
Pattern Recognition 122 (2022) 108230

Contents lists available at ScienceDirect

Pattern Recognition

journal homepage: www.elsevier.com/locate/patcog

Deep neighbor-aware emb e dding for node clustering in attributed

graphs

Chun Wang

a , Shirui Pan

b , ∗, Celina P. Yu

c , Ruiqi Hu

a , Guodong Long

a , Chengqi Zhang

a

a Australian Artificial Intelligence Institute, University of Technology Sydney, NSW 2007, Australia
b Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC 3800, Australia
c The Global Business College of Australia, Melbourne, Australia

a r t i c l e i n f o

Article history:

Received 5 March 2019

Revised 18 July 2021

Accepted 6 August 2021

Available online 15 August 2021

Keywords:

Attributed graph

Node clustering

Graph attention network

Graph convolutional network

Network representation

a b s t r a c t

Node clustering aims to partition the vertices in a graph into multiple groups or communities. Exist-

ing studies have mostly focused on developing deep learning approaches to learn a latent representation

of nodes, based on which simple clustering methods like k -means are applied. These two-step frame-

works for node clustering are difficult to manipulate and usually lead to suboptimal performance, mainly

because the graph embedding is not goal-directed, i.e., designed for the specific clustering task. In this

paper, we propose a clustering-directed deep learning approach, Deep Neighbor-aware Embedded Node

Clustering (DNENC for short) for clustering graph data. Our method focuses on attributed graphs to suf-

ficiently explore the two sides of information in graphs. It encodes the topological structure and node

content in a graph into a compact representation via a neighbor-aware graph autoencoder, which progres-

sively absorbs information from neighbors via a convolutional or attentional encoder. Multiple neighbor-

aware encoders are stacked to build a deep architecture followed by an inner-product decoder for re-

constructing the graph structure. Furthermore, soft labels are generated to supervise a self-training pro-

cess, which iteratively refines the node clustering results. The self-training process is jointly learned and

optimized with the graph embedding in a unified framework, to benefit both components mutually. Ex-

perimental results compared with state-of-the-art algorithms demonstrate the good performance of our

framework.

© 2021 Elsevier Ltd. All rights reserved.

1

a

r

m

u

t

r

n

a

g

r

m

m

s

d

a

T

m

n

t

t

d

b

B

r

A

h

0

. Introduction

The development of networked applications has resulted in

n overwhelming number of scenarios in which data is naturally

epresented in graph format rather than flat-table or vector for-

at. Attributed graph-based representation characterizes individ-

al properties through node attributes, and at the same time cap-

ures the pairwise relationship through the graph structure. Many

eal-world tasks, such as the analysis of citation networks, social

etworks, protein-protein interaction and knowledge graphs [1] ,

ll rely on graph-data analytics skills. However, the complexity of

raph structure has imposed significant challenges on these graph-

elated learning tasks, including clustering, which is one of the

ost popular topics.
∗ Corresponding author at: Department of Data Science and AI, Faculty of Infor-

ation Technology, Monash University, Clayton, VIC 3800, Australia.

E-mail addresses: chun.wang.0918@gmail.com (C. Wang),

hirui.pan@monash.edu (S. Pan).

b

t

d

b

a

a

ttps://doi.org/10.1016/j.patcog.2021.108230

031-3203/© 2021 Elsevier Ltd. All rights reserved.
Node clustering aims to partition the nodes in the graph into

isjoint groups [2–4] . It’s an important and basic task in graph

nalysis and can be widely applied to real-world network mining.

ypical applications include community detection [5–7] , group seg-

entation [8] , and functional group discovery in enterprise social

etworks [9] . Further for attributed graphs, a key problem is how

o capture the structural relationship between nodes and exploit

he node content information.

To solve this problem, more recent studies have resorted to

eep learning techniques to learn compact representation or em-

edding to exploit the rich information of the graph data [10–12] .

ased on the learned graph embedding, simple clustering algo-

ithms such as k -means are applied to obtain the clustering result.

utoencoder is a mainstream solution for this kind of embedding-

ased approach [13,14] . An autoencoder consists of an encoder

hat encodes the input data into low-dimensional space, and a

ecoder that reconstructs the input data from the encoded em-

edding. Such autoencoder-based hidden representation learning

pproaches are specialized in dimension reduction, and can be

pplied to purely unsupervised environments. Many autoencoder

https://doi.org/10.1016/j.patcog.2021.108230
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108230&domain=pdf
mailto:chun.wang.0918@gmail.com
mailto:shirui.pan@monash.edu
https://doi.org/10.1016/j.patcog.2021.108230

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Fig. 1. The difference between two-step embedding learning models and our model.

b

s

l

t

s

t

V

b

e

t

s

b

b

h

a

o

k

p

(

t

t

t

t

s

m

m

a

o

n

d

t

t

t

s

F

s

u

O

S

n

S

t

2

a

a

2

m

l

a

a

p

i

c

t

a

F

r

u

v

a

g

c

g

2

i

i

ased node clustering algorithms already exist: Tian et al. con-

idered the similarity of autoencoder and spectral clustering and

earned a latent representation for clustering through sparse au-

oencoder [14] . Cao, Lu, and Xu proposed a deep graph repre-

entation model for clustering by capturing structure information

hrough random surfing [13] . The recently developed GAE and

GAE [15] based on graph convolutional network (GCN) can also

e adopted for node clustering analysis.

Nevertheless, all these embedding-based methods separate the

mbedding learning and clustering as two steps. The drawback is

hat the learned embedding may not be the best fit for the sub-

equent node clustering task, and the node clustering task is not

eneficial to the graph embedding learning. To achieve mutual

enefit for these two steps, a goal-directed training framework is

ighly desirable. However, traditional goal-directed training models

re mostly designed for the classification task. We are not aware

f any studies on goal-directed node clustering, to the best of our

nowledge.

Our Approach Motivated by the above observations, we pro-

ose a Deep Neighbor-aware Embedded Node Clustering framework

DNENC) with two variants, namely DNENC-Att (with graph atten-

ional autoencoder) and DNENC-Con (with graph convolutional au-

oencoder) in this paper. To exploit the interrelationship of various-

yped graph data, we develop a neighbor-aware graph autoencoder

o learn latent representation, which integrates both content and

tructure information. The encoder progressively aggregates infor-

ation from its neighbor via a convolutional style or an attentional

echanism, and multiple layers of encoders are stacked to build

 deep architecture for embedding learning. The decoder on the

ther side, reconstructs the topological graph information and ma-

ipulates the latent graph representation. Furthermore, a carefully

esigned self-training module, which takes the “confident ” clus-

ering assignments as soft labels, is employed to guide the op-

imizing procedure. By forcing the current clustering distribution

o approach a hypothetical better distribution, in contrast to the

eparated two-steps embedding learning-based methods (shown in

ig 1), this specialized clustering component makes it possible to

imultaneously learn the embedding and perform clustering in a

nified framework, thereby achieves better clustering performance.

ur contributions can be summarized as follows:

• We introduce a neighbor-aware framework, by developing the

first graph attention-based autoencoder, as well as a graph

convolution-based autoencoder, to effectively integrate both the

structure and content information for attributed graph repre-

sentation learning.
2
• We propose a new end-to-end deep learning framework for

node clustering. The framework jointly optimizes the embed-

ding learning and node clustering for graph data, to the mutual

benefit of both components.
• The experimental results show that our algorithm outperforms

state-of-the-art node clustering methods.

The remainder of the paper is organized as follows:

ection 2 reviews the related works. Section 3 defines the

ode clustering problem and briefly describes our framework.

ection 4 presents our solution to the problem, and Section 5 de-

ails the experimental results. We conclude the paper in Section 6 .

. Related work

Our work is closely related to deep graph neural networks, the

utoencoder-based deep clustering algorithms and node clustering

lgorithms. We briefly review some of these works in this section.

.1. Deep neural networks for graphs

Deep learning has made remarkable achievements in many do-

ains like voice recognition and image processing. Recently deep

earning has also been generalized to graph structured data [16] .

The graph convolutional network, in particular, attracts wide

ttention in the community. Bruna et al. made the first attempt

s we are aware of in [17,18] . By using the recurrent Chebyshev

olynomials, Defferrard et al. [19] further optimized the filter-

ng scheme and avoided the expensive computation of the Lapla-

ian eigenvectors. Graph convolutional networks (GCN) [20] fur-

her simplified the filtering for only 1-step neighborhood nodes

nd, convolution is thereby considered as a multiplication of the

ourier-transform of a signal in the spectral domain. Several other

ecent works perform convolution on graphs [21,22] , vary as they

se different convolutional filtering strategies.

Graph attention can be considered a special kind of graph con-

olution which place more value on the most relevant parts. Graph

ttention networks (GATs) was presented for node classification of

raph-structured data [23] . It performs self-attention on the graph,

omputing the hidden representation of each graph node by inte-

rating its neighbor attributes with different weights.

.2. Autoencoder and deep clustering algorithms

Autoencoder has been a widely used tool in the deep learn-

ng area long before adopted to the graph domain. It is special-

zed in dimension reduction in unsupervised learning tasks such

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Fig. 2. The conceptual framework of Deep Neighbor-aware Embedded Node Clustering (DNENC). Given a graph G = (V, E, X) , DNENC learns a hidden representation Z through

a graph autoencoder, which reconstructs the graph structure A with ˆ A (There’s not a ˆ X reconstructing X in our model as explained in 4.1.3) to optimize Z. The representation

Z is manipulated with a self-training clustering module, which is optimized together with the autoencoder and perform clustering during training. The two variants share

similar framework and differ as their autoencoder encode the inputs through different strategy.

a

c

h

p

t

e

t

a

s

i

p

c

l

f

t

r

c

a

d

f

o

2

g

t

i

n

p

t

p

i

f

[

a

l

p

c

o

i

i

e

w

t

s

t

l

c

r

c

s

c

c

t

s

w

a

3

A

c

e

i

t

n

s

t

s

e

a

o

a

3

w

c

t

s clustering and anomaly detection [24] . The autoencoder basi-

ally consists of an encoder mapping the input feature X to some

idden low-dimensional representation h (X) and a decoder map-

ing it back to reconstruct the input feature. The parameters of

he autoencoder can be learned by minimizing the reconstruction

rror.

Deep Embedded Clustering (DEC) is an autoencoder-based clus-

ering technique for plain data [25] . It employs a stacked denoising

utoencoder learning approach. After obtaining the hidden repre-

entation of the autoencoder with the pre-train, rather than min-

mizing the reconstruction error through a decoder, the encoder

athway is fine-tuned by a defined Kullback-Leibler divergence

lustering loss. Guo et al. considered that the defined clustering

oss could corrupt the feature space, leading to non-representative

eatures and a reduction in clustering performance. They improved

he DEC algorithm by adding back the decoder and minimizing the

econstruction error as well as the clustering loss [26] .

There have since been many algorithms based on such deep

lustering framework [27,28] . However, as far as we know, they

re only designed for data with flat-table representation. For graph

ata, complex structure and content information need to be care-

ully exploited, and end-to-end clustering for graph data is still an

pen problem in this area.

.3. Node clustering in graphs

Node clustering has been a long-standing research topic in the

raph domain. It can find communities and help with the recogni-

ion of partial structural patterns in large networks.

Early methods have taken various approaches to node cluster-

ng. Girvan and Newman used centrality indices to find commu-

ity boundaries and detect social communities [29] . Hastings ap-

lied belief propagation to community detection and determined

he most likely arrangement of communities [30] . Newman com-

uted the eigenvectors of the graph Laplacian to perform cluster-

ng [31,32] .

To handle attributed graphs with both content and structure in-

ormation, NMF(non-negative matrix factorization)-based methods

33,34] , probabilistic model [35] , relational topic models [36,37] ,

nd content propagation [38] have also been widely used.

The limitations of these methods could be summarized as fol-

ow: (1) They fail to employ deep architecture to model the inter-

lay between the graph structure and the node content, or even

apture only parts of the network information. We hold common

pinion that deep learning surpasses traditional methods by learn-

ng informative representation through multi-layer message pass-
3
ng. Therefore, these methods are relatively not effective in gen-

ral; (2) They are mostly applied on original sparse graphs, in

hich information is not well extracted. As a result, their use of

he global graph structure information is usually inefficient, and

ome of them are limited to the local structure only. This fact leads

o the result that such methods cannot effectively exploit the topo-

ogical information as deep representations do.

Benefiting from the development of deep learning, graph node

lustering has progressed significantly in recent years. Many algo-

ithms employ a deep architecture, adopting either sparse autoen-

oder [14,39] or denoising autoencoder [13] to exploit the deep

tructure information for clustering. For attributed graphs, graph

onvolution-based autoencoders are also developed [15] , and are

ombined with marginalized process [40] , adversarial regulariza-

ion [41] , etc. for node clustering, link prediction, and other un-

upervised tasks. However, these methods are two-step methods,

hereas the algorithm presented in this paper is a joint learning

pproach.

. Problem definition and overall framework

We consider clustering task on attributed graphs in this paper.

n attributed graph is represented as G = (V, E, X) , where V = { v i }
onsists of a set of n nodes (i ∈ { 1 , . . . , n }), E = { e i j } is a set of

dges between these nodes (j ∈ { 1 , . . . , n } and i � = j). The topolog-

cal structure of graph G can be represented by an adjacency ma-

rix A , where A i j = 1 if e i j ∈ E; otherwise A i j = 0 . X = { x i } are the

 attribute values where x i ∈ R

m is a real-value attribute vector as-

ociated with vertex v i .
Given the graph G and cluster number k , node clustering aims

o partition the nodes in G into k disjoint groups { G 1 , G 2 , . . . , G k } ,
o that nodes within the same cluster are generally: (1) close to

ach other in terms of graph structure while distant otherwise;

nd (2) more likely to have similar attribute values. The trade-

ff between these two trends is depending on real-world scenarios

nd people’s perceptions. There is no general conclusion.

.1. Overall framework

In this paper, we construct a graph-based neighbor-aware net-

ork to solve this problem. Our framework is shown in Fig 2 and

onsists of two parts: a graph autoencoder and a self-training clus-

ering module.

• Graph Autoencoder: Our neighbor-aware autoencoder takes the

attribute values and graph structure as input, and learns the la-

tent representation by minimizing the reconstruction loss.

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Fig. 3. Parameters study on clustering coefficient γ . The X-axis is the choice of γ and the Y-axis shows the ACC or NMI performance.

Fig. 4. Parameters study on embedding size.

i

o

4

E

a

t

r

t

4

d

s

f

t

e

a

a

e

4

u

n

l

b

s

s

• Self-training Clustering: The module performs clustering based

on the learned representation, optimizes the clustering scheme

and in return, manipulates the latent representation according

to the current clustering result. Since the optimization relies on

no label supervision and is totally based-on the current repre-

sentation, we call it the ”self-training clustering” module.

We jointly learn the graph embedding and perform clustering

n an end-to-end manner, so that each component benefits the

ther.

. Details of proposed method

In this section, we present our proposed Deep Neighbor-aware

mbedded Node Clustering (DNENC). We will first develop a graph

utoencoder which effectively integrates both structure and con-

ent information to learn a latent representation. Based on the rep-

esentation, a self-training module is proposed to guide the clus-

ering algorithm towards better performance.
4
.1. Graph autoencoder

The graph autoencoder aims to learn a low-dimension embed-

ing of the graph G based on both the node content and the graph

tructure. The basic idea is to progressively aggregate neighbor in-

ormation (sum up their attribute values) to learn a more informa-

ive representation in a deep neural network architecture. To this

nd, we develop two variants, namely graph attentional encoder

nd graph convolutional encoder. They differ as they employ an

ttentional mechanism or a convolutional style respectively in their

ncoding strategies.

.1.1. Graph attentional encoder

To represent both graph structure A and node content X in a

nified framework, we develop a variant of the graph attention

etwork [23] as a graph encoder for DNENC-Att. The idea is to

earn hidden representations of each node by integrating its neigh-

or node attributes, to combine the attribute values with the graph

tructure in the latent representation. The most straightforward

trategy to integrate the neighbors of a node is to combine its

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Fig. 5. Parameters study on number of layers.

r

m

g

t

z

n

fi

W

w

r

t

d

c

n

w

c

o

(

s

i

o

M

h

a

g

g

f

f

t

i

p

n

c

α

(

α

g

z

z

i

n

z

4

v

o

w

g

m

g

f

z

epresentation equally with all its neighbors. However, in order to

easure the importance of various neighbors, different weights are

iven to the neighbor representations in our layer-wise graph at-

ention strategy:

(l+1)
i

= σ (
∑

j∈ N i
αi j W

(l) z (l)
j

) . (1)

Here for layer l, z (l+1)
i

denotes the output representation of

ode i , and N i denotes the neighbors of i . αi j is the attention coef-

cient that indicates the importance of neighbor node j to node i ,

l ∈ R

m 2 ×m 1 is the parameter matrix for our autoencoder to learn,

ith m 1 and m 2 being the input and output dimension of the layer

espectively, and σ is a nonlinerity function. To calculate the atten-

ion coefficient αi j , we measure the importance of neighbor node

j from both the aspects of the attribute value and the topological

istance.

From the perspective of attribute values, the attention coeffi-

ient αi j can be represented as a single-layer feedforward neural

etwork on the concatenation of x i and x j (represented by ||) with

eight vector a ∈ R

2 m 2 :

 i j = a T [W x i || W x j] . (2)

Topologically, neighbor nodes contribute to the representation

f a target node. GAT considers only the 1-hop neighboring nodes

first-order) for graph attention [23] . As graphs have complex

tructure relationships, we propose to exploit high-order neighbors

n our encoder. We obtain a proximity matrix by considering t-

rder neighbor nodes in the graph:

 = (B + B

2 + · · · + B

t) /t, (3)

ere B ∈ R

n ×n is the transition matrix where B i j = 1 /d i if e i j ∈ E

nd B i j = 0 otherwise. d i is the degree of node i . B i j can be re-

arded as the possibility a single-step random walk from node i

oes to node j. (B 2) i j represents the possibility the random walk

rom node i goes to j in 2 steps. (B 3) i j for 3 steps and so on. There-

ore M ∈ R

n ×n is a possibility matrix whose entry M i j denotes the
5
opological relevance of node j to node i up to t orders (perform-

ng a random walk from node i , then node j has approximate the

ossibility of M i j to be reached within t steps).

The attention coefficients are usually normalized across all

eighborhoods j ∈ N i with a softmax function to make them easily

omparable across nodes:

i j (original) = softmax j (c i j) =

exp (c i j) ∑

r∈ N i exp (c ir)
. (4)

Adding the topological weights M and an activation function δ
here LeakyReLU is used), the coefficients can be expressed as:

i j =

exp (δ(M i j (a T [W x i || W x j]))) ∑

r∈ N i exp (δ(M ir (a T [W x i || W x r])))
. (5)

We have z (0)
i

= x i as the input for our problem, and stack two

raph attention layers:

(1)
i

= σ (
∑

j∈ N i
αi j W

(0) x j) , (6)

(2)
i

= σ (
∑

j∈ N i
αi j W

(1) z (1)
j

) , (7)

n this way, our encoder encodes both the graph structure and the

ode attributes into a hidden representation, i.e., we will have z i =

(2)
i

.

.1.2. Graph convolutional encoder

On the other hand for DNENC-Con, the encoder is defined as a

ariant of convolutional network from graph data. It extends the

peration of convolution to graph data in a spectral domain and

as formerly used in semi-supervised classification tasks [20] . Our

raph convolutional encoder aims to learn a layer-wise transfor-

ation combining both the adjacency matrix A representing the

raph structure and the feature matrix X by a spectral convolution

unction f (z (l)
i

, A) :

(l+1)
i

= f (z (l)
i

, A) . (8)

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Fig. 6. 2D visualization of various methods using the t-SNE algorithm on the Cora and Citeseer dataset.

H

i

g

u

t

t

g

w

t

w

o

W

U

l

i

g

w

t

s

g

g

w

D

D̃

f

a

H

ere, z l
i
∈ R

m (m features) is the input for convolution and z (l+1)
i

s the convolution output. We view the convolution part from the

raph level, therefore define Z l ∈ R

n ×m and Z l =

∏ n
i =1 z

l
i

for later

se.

We first consider each feature of the graph s ∈ R

n as a signal,

he convolution function can be defined as the multiplication of

he signal with a filter such as:

 θ � s = U g θU

T s, (9)

here g θ is a filter parameterized by θ ∈ R n , U is the eigenvec-

ors of the normalized graph Laplacian L = U �U

T = I N − D

− 1
2 AD

− 1
2 ,

ith D ii =

∑

j A i j , and I N the identity matrix, � represents a diag-

nal matrix where the diagonal elements are the eigenvalues of L .

e can consider g θ to be a function of the eigenvalues g θ (�) , and

T s be the graph Fourier transform of s .

Computing the eigen-decomposition of L could be expensive for

arge graphs. Hence, Hammond et al. suggested g(�) to be approx-
6
mated in terms of Chebyshev polynomials [42] :

 θ (�) ≈
Y ∑

y =0

θy T y (̃ �) , (10)

here ˜ � =

2
λmax

� − I N . λmax is the largest eigenvalue of L . θ is

he Chebyshev coefficients, T 0 (a) = 1 and T 1 (a) = a . By further con-

traint Y = 1 and approximate λmax ≈ 2 , a linear function on the

raph Laplacian spectrum is obtained:

 θ � s ≈ θ (I N + D

− 1
2 AD

− 1
2) s, (11)

here θ is the shared filter over the whole graph and I N +

− 1
2 AD

− 1
2 could be approximated by ̃ D

− 1
2 ̃ A ̃

 D

− 1
2 with ̃

 A = A + I N and

 ii =

∑

j ̃
 A i j .

To extend this function to the graph level, or in other words

or multiple features Z l ∈ R

n ×m , the convolution function could be

djusted as:

 = g W

� Z (l) = ̃

 D

− 1
2 ̃ A ̃

 D

− 1
2 Z (l) W, (12)

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Fig. 7. 2D visualization of the DNENC-Att algorithm using the t-SNE algorithm on the Cora and Citeseer dataset during training (the top line for the Cora dataset, and

the bottom line for the Citeseer dataset). The first visualization of each line illustrates the embedding training with the graph autoencoder only, followed by visualizations

showing subsequent equal epochs in which the self-training component is included, till the last one being the final embedding visualization.

w

o

t

w

s

c

a

Z

Z

i

4

t

w

b

i

m

t

g

t

w

p

t

A

w

4

e

L

I

r

w

t

4

n

u

here H ∈ R

n ×m is the convolved signal matrix, and W is a matrix

f filter parameters replacing θ . Then the layer-wise propagation of

he GCN is:

f (Z (l) , A) = σ (̃ D

− 1
2 ̃ A ̃

 D

− 1
2 Z (l) W

(l)) , (13)

ith σ being an activation function such as Relu (t) = max (0 , t) or

igmoid (t) =

1
1+ e −t . This convolution propagation function can be

omputed efficiently in O(| E| m

2) .

We adopt this convolution propagation function and construct

 two-layer encoder for our autoencoder:

(1) = f Relu (X, A | W

(0)) ; (14)

(2) = f linears (Z (1) , A | W

(1)) . (15)

Our encoder encodes both node content and graph structure

nto a unified hidden representation Z = Z (2) .

.1.3. Inner product decoder

There are various kinds of decoders, which reconstruct either

he graph structure, the attribute value, or both. In our method,

e choose to reconstruct the graph structure, as our algorithm will

e more flexible and will thus fit situations in which no content

nformation is available. The decoder reconstruction aims to opti-

ize the encoded embedding, which already consists of informa-

ion from both sides. Therefore, the choice of reconstructing the
7
raph structure will not result in information loss of the node at-

ributes. We use a simple inner product decoder which predicts

hether there is a link between two nodes. The reconstructed link

rediction layer is trained based on the hidden graph representa-

ion:

ˆ
 i j = sigmoid (z i

� z j) , (16)

here ˆ A is the reconstructed structure matrix of the graph.

.1.4. Reconstruction loss

We minimize the reconstruction error by measuring the differ-

nce between A and

ˆ A :

 r =

n ∑

i =1

loss (A i j , ˆ A i j) . (17)

n our paper, the binary cross-entropy loss function is used as the

econstruction loss. By optimizing the autoencoder reconstruction,

e can learn the encoder parameter W

(0) and W

(1) , and thereupon

he optimized latent embedding Z.

.2. Self-optimizing embedding

One of the main challenges for node clustering methods is the

onexistence of label guidance. The node clustering task is nat-

rally unsupervised and feedback during training as to whether

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

t

t

t

e

o

h

o

l

L

W

c

d

c

q

i

n

t

S

c

t

t

t

b

t

o

d

p

i

t

b

i

t

μ
t

μ

w

p

t

t

t

t

m

u

g

i

u

o

m

m

t

o

c

4

l

L

w

s

t

f

t

o

l

r

w

d

A

G

R

E

t

5

5

a

r

o

a

t

he learned embedding is well optimized cannot, therefore, be ob-

ained. To confront this challenge, we develop a self-training clus-

ering algorithm as a solution, which can gradually optimize the

mbedding for better clustering adaptation, totally by itself with-

ut any further information provided for supervision.

Apart from optimizing the reconstruction error, we input our

idden embedding into a self-optimizing clustering module which

ptimizes a KL (Kullback-Leibler) divergence [25] based clustering

oss L c to help improve the embedding:

 c = KL (P || Q) =

∑

i

∑

u

p iu log
p iu
q iu

, (18)

here q iu measures the similarity between node embedding z i and

luster center embedding μu . We measure it with a Student’s t-

istribution so that it could handle different scaled clusters and is

omputationally convenient [43] :

 iu =

(1 + || z i − μu || 2) −1 ∑

k (1 + || z i − μk || 2) −1
, (19)

t can be seen as a soft clustering assignment distribution of each

ode with the current embedding. On the other hand, p iu is the

arget distribution defined as:

p iu =

q 2
iu
/
∑

i q iu ∑

k (q 2
ik
/
∑

i q ik)
. (20)

oft assignments with high probability (nodes close to the cluster

enter) are considered to be trustworthy in Q . So the target dis-

ribution P raises Q to the second power to emphasize the role of

hose “confident assignments”. The minimizing of the KL distance

hen force the current distribution Q to approach the target distri-

ution P , so as to set these “confident assignments” as soft labels

o supervise Q ’s embedding learning.

To this end, we first train the autoencoder without the self-

ptimize clustering part to obtain a meaningful embedding z as

escribed in Eqs. (7) and (15) . Self-optimizing clustering is then

erformed to improve this embedding. To obtain the soft cluster-

ng assignment distributions of all the nodes Q through Eq. (19) ,

he k -means clustering is performed just once on the embedding z

efore training with the self-optimize clustering part, to obtain the

nitial cluster centers μ.

It is worth mentioning that in the following iterative training,

he k -means clustering is never used again, and the cluster centers

are updated using Stochastic Gradient Descent (SGD) based on

he gradients of the clustering loss L c with respect to μ:

u = μu − ϕ

∂L c

∂μu
, (21)

here ϕ is the step size. Similarly, ∂ L c /∂ z i is also computed and

assed down to update the parameter matrix W in the encoder

ogether with the gradient from the reconstruction loss of the au-

oencoder, so as to benefit the embedding learning.

We calculate the target distribution P according to Eq. (20) , and

he clustering loss L c according to Eq. (18) .

The target distribution P works as “ground-truth labels” in the

raining procedure, but also depends on the current soft assign-

ent Q which updates at every iteration. It would be hazardous to

pdate P at every iteration with Q as the constant change of tar-

et would obstruct learning and convergence. To avoid instability

n the self-optimizing process and offer Q time to learn from P , we

pdate P every T iterations. As the detailed choice of T will not

bservably affect clustering performance according to our experi-

ents (unless too extreme), we simply set it to 5 in our experi-

ents.

In summary, we minimize the clustering loss to help the au-

oencoder manipulate the embedding space using the embedding’s

wn characteristics and scatter embedding points to obtain better

lustering performance.
8
.3. Joint embedding and clustering optimization

We jointly optimize the autoencoder embedding and clustering

earning, and define our total objective function as:

 = L r + γ L c , (22)

here L r and L c are the reconstruction loss and clustering loss re-

pectively, γ ≥ 0 is a coefficient that controls the balance in be-

ween. It can be optimized by directly back-propagate the gradient

rom both L r and L c to update W , or utilize the unrolled optimiza-

ion strategy [44–46] . It is worth mentioning that we could gain

ur clustering result directly from the last optimized Q , and the

abel estimated for node v i could be obtained as:

 i = arg max
u

q iu , (23)

hich is the most likely assignment from the last soft assignment

istribution Q .

Our method is summarized in Algorithm 1 . Our algorithm has

lgorithm 1 Unsupervised Deep Neighbor-aware Embedded

raph Clustering.

equire: ~~

Graph G with n nodes, each node with m -dimension attribute

value;Number of clusters k ;Number of iterations Iter;Target dis-

tribution update interval T ;Clustering Coefficient γ .

nsure: ~~

Final clustering results.

Update the autoencoder by minimizing Eq. (17) to get the au-

toencoder hidden embedding Z;

Compute the initial cluster centers μ based on Z;

for l = 0 to Iter − 1 do

Calculate soft assignment distribution Q with Z and μ accord-

ing to Eq. (19);

if l% T == 0 then

Calculate target distribution P with Q by Eq. (20);

end if

Calculate reconstruction loss L r according to Eq. (17)

Calculate clustering loss L c according to Eq. (18);

Update the embedding Z by minimizing Eq. (22);

end for

Get the clustering results with final Q by Eq. (23)

he following advantages:

• Interplay Exploitation. The graph neural network-based au-

toencoder efficiently exploits the interplay between both the

graph structure and the node content information.
• Clustering Specialized Embedding. The proposed self-training

clustering component manipulates the attributed graph embed-

ding to improve the clustering performance.
• End-to-end Learning. The framework jointly optimizes the two

parts of the loss functions, learns the embedding and performs

clustering in an end-to-end manner.

. Experimental data and methods

.1. Benchmark datasets

We use three benchmark datasets in our experiments, which

re widely used in assessment of attributed graph-based algo-

ithms [20,23] , summarized in Table 1 . All these datasets consist

f scientific publications as nodes, citation relationships as edges

nd unique words in the documents as features. Publications in

hese datasets are labeled as they could be assigned to different

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Table 1

Benchmark Graph Datasets.

Dataset Nodes Features Clusters Links Content Words

Cora 2708 1433 7 5429 3,880,564

Citeseer 3327 3703 6 4732 12,274,336

Pubmed 19,717 500 3 44,338 9,858,500

s

a

5

e

t

a

l

T

5

5

T

w

t

t

i

u

i

5

t

t

(

l

t

g

s

h

c

p

m

s

i

d

i

r

a

a

r

t

m

f

D

a

M

h

F

l

ub-fields. The numbers of clusters of these datasets k are known

nd required by all the baselines.

.2. Baseline methods

We compared a total of 13 algorithms with our method in our

xperiments. The node clustering algorithms include approaches

hat use only node attributes or network structure information,

nd also approaches that combine both. Deep representation

earning-based node clustering algorithms were also compared.

hese algorithms are summarized in Table 2 .

.2.1. Methods using structure or content only
• K-means is the base of many clustering methods. Many ad-

vanced clustering algorithms involve some kind of transforma-

tion of k-means clustering or use k-means on their embeddings.

Here we run k-means on our original content data as a bench-

mark.
• Spectral clustering uses the eigenvalues of the similarity ma-

trix to perform dimensionality reduction before clustering and

is widely used in node clustering.
• DeepWalk [47] is a structure-only representation learning

method. It obtains random walks on graphs and then trains the

representation through neural networks.
• GraphEncoder [14] employs deep learning into node clustering

by training a stacked sparse autoencoder and gets representa-

tion for later clustering.
• DNGR [13] is recent work which uses stacked denoising autoen-

coders and encodes each vertex into a low dimensional vector

representation.
• M-NMF [48] is a Nonnegative Matrix Factorization model tar-

geted at community-preserved embedding.

.2.2. Methods using both structure and content
• RTM [37] is a relational topic model capturing both structure

and content information to learn the topic distributions of doc-

uments.
• RMSC [49] , the robust multi-view spectral clustering method

via low-rank and sparsity decomposition, recovering a shared

low-rank transition probability matrix for clustering with a

transition probability matrix from each view. We regard struc-

ture and content data as two views of information.
• TADW [50] , text-associated DeepWalk. It re-interprets Deep-

Walk as a matrix factorization method and adds the features

of vertices into representation learning.
• GAE & VGAE [15] are representation learning algorithms. They

combine the graph convolutional network with the (variational)

autoencoder.
• ARGA & ARVGA [41] are graph convolutional autoencoder-based

methods that manipulate GAE & VGAE learned embedding with

an adversarial regularizer.
• AGC [51] is an adaptive graph convolution method that exploits

high-order graph convolution and captures global cluster struc-

ture.
• DNENC-Con is our proposed unsupervised deep neighbor-aware

embedded node clustering with graph convolutional autoen-

coder.
9
• DNENC-Att is our proposed unsupervised deep neighbor-aware

embedded node clustering with graph attentional autoencoder.

For representation learning algorithms such as DeepWalk,

ADW and DNGR which do not specify the clustering algorithm,

e first learned the representation from these algorithms, and

hen applied the k -means algorithm on their respective representa-

ions, but for algorithms like RMSC which require spectral cluster-

ng or an alternative algorithm, we followed their preference and

sed the specified algorithms. The best results we got are reported

n this paper.

.3. Evaluation metrics & parameter settings

Evaluation Metrics: We use seven metrics to evaluate the clus-

ering result namely Accuracy (ACC), Normalized Mutual Informa-

ion (NMI), F-score (F), Precision (P), Recall (R), Average Entropy

AE) and Adjusted Rand Index (ARI). These values can be calcu-

ated based upon the algorithm obtained clustering scheme and

he ground-truth clustering scheme (provided in the datasets). A

ood clustering scheme should be consistent with the ground-truth

cheme, which will lead to a lower value of average entropy and

igher values for all the other metrics. These evaluation matri-

es differ as they measure consistency differently [49] . A baseline

erforming novel clustering should stay ahead on most evaluation

etrics.

• ACC is the average performance of label matching clustering re-

sults and can be represented as
∑

i (y i == f (l i)) /n , where f is

the mapping function which maps category labels to cluster la-

bels.
• NMI measures the mutual information entropy between the re-

sulting cluster labels and ground truth labels followed by a nor-

malization operation.
• F-score is the harmonic mean value of P recision and Recal l ;
• Precision is the fraction of correctly clustered nodes among the

retrieved nodes;
• Recall is the fraction of correctly clustered nodes that have

been retrieved over the total number of relevant nodes;
• Average Entropy =

∑ k
i =1

m i
m

e i , where k is the cluster number

and m is the number of nodes, and e i = −∑ k
j=1

m i j

m i
log 2

m i j

m i
, with

m i representing the number of nodes in cluster i and m i j rep-

resenting the number of nodes in cluster i and labeled j.
• ARI is the adjusted rand index (RI) that guarantees a value close

to 0, where RI measures the percentage of correct clustering

decisions. While RI yield a value between 0 and 1, ARI could be

negative.

Parameter Settings: For the baseline algorithms, we carefully

elect the parameters for each algorithm, following the procedures

n the original papers, to achieve their best performance on the

atasets. In TADW, for instance, we set the dimension of the factor-

zed matrix to 80, the dimension of the text feature to 200 and the

egularization parameter to 0.2; For the DNGR algorithm, we build

 three-layers denoising autoencoder with the number of nodes set

s 512 and 256 in the hidden layers; For the RMSC algorithm, we

egard graph structure and node content as two different views of

he data and construct a Gaussian kernel on them. We run the k -

eans algorithm 50 times for all embedding learning methods for

air comparison.

For our method, we set the clustering coefficient γ to 10 for

NENC-Att and 1 for DNENC-con. For the variant DNENC-Att with

ttentional encoder, we consider second-order neighbors and set

 = (B + B 2) / 2 . The encoder is constructed with a 256-neuron

idden layer and a 16-neuron embedding layer for all datasets.

or DNENC-Con with convolutional encoder, a 32-neuron hidden

ayer and a 16-neuron embedding layer is used instead. All these

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Table 2

Algorithm Comparison.

Content Structure Self-training GCN encoder GAT encoder Recover A

K-means �

Spectral �

GraphEncoder � �

DeepWalk � �

DNGR � �

M-NMF �

RTM � �

RMSC � �

TADW � �

GAE&VGAE � � � �

ARGA&ARVGA � � � �

AGC � �

DNENC-Att � � � � �

DNENC-Con � � � � �

Table 3

Experimental Results on Cora Dataset.

Variable ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)
K-means X 0.500 0.317 0.376 0.376 0.376 1.810 0.239

Spectral A 0.398 0.297 0.332 0.312 0.355 1.871 0.174

GraphEncoder A 0.301 0.059 0.230 0.214 0.253 2.496 0.046

DeepWalk A 0.529 0.384 0.435 0.392 0.504 1.681 0.291

DNGR A 0.419 0.318 0.340 0.266 0.480 1.882 0.142

M-NMF A 0.423 0.256 0.320 0.304 0.342 1.977 0.162

RTM X&A 0.440 0.230 0.307 0.332 0.285 2.021 0.169

RMSC X&A 0.466 0.320 0.347 0.345 0.352 1.808 0.203

TADW X&A 0.536 0.366 0.401 0.342 0.492 1.749 0.240

GAE X&A 0.530 0.397 0.415 0.431 0.401 1.583 0.293

VGAE X&A 0.592 0.408 0.456 0.489 0.429 1.545 0.347

ARGA X&A 0.669 0.489 0.666 0.680 0.686 1.322 0.422

ARVGA X&A 0.581 0.426 0.560 0.562 0.588 1.492 0.329

AGC X&A 0.689 0.522 0.656 0.672 0.675 1.273 0.448

DNENC-Att X&A 0.704 0.528 0.682 0.704 0.706 1.229 0.496

DNENC-Con X&A 0.683 0.512 0.659 0.665 0.689 1.269 0.477

c

(

[

6

n

fi

6

s

a

s

(

o

o

p

f

a

f

t

u

p

b

s

u

c

i

r

r

t

t

g

a

o

2

e

(

f

g

w

c

c

o

p

f

d

c

o

t

6

g

hoices are carefully decided according to our sensitivity analysis

see Section 6.2) and with reference to the previous related works

15] .

. Experiment results

We compare our DNENC with baselines mentioned above on

ode clustering first. Then we perform detailed analysis on coef-

cients in the model.

.1. Clustering performance comparison

The experiment results on the three benchmark datasets are

ummarized in Tables 3 , 4 and 5 . X, A, and X&A indicate if the

lgorithm is performed upon only the node content X, the graph

tructure A, or both content and structure information, respectively

other values like the clustering coefficient γ are hyper-parameters

f the model). We can see that our methods can outperforms most

f the baselines across most of the evaluation metrics when ap-

lied to these three benchmark datasets. AGC is able to outper-

orm our method on the Pubmed dataset, may because Pubmed is

 large and simple dataset which adverse to our deep architecture.

One Side v.s Both Side of Information: We can easily observe

rom these results that methods using both the structure and con-

ent information of the graph generally perform better than those

sing only one side of information. In the Cora dataset, for exam-

le, TADW, GAE, VGAE, AGC and our method outperform all the

aselines using one side of information. This observation demon-

trates that both the graph structure and node content contain

seful information for node clustering, and illustrates the signifi-

ance of capturing the interplay between two-sides information.
10
Deep Learning Models: The results of most of the deep learn-

ng models are satisfactory. The GraphEncoder and DNGR algo-

ithm are not necessarily an improvement over the other algo-

ithms, although they both employ deep autoencoder for represen-

ation learning. This observation may result from their neglect at

he node content information.

Effectiveness of DNENC: It is worth mentioning that our al-

orithms, both DNENC-Con and DNENC-Att, can outperform GAE

nd VGAE on the three datasets. On the Cora dataset for example,

ur method DNENC-Att represents a relative increase of 18.97% and

9.49% w.r.t. accuracy and NMI against VGAE, and the increase is

ven greater on the Citeseer dataset. The reasons for this are that

1) we employ a graph convolutional/attentional network that ef-

ectively integrates both content and structure information of the

raph; (2) we use a deep architecture to learn the representation,

hich captures more underlying information; (3) Our self-training

lustering component is specialized and powerful in improving the

lustering efficiency.

DNENC-Att v.s. DNENC-Con: The results show that DNENC-Att

utperforms DNENC-Con on Cora dataset, while DNENC-Con out-

erforms DNENC-Att on Citeseer and Pubmed datasets. Their per-

ormance is very close. This is because both of them are clustering-

irected approaches manipulated by the self-training clustering

omponent. The embedding will be optimized by the clustering

bjective, and finally achieve very similar results for the clustering

ask.

.2. Sensitivity analysis

We also investigate the sensitivity of the parameters for our al-

orithm.

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

Table 4

Experimental Results on Citeseer Dataset.

Variable ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)
K-means X 0.544 0.312 0.413 0.411 0.416 1.738 0.285

Spectral A 0.308 0.090 0.257 0.241 0.276 2.300 0.082

GraphEncoder A 0.293 0.057 0.213 0.215 0.211 2.380 0.043

DeepWalk A 0.390 0.131 0.305 0.282 0.336 2.201 0.137

DNGR A 0.326 0.180 0.300 0.200 0.609 2.168 0.043

M-NMF A 0.336 0.099 0.255 0.228 0.291 2.288 0.070

RTM X&A 0.451 0.239 0.342 0.349 0.335 1.915 0.203

RMSC X&A 0.516 0.308 0.404 0.383 0.430 1.767 0.266

TADW X&A 0.529 0.320 0.436 0.376 0.532 1.781 0.286

GAE X&A 0.380 0.174 0.297 0.291 0.304 2.093 0.141

VGAE X&A 0.392 0.163 0.278 0.251 0.315 2.131 0.101

ARGA X&A 0.559 0.289 0.544 0.578 0.539 1.795 0.257

ARVGA X&A 0.598 0.323 0.570 0.583 0.566 1.703 0.322

AGC X&A 0.672 0.414 0.627 0.635 0.631 1.500 0.420

DNENC-Att X&A 0.672 0.397 0.636 0.639 0.640 1.521 0.410

DNENC-Con X&A 0.692 0.426 0.639 0.640 0.644 1.456 0.449

Table 5

Experimental Results on Pubmed Dataset.

Variable ACC(↑) NMI(↑) F(↑) P(↑) R(↑) AE(↓) ARI(↑)
K-means X 0.580 0.278 0.544 0.488 0.621 1.133 0.246

Spectral A 0.496 0.147 0.471 0.407 0.561 1.323 0.098

GraphEncoder A 0.531 0.210 0.506 0.456 0.569 1.231 0.184

DeepWalk A 0.663 0.256 0.539 0.532 0.555 1.142 0.272

DNGR A 0.468 0.153 0.445 0.387 0.523 1.314 0.059

M-NMF A 0.470 0.084 0.443 0.391 0.529 1.411 0.058

RTM X&A 0.575 0.194 0.444 0.456 0.433 1.230 0.149

RMSC X&A 0.629 0.273 0.521 0.511 0.532 1.116 0.247

TADW X&A 0.565 0.224 0.481 0.465 0.500 1.196 0.177

GAE X&A 0.632 0.249 0.511 0.518 0.505 1.146 0.246

VGAE X&A 0.619 0.216 0.478 0.492 0.464 1.194 0.201

ARGA X&A 0.632 0.235 0.636 0.636 0.669 1.167 0.221

ARVGA X&A 0.390 0.004 0.311 0.335 0.342 1.525 0.002

AGC X&A 0.679 0.306 0.688 0.733 0.695 1.082 0.311

DNENC-Att X&A 0.671 0.266 0.659 0.677 0.687 1.122 0.278

DNENC-Con X&A 0.677 0.275 0.675 0.675 0.699 1.105 0.278

t

r

d

p

t

r

m

a

a

γ
d

t

a

w

t

s

f

C

d

s

m

o

t

a

g

1

b

l

t

t

w

i

a

l

f

c

s

C

m

m

w

t

s

w

r

s

t

d

Clustering Coefficient γ : We vary the clustering coefficient γ
o study the effect of the self-training clustering component. The

esults are shown in Fig 3 .

We could find that experiment on the Cora and Citeseer

atasets show similar trends. For DNENC-Con, we observe the best

erformance with γ around 1. Before γ is increased to that peak,

he clustering performance measured by ACC and NMI steadily

ise; As we keep adding γ up after that, the performance plum-

eted as a whole. However, for DNENC-Att, the result keeps good

s γ rises.

It shows that our self-training clustering component does work

nd improve the clustering result. However, a too large value of

, which means excessively emphasis on the clustering loss, may

istort the latent feature space since its trained on estimated

argets and could lead to abnormal clustering result. DNENC-Att

voids such plummeting may because the embedding learned with

eighted neighbor features are more robust and effective, leading

o more accurate initial targets, and make the self-training more

table.

Embedding Size: We also vary the dimension of embedding

rom 8 neurons to 1024 and report the clustering results on the

ora dataset in Fig 4 .

The results show that when adding the dimension of embed-

ing from 4-neuron to 16-neuron, the performance on clustering

teadily rises; if we further increase the dimension, the perfor-

ance of DNENC-Con fluctuates but still have an overall tendency

f rising, the performance of DNENC-Att is not necessarily a fur-

her improvement since the 8-neuron or 16-neuron embedding is
11
lready sufficient with its more efficient attention strategy as ar-

ued above. It is worth mention that we set the embedding size to

6 to obtain a stable and efficient model, but it could get markedly

etter performance when the embedding size is continuously en-

arged, to for example, 128-neuron, 256-neuron or 1024-neuron.

Number of Layers: To show the effectiveness of deep archi-

ecture, we stack different numbers of layers to observe the al-

eration of the performance on DNENC-Con. For the autoencoder

ith only one hidden layer, we encoder the input feature directly

nto 16-neuron embedding; for the one with two layers, we add

 32-neuron layer in between and construct a d-32-16 encoder

ike the one we adopted, where d is the input layer dimension;

or more layers, we construct d -64-32-16, d -128-64-32-16, etc. en-

oders with each newly added hidden layer doubling the dimen-

ion of its embedding. The performance of all these models on the

ora and Citeseer dataset are reported in Fig 5 .

We could observe that, when we stack 2 encoder layers to the

odel, the performance significantly improve compared with the

odel with only 1 hidden layer. The performance of the model

ith 3 stacked hidden layers is also satisfactory. These observa-

ions demonstrate that using a stacked architecture instead of a

ingle-layer one can improve the model performance. However, as

e continuously add more layers to the model, the performance

educes sharply in terms of all the observations. This is because

tacking too many layers will increase the complexity of the archi-

ecture, raise the possibility of information loss and enhance the

ifficulty to the training process.

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

6

s

b

d

F

c

b

b

a

o

t

t

t

g

7

e

a

a

a

g

s

n

p

t

c

t

c

v

i

c

r

D

i

A

t

l

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
.3. Network visualization

We visualize the Cora and Citeseer datasets in two-dimensional

pace by applying the t-SNE algorithm [52] on the learned em-

edding. T-SNE is a commonly used algorithm to map high-

imensional data into 2D space for visualization. The results in

ig 6 show that we obtain outstanding embedding as well as

learer clustering results, compared with the baseline methods,

enefit from our self-clustering components which contribute to

oth clustering and embedding learning.

We also visualize the variation of the embedding on the Cora

nd Citeseer datasets during training as shown in Fig 7 . We can

bserve that, after training with our graph attentional autoencoder,

he embedding is already meaningful. However by applying self-

raining clustering, the embedding becomes more evident as our

raining progresses, with less overlapping and each group of nodes

radually gathered together.

. Conclusion

In this paper, we propose an unsupervised deep neighbor-aware

mbedding algorithm, DNENC, to jointly perform node clustering

nd learn graph embedding in an end-to-end manner. Two vari-

nts with different autoencoder used, DNENC-Con and DNENC-Att

re introduced. In our method, the learned graph embedding inte-

rates both graph structure and node content information and is

pecialized for clustering tasks. While the node clustering task is

aturally unsupervised, we propose a self-training clustering com-

onent that generates soft labels from “confident” assignments of

he current embedding, to supervise the embedding updating. The

lustering loss and autoencoder reconstruction loss are jointly op-

imized to simultaneously obtain both graph embedding and node

lustering result. A comparison of the experimental results with

arious state-of-the-art algorithms validates DNENC’s node cluster-

ng performance on the benchmark datasets. We may explore node

lustering methods that can better fit different datasets from richer

eal-world scenarios, especially large-scaled ones for future work.

eclaration of Competing Interest

The authors declare that there is no conflict of interest regard-

ng the publication of this paper.

cknowledgments

This research was funded by the Australian Government

hrough the Australian Research Council (ARC) under a Future Fel-

owship No. FT21010 0 097 .

eferences

[1] S. Ji, S. Pan, E. Cambria, P. Marttinen, P. S. Yu, A survey on knowledge graphs:
representation, acquisition and applications, arXiv:20 02.0 0388 (2020).

[2] A. Bojchevski , S. Günnemann , Bayesian robust attributed graph clustering:
joint learning of partial anomalies and group structure, in: Proceedings of

AAAI, 2018 .

[3] P.-Y. Chen , L. Wu , Revisiting spectral graph clustering with generative commu-
nity models, in: ICDM, IEEE, 2017, pp. 51–60 .

[4] T. Guo , S. Pan , X. Zhu , C. Zhang , CFOND: consensus factorization for co-cluster-
ing networked data, TKDE (2018) .

[5] A. Reihanian , M.-R. Feizi-Derakhshi , H.S. Aghdasi , Overlapping community de-
tection in rating-based social networks through analyzing topics, ratings and

links, Pattern Recognit. 81 (2018) 370–387 .
[6] Y. Xie , M. Gong , S. Wang , B. Yu , Community discovery in networks with deep

sparse filtering, Pattern Recognit. 81 (2018) 50–59 .

[7] Y. Li , C. Sha , X. Huang , Y. Zhang , Community detection in attributed graphs: an
embedding approach, in: Proceedings of AAAI, 2018 .

[8] S.-Y. Kim , T.-S. Jung , E.-H. Suh , H.-S. Hwang , Customer segmentation and strat-
egy development based on customer lifetime value: a case study, Expert Syst.

Appl. 31 (1) (2006) 101–107 .
12
[9] R. Hu , S. Pan , G. Long , X. Zhu , J. Jiang , C. Zhang , Co-clustering enterprise social
networks, in: IJCNN, 2016, pp. 107–114 .

[10] S. Pan , J. Wu , X. Zhu , C. Zhang , Y. Wang , Tri-party deep network representation,
in: Proc. of IJCAI, 2016, pp. 1895–1901 .

[11] X. Shen , S. Pan , W. Liu , Y. Ong , Q. Sun , Discrete network embedding, in: Proc.
of IJCAI, 2018, pp. 3549–3555 .

[12] L. Gao, H. Yang, C. Zhou, J. Wu, S. Pan, Y. Hu, Active discriminative network
representation learning, in: Proc. of IJCAI, 2018, pp. 2142–214 8, doi: 10.24 963/

ijcai.2018/296 .

[13] S. Cao , W. Lu , Q. Xu , Deep neural networks for learning graph representations,
in: Proc. of AAAI, AAAI Press, 2016, pp. 1145–1152 .

[14] F. Tian , B. Gao , Q. Cui , E. Chen , T.-Y. Liu , Learning deep representations for
graph clustering, in: AAAI, 2014, pp. 1293–1299 .

[15] T.N. Kipf , M. Welling , Variational graph auto-encoders, NIPS Workshop on
Bayesian Deep Learning, 2016 .

[16] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey on

graph neural networks, arXiv:1901.00596 (2019).
[17] J. Bruna, W. Zaremba, A. Szlam, Y. LeCun, Spectral networks and locally con-

nected networks on graphs, arXiv:1312.6203 (2013).
[18] M. Henaff, J. Bruna, Y. LeCun, Deep convolutional networks on graph-

structured data, arXiv:1506.05163 (2015).
[19] M. Defferrard , X. Bresson , P. Vandergheynst , Convolutional neural networks on

graphs with fast localized spectral filtering, in: NIPS, 2016, pp. 3844–3852 .

20] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, CoRR (2016) arXiv:1609.02907 .

[21] J. Atwood , D. Towsley , Diffusion-convolutional neural networks, in: NIPS, 2016,
pp. 1993–2001 .

22] D.K. Duvenaud , D. Maclaurin , J. Iparraguirre , R. Bombarell , T. Hirzel , A. Aspu-
ru-Guzik , R.P. Adams , Convolutional networks on graphs for learning molecular

fingerprints, in: NIPS, 2015, pp. 2224–2232 .

23] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph at-
tention networks, arXiv:1710.10903 (2017).

24] C. Zhou , R.C. Paffenroth , Anomaly detection with robust deep autoencoders, in:
Proc. of KDD, ACM, 2017, pp. 665–674 .

25] J. Xie , R. Girshick , A. Farhadi , Unsupervised deep embedding for clustering
analysis, in: ICML, 2016, pp. 478–487 .

26] X. Guo , L. Gao , X. Liu , J. Yin , Improved deep embedded clustering with local

structure preservation, in: IJCAI, 2017, pp. 1753–1759 .
27] K.G. Dizaji , A. Herandi , C. Deng , W. Cai , H. Huang , Deep clustering via joint

convolutional autoencoder embedding and relative entropy minimization, in:
ICCV, IEEE, 2017, pp. 5747–5756 .

28] X. Guo , X. Liu , E. Zhu , J. Yin , Deep clustering with convolutional autoencoders,
in: International Conference on Neural Information Processing, Springer, 2017,

pp. 373–382 .

29] M. Girvan , M.E. Newman , Community structure in social and biological net-
works, Proc. Natl. Acad. Sci. 99 (12) (2002) 7821–7826 .

30] M.B. Hastings , Community detection as an inference problem, Phys. Rev. E 74
(3) (2006) 035102 .

[31] M.E. Newman , Finding community structure in networks using the eigenvec-
tors of matrices, Phys. Rev. E 74 (3) (2006) 036104 .

32] M.E. Newman , Modularity and community structure in networks, Proc. Natl.
Acad. Sci. 103 (23) (2006) 8577–8582 .

33] D. Cai , X. He , X. Wu , J. Han , Non-negative matrix factorization on manifold, in:

Proc. of ICDM, IEEE, 2008, pp. 63–72 .
34] Q. Gu , J. Zhou , Co-clustering on manifolds, in: Proc. of SIGKDD, ACM, 2009,

pp. 359–368 .
35] D. Cohn , T. Hofmann , The missing link-a probabilistic model of document con-

tent and hypertext connectivity, NIPS (2001) 430–436 .
36] Y. Sun , J. Han , J. Gao , Y. Yu , iTopicModel: information network-integrated topic

modeling, in: Proc. of ICDM, IEEE, 2009, pp. 493–502 .

37] J. Chang , D.M. Blei , Relational topic models for document networks., in: AIStats,
vol. 9, 2009, pp. 81–88 .

38] L. Liu , L. Xu , Z. Wangy , E. Chen , Community detection based on structure
and content: a content propagation perspective, in: Proc. of ICDM, IEEE, 2015,

pp. 271–280 .
39] P. Hu , K.C. Chan , T. He , Deep graph clustering in social network, in: Proc. of

WWW, 2017, pp. 1425–1426 .

40] C. Wang , S. Pan , G. Long , X. Zhu , J. Jiang , MGAE: marginalized graph autoen-
coder for graph clustering, in: Proc. of CIKM, ACM, 2017, pp. 889–898 .

[41] S. Pan , R. Hu , G. Long , J. Jiang , L. Yao , C. Zhang , Adversarially regularized graph
autoencoder for graph embedding, in: Proc. of IJCAI, 2018, pp. 2609–2615 .

42] D.K. Hammond, P. Vandergheynst, R. Gribonval, Wavelets on graphs via spec-
tral graph theory, arXiv:0912.3848 (2009).

43] L.v.d. Maaten , G. Hinton , Visualizing data using t-SNE, JMLR (2008) 2579–2605 .

44] U. Schmidt , S. Roth , Shrinkage fields for effective image restoration, in: Proc.
of the CVPR, 2014, pp. 2774–2781 .

45] S. Diamond, V. Sitzmann, F. Heide, G. Wetzstein, Unrolled optimization with
deep priors, arXiv:1705.08041 (2017).

46] D. Liang, J. Cheng, Z. Ke, L. Ying, Deep MRI reconstruction: unrolled optimiza-
tion algorithms meet neural networks, arXiv:1907.11711 (2019).

[47] B. Perozzi , R. Al-Rfou , S. Skiena , DeepWalk: online learning of social represen-

tations, in: Proc. of KDD, ACM, 2014, pp. 701–710 .
48] X. Wang , P. Cui , J. Wang , J. Pei , W. Zhu , S. Yang , Community preserving network

embedding, AAAI, 2017 .
49] R. Xia , Y. Pan , L. Du , J. Yin , Robust multi-view spectral clustering via low-rank

and sparse decomposition., in: Proc. of AAAI, 2014, pp. 2149–2155 .

https://doi.org/10.13039/501100000923
https://doi.org/10.13039/501100000923
http://arxiv.org/abs/2002.00388
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0002
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0003
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0004
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0005
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0006
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0007
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0008
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0009
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0010
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0011
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0011
https://doi.org/10.24963/ijcai.2018/296
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0013
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0014
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0015
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0015
http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1506.05163
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0019
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0019
http://arxiv.org/abs/1609.02907
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0021
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0022
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0022
http://arxiv.org/abs/1710.10903
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0024
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0025
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0026
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0027
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0028
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0029
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0030
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0031
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0032
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0033
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0034
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0035
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0036
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0037
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0038
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0039
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0040
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0041
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0041
http://arxiv.org/abs/0912.3848
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0043
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0044
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0044
http://arxiv.org/abs/1705.08041
http://arxiv.org/abs/1907.11711
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0047
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0048
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0049
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0049

C. Wang, S. Pan, C.P. Yu et al. Pattern Recognition 122 (2022) 108230

[

[

C

t
(

e

S

T
w

t

n
P

i
I

C

C
V

l
i

t
g

R
P

b
I

o
a

G

T
o

H

C

b
s

I

w
t

D

s

t
a

r

s
a

K
a

50] C. Yang , Z. Liu , D. Zhao , M. Sun , E.Y. Chang , Network representation learning
with rich text information., in: Proc. of IJCAI, 2015, pp. 2111–2117 .

[51] X. Zhang , H. Liu , Q. Li , X.-M. Wu , Attributed graph clustering via adaptive
graph convolution, in: Proc. of IJCAI, 2019, pp. 4327–4333 .

52] L. Van Der Maaten , Accelerating t-SNE using tree-based algorithms, J. Mach.
Learn. Res. 15 (1) (2014) 3221–3245 .

hun Wang obtained his B.S. degree in Zhejiang University. He is now pursuing

he Ph.D. degree in computer science from the University of Technology Sydney
UTS), Ultimo, NSW, Australia. His research concentrates on data mining and graph

mbedding.

hirui Pan received the Ph.D. degree in computer science from the University of

echnology Sydney (UTS), Ultimo, NSW, Australia. He is currently a Senior Lecturer
ith the Faculty of Information Technology, Monash University, Australia. Prior to

hat, he was a Lecturer with the School of Software, University of Technology Syd-

ey. His research interests include data mining and machine learning. To date, Dr
an has published over 100 research papers in top-tier journals and conferences,

ncluding the IEEE Transactions on Neural Networks and Learning Systems (TNNLS),
EEE Transactions on Knowledge and Data Engineering (TKDE), IEEE Transactions on

ybernetics (TCYB), ICDE, AAAI, IJCAI, and ICDM.

elina P. Yu received the Ph.D. degree in finance from RMIT University, Melbourne,
IC, Australia. She is currently the Managing Director with the Global Business Col-

ege of Australia (GBCA), Melbourne, VIC, Australia, and plays an indispensable role
n the partnership with University of Canberra, Canberra, ACT, Australia, to deliver

ertiary programs in Melbourne. Dr. Yu was a recipient of RMIT University’s presti-
ious Best Doctoral Research Excellence Award.
13
uiqi Hu received the bachelor’s degree in software engineering from the Tianjin
olytechnic University (TJPU), Tianjin, China, in 2013. Since January 2016, he has

een working toward the PhD degree in the Centre for Quantum Computation and
ntelligent Systems, Faculty of Engineering and Information Technology, University

f Technology, Sydney (UTS), Australia. His research interests include data mining
nd machine learning.

uodong Long received his Ph.D. degree in computer science from University of

echnology, Sydney (UTS), Australia, in 2014. He is a Associate Professor in Faculty
f Engineering and Information Technology, University of Technology, Sydney (UTS).

is research focuses on machine learning, data mining and cloud computing.

hengqi Zhang received his PhD degree from the University of Queensland, Bris-

ane, Australia, in 1991 and a DSc degree (higher doctorate) from Deakin Univer-
ity, Geelong, Australia, in 2002. Since December 2001, he has been a Professor of

nformation Technology with the University of Technology Sydney (UTS), Australia,

here he was Director of the UTS Priority Investment Research Centre for Quan-
um Computation and Intelligent Systems from 2008 to 2016. He is the Executive

i- rector of UTS Data Science since 2017. He has published more than 200 re-
earch papers, including several in first-class international journals, such as the Ar-

ificial Intelligence, IEEE, and ACM Transactions. He has published six monographs
nd edited 16 books and has attracted 11 Australian Research Council grants. His

esearch interests mainly focus on data mining and its applications. He has been

erving as an Associate Editor for three international journals, including IEEE Trans-
ctions on Knowledge and Data Engineering (20 05–20 08). He is General Co-Chair of

DD 2015 in Sydney and the Local Arrangements Chair of IJCAI-2017 in Melbourne,
nd a Fellow of the Australian Computer Society and a Senior Member of the IEEE.

http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0050
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0051
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0052
http://refhub.elsevier.com/S0031-3203(21)00411-8/sbref0052

	Deep neighbor-aware embedding for node clustering in attributed graphs
	1 Introduction
	2 Related work
	2.1 Deep neural networks for graphs
	2.2 Autoencoder and deep clustering algorithms
	2.3 Node clustering in graphs

	3 Problem definition and overall framework
	3.1 Overall framework

	4 Details of proposed method
	4.1 Graph autoencoder
	4.1.1 Graph attentional encoder
	4.1.2 Graph convolutional encoder
	4.1.3 Inner product decoder
	4.1.4 Reconstruction loss

	4.2 Self-optimizing embedding
	4.3 Joint embedding and clustering optimization

	5 Experimental data and methods
	5.1 Benchmark datasets
	5.2 Baseline methods
	5.2.1 Methods using structure or content only
	5.2.2 Methods using both structure and content

	5.3 Evaluation metrics & parameter settings

	6 Experiment results
	6.1 Clustering performance comparison
	6.2 Sensitivity analysis
	6.3 Network visualization

	7 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References

