536 0.366 0.401 0.342 0.492 1.749 0.240 

GAE X&A 0.530 0.397 0.415 0.431 0.401 1.583 0.293 

VGAE X&A 0.592 0.408 0.456 0.489 0.429 1.545 0.347 

ARGA X&A 0.669 0.489 0.666 0.680 0.686 1.322 0.422 

ARVGA X&A 0.581 0.426 0.560 0.562 0.588 1.492 0.329 

AGC X&A 0.689 0.522 0.656 0.672 0.675 1.273 0.448 

DNENC-Att X&A 0.704 0.528 0.682 0.704 0.706 1.229 0.496 

DNENC-Con X&A 0.683 0.512 0.659 0.665 0.689 1.269 0.477 
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hoices are carefully decided according to our sensitivity analysis 

see Section 6.2 ) and with reference to the previous related works 

15] . 

. Experiment results 

We compare our DNENC with baselines mentioned above on 

ode clustering first. Then we perform detailed analysis on coef- 

cients in the model. 

.1. Clustering performance comparison 

The experiment results on the three benchmark datasets are 

ummarized in Tables 3 , 4 and 5 . X, A, and X&A indicate if the

lgorithm is performed upon only the node content X, the graph 

tructure A, or both content and structure information, respectively 

other values like the clustering coefficient γ are hyper-parameters 

f the model). We can see that our methods can outperforms most 

f the baselines across most of the evaluation metrics when ap- 

lied to these three benchmark datasets. AGC is able to outper- 

orm our method on the Pubmed dataset, may because Pubmed is 

 large and simple dataset which adverse to our deep architecture. 

One Side v.s Both Side of Information: We can easily observe 

rom these results that methods using both the structure and con- 

ent information of the graph generally perform better than those 

sing only one side of information. In the Cora dataset, for exam- 

le, TADW, GAE, VGAE, AGC and our method outperform all the 

aselines using one side of information. This observation demon- 

trates that both the graph structure and node content contain 

seful information for node clustering, and illustrates the signifi- 

ance of capturing the interplay between two-sides information. 
10 
Deep Learning Models: The results of most of the deep learn- 

ng models are satisfactory. The GraphEncoder and DNGR algo- 

ithm are not necessarily an improvement over the other algo- 

ithms, although they both employ deep autoencoder for represen- 

ation learning. This observation may result from their neglect at 

he node content information. 

Effectiveness of DNENC: It is worth mentioning that our al- 

orithms, both DNENC-Con and DNENC-Att, can outperform GAE 

nd VGAE on the three datasets. On the Cora dataset for example, 

ur method DNENC-Att represents a relative increase of 18.97% and 

9.49% w.r.t. accuracy and NMI against VGAE, and the increase is 

ven greater on the Citeseer dataset. The reasons for this are that 

1) we employ a graph convolutional/attentional network that ef- 

ectively integrates both content and structure information of the 

raph; (2) we use a deep architecture to learn the representation, 

hich captures more underlying information; (3) Our self-training 

lustering component is specialized and powerful in improving the 

lustering efficiency. 

DNENC-Att v.s. DNENC-Con: The results show that DNENC-Att 

utperforms DNENC-Con on Cora dataset, while DNENC-Con out- 

erforms DNENC-Att on Citeseer and Pubmed datasets. Their per- 

ormance is very close. This is because both of them are clustering- 

irected approaches manipulated by the self-training clustering 

omponent. The embedding will be optimized by the clustering 

bjective, and finally achieve very similar results for the clustering 

ask. 

.2. Sensitivity analysis 

We also investigate the sensitivity of the parameters for our al- 

orithm. 



C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230 

Table 4 

Experimental Results on Citeseer Dataset. 

Variable ACC( ↑ ) NMI( ↑ ) F( ↑ ) P( ↑ ) R( ↑ ) AE( ↓ ) ARI( ↑ ) 
K-means X 0.544 0.312 0.413 0.411 0.416 1.738 0.285 

Spectral A 0.308 0.090 0.257 0.241 0.276 2.300 0.082 

GraphEncoder A 0.293 0.057 0.213 0.215 0.211 2.380 0.043 

DeepWalk A 0.390 0.131 0.305 0.282 0.336 2.201 0.137 

DNGR A 0.326 0.180 0.300 0.200 0.609 2.168 0.043 

M-NMF A 0.336 0.099 0.255 0.228 0.291 2.288 0.070 

RTM X&A 0.451 0.239 0.342 0.349 0.335 1.915 0.203 

RMSC X&A 0.516 0.308 0.404 0.383 0.430 1.767 0.266 

TADW X&A 0.529 0.320 0.436 0.376 0.532 1.781 0.286 

GAE X&A 0.380 0.174 0.297 0.291 0.304 2.093 0.141 

VGAE X&A 0.392 0.163 0.278 0.251 0.315 2.131 0.101 

ARGA X&A 0.559 0.289 0.544 0.578 0.539 1.795 0.257 

ARVGA X&A 0.598 0.323 0.570 0.583 0.566 1.703 0.322 

AGC X&A 0.672 0.414 0.627 0.635 0.631 1.500 0.420 

DNENC-Att X&A 0.672 0.397 0.636 0.639 0.640 1.521 0.410 

DNENC-Con X&A 0.692 0.426 0.639 0.640 0.644 1.456 0.449 

Table 5 

Experimental Results on Pubmed Dataset. 

Variable ACC( ↑ ) NMI( ↑ ) F( ↑ ) P( ↑ ) R( ↑ ) AE( ↓ ) ARI( ↑ ) 
K-means X 0.580 0.278 0.544 0.488 0.621 1.133 0.246 

Spectral A 0.496 0.147 0.471 0.407 0.561 1.323 0.098 

GraphEncoder A 0.531 0.210 0.506 0.456 0.569 1.231 0.184 

DeepWalk A 0.663 0.256 0.539 0.532 0.555 1.142 0.272 

DNGR A 0.468 0.153 0.445 0.387 0.523 1.314 0.059 

M-NMF A 0.470 0.084 0.443 0.391 0.529 1.411 0.058 

RTM X&A 0.575 0.194 0.444 0.456 0.433 1.230 0.149 

RMSC X&A 0.629 0.273 0.521 0.511 0.532 1.116 0.247 

TADW X&A 0.565 0.224 0.481 0.465 0.500 1.196 0.177 

GAE X&A 0.632 0.249 0.511 0.518 0.505 1.146 0.246 

VGAE X&A 0.619 0.216 0.478 0.492 0.464 1.194 0.201 

ARGA X&A 0.632 0.235 0.636 0.636 0.669 1.167 0.221 

ARVGA X&A 0.390 0.004 0.311 0.335 0.342 1.525 0.002 

AGC X&A 0.679 0.306 0.688 0.733 0.695 1.082 0.311 

DNENC-Att X&A 0.671 0.266 0.659 0.677 0.687 1.122 0.278 

DNENC-Con X&A 0.677 0.275 0.675 0.675 0.699 1.105 0.278 
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Clustering Coefficient γ : We vary the clustering coefficient γ
o study the effect of the self-training clustering component. The 

esults are shown in Fig 3 . 

We could find that experiment on the Cora and Citeseer 

atasets show similar trends. For DNENC-Con, we observe the best 

erformance with γ around 1. Before γ is increased to that peak, 

he clustering performance measured by ACC and NMI steadily 

ise; As we keep adding γ up after that, the performance plum- 

eted as a whole. However, for DNENC-Att, the result keeps good 

s γ rises. 

It shows that our self-training clustering component does work 

nd improve the clustering result. However, a too large value of 

, which means excessively emphasis on the clustering loss, may 

istort the latent feature space since its trained on estimated 

argets and could lead to abnormal clustering result. DNENC-Att 

voids such plummeting may because the embedding learned with 

eighted neighbor features are more robust and effective, leading 

o more accurate initial targets, and make the self-training more 

table. 

Embedding Size: We also vary the dimension of embedding 

rom 8 neurons to 1024 and report the clustering results on the 

ora dataset in Fig 4 . 

The results show that when adding the dimension of embed- 

ing from 4-neuron to 16-neuron, the performance on clustering 

teadily rises; if we further increase the dimension, the perfor- 

ance of DNENC-Con fluctuates but still have an overall tendency 

f rising, the performance of DNENC-Att is not necessarily a fur- 

her improvement since the 8-neuron or 16-neuron embedding is 
11 
lready sufficient with its more efficient attention strategy as ar- 

ued above. It is worth mention that we set the embedding size to 

6 to obtain a stable and efficient model, but it could get markedly 

etter performance when the embedding size is continuously en- 

arged, to for example, 128-neuron, 256-neuron or 1024-neuron. 

Number of Layers: To show the effectiveness of deep archi- 

ecture, we stack different numbers of layers to observe the al- 

eration of the performance on DNENC-Con. For the autoencoder 

ith only one hidden layer, we encoder the input feature directly 

nto 16-neuron embedding; for the one with two layers, we add 

 32-neuron layer in between and construct a d-32-16 encoder 

ike the one we adopted, where d is the input layer dimension; 

or more layers, we construct d -64-32-16, d -128-64-32-16, etc. en- 

oders with each newly added hidden layer doubling the dimen- 

ion of its embedding. The performance of all these models on the 

ora and Citeseer dataset are reported in Fig 5 . 

We could observe that, when we stack 2 encoder layers to the 

odel, the performance significantly improve compared with the 

odel with only 1 hidden layer. The performance of the model 

ith 3 stacked hidden layers is also satisfactory. These observa- 

ions demonstrate that using a stacked architecture instead of a 

ingle-layer one can improve the model performance. However, as 

e continuously add more layers to the model, the performance 

educes sharply in terms of all the observations. This is because 

tacking too many layers will increase the complexity of the archi- 

ecture, raise the possibility of information loss and enhance the 

ifficulty to the training process. 
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.3. Network visualization 

We visualize the Cora and Citeseer datasets in two-dimensional 

pace by applying the t-SNE algorithm [52] on the learned em- 

edding. T-SNE is a commonly used algorithm to map high- 

imensional data into 2D space for visualization. The results in 

ig 6 show that we obtain outstanding embedding as well as 

learer clustering results, compared with the baseline methods, 

enefit from our self-clustering components which contribute to 

oth clustering and embedding learning. 

We also visualize the variation of the embedding on the Cora 

nd Citeseer datasets during training as shown in Fig 7 . We can 

bserve that, after training with our graph attentional autoencoder, 

he embedding is already meaningful. However by applying self- 

raining clustering, the embedding becomes more evident as our 

raining progresses, with less overlapping and each group of nodes 

radually gathered together. 

. Conclusion 

In this paper, we propose an unsupervised deep neighbor-aware 

mbedding algorithm, DNENC, to jointly perform node clustering 

nd learn graph embedding in an end-to-end manner. Two vari- 

nts with different autoencoder used, DNENC-Con and DNENC-Att 

re introduced. In our method, the learned graph embedding inte- 

rates both graph structure and node content information and is 

pecialized for clustering tasks. While the node clustering task is 

aturally unsupervised, we propose a self-training clustering com- 

onent that generates soft labels from “confident” assignments of 

he current embedding, to supervise the embedding updating. The 

lustering loss and autoencoder reconstruction loss are jointly op- 

imized to simultaneously obtain both graph embedding and node 

lustering result. A comparison of the experimental results with 

arious state-of-the-art algorithms validates DNENC’s node cluster- 

ng performance on the benchmark datasets. We may explore node 

lustering methods that can better fit different datasets from richer 

eal-world scenarios, especially large-scaled ones for future work. 
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