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Few-shot learning is currently enjoying a considerable resurgence of interest, aided by the recent advance
of deep learning. Contemporary approaches based on weight-generation scheme delivers a straightfor-
ward and flexible solution to the problem. However, they did not fully consider both the representation
power for unseen categories and weight generation capacity in feature learning, making it a significant
performance bottleneck. This paper proposes a multi-level weight-centric feature learning to give full
play to feature extractor’s dual roles in few-shot learning. Our proposed method consists of two essential
techniques: a weight-centric training strategy to improve the features’ prototype-ability and a multi-level
feature incorporating a mid- and relation-level information. The former increases the feasibility of con-
structing a discriminative decision boundary based on a few samples. Simultaneously, the latter helps
improve the transferability for characterizing novel classes and preserve classification capability for base
classes. We extensively evaluate our approach to low-shot classification benchmarks. Experiments demon-
strate our proposed method significantly outperforms its counterparts in both standard and generalized
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settings and using different network backbones.
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1. Introduction

Despite remarkable success made in visual recognition tasks
[1-4], deep learning models generally lack versatility and extend-
ability, hindering their applicability in practice. For instance, being
data-hungry to learn massive parameters, deep neural networks of-
ten fail to work well in data-scarce environments [5,6]. Besides, a
trained model’s prediction domain is usually not expandable unless
re-executing the training process. In response to these deficien-
cies, there has been increasing efforts devoted to few-shot learn-
ing (FSL) [7-11]. Moreover, the exploration of FSL is gradually ex-
panding in various research problems such as FKP recognition [12],
Medical image classification [13], object detection [14], text classi-
fication [15], and instance credibility inference [16].

FSL refers to a technique that exploits knowledge from base-
class data (provided auxiliary training set) to allow models to un-
derstand new concepts from only a few examples [15,17-20]. Ex-
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isting approaches to this problem mainly consist of meta-learning
and weight-generation based frameworks. The former focuses on
learning a meta-learner from base-class data to facilitate learn-
ing a new-task learner. Although meta-learning approaches achieve
great success, they often require sophisticated training procedures
and are difficult to extend to generalized few-shot learning (GFSL)
settings. By contrast, the weight-generation framework delivers a
more straightforward and flexible solution. This type of method
first learns an embedding space from base-class data and then uti-
lizes the embedding of support set (novel-class training samples)
to construct the corresponding classifier weights(as illustrated in
Fig. 1. This learning regime simplifies the few-shot learning prob-
lem by mainly focusing on feature learning and weight generation,
enabling a trained model’s extendability.

In the framework, feature learning is crucial due to its
dual-use mechanism (representing images and constructing
classifiers). However, existing methods learn a feature extrac-
tor without considering three essential issues associated with its
dual-functionality: representation transferability, base-class memo-
rability, and prototype-ability. The transferability refers to whether
the learned representation from base-class data is transferable
to the novel-class data. Recent works [10,21-23] mainly extract
features from the last Conv layer of deep models, leading to less
transferability of the feature extractor. This can be attributed to
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Fig. 1. A general framework of weight generation methods for few-shot learning.
Learning a good feature extractor plays a vital role in this framework, as it is used
for novel models to extract image features and generate classifier weights for new
categories.

the fact that higher layer activations with higher specialization to
base-class task are less transferable to novel-class task [24] when
there is a large domain gap between the two tasks. The memora-
bility and prototype-ability are more related to the quality of the
generated classifier weights. A GFSL model requires preserving the
classification performance for the base-class data. This require-
ment necessitates base-class memorability to prevent novel-class
weights from classifying base-class data to novel classes. The
prototype-ability refers to the feature extractor’s capacity in
allowing few-shot examples to approximate their class-specific
prototype. Current methods attempt to complement these two
capabilities by learning a weight generation network. Nevertheless,
similar to meta-learning approaches, they need training a new
task-specific learner for weight generation, limiting the flexibility
to construct few-shot classification models. Besides, the weight
generator learns the required information from extracted features
but fails to access more information through the feature learning
stage. To sum up, the existing weight-generation methods do not
fully consider the feature extractor’s dual-capacity in FSL, which
may be a bottleneck of performance.

In this paper, we propose a multi-level weight-centric feature
extractor to complement the capacity of current weight-generation
methods. We first introduce a weight-centric training strategy to
increase the possibility that each sample can approximate its cat-
egory prototype. Specifically, we fix the classifier weights in the
latter learning stage and then enforce samples closer to their cor-
responding classifier weight in the embedding space. Besides, we
build the multi-level feature by incorporating a mid-level and
relation-level learning branch with high-level feature learning. The
mid-level learning branch extracts mid-level features from in-
termediate layers while the relation-level one obtains category-
relation information from softening predictions. We finally inte-
grate the multi-level information extraction and the weigh-centric
strategy into an overall feature learning framework.

Our proposed method ensures the feature extractor’s compre-
hensiveness for advancing few-shot learning. On the one hand,
the weight-centric strategy reduces the intra-class variance, im-
proving feature representation generalization. It also pushes data
points that are closer to the hyperplane far way. This effect indi-
rectly achieves larger margin classification-boundaries, increasing
the feasibility of constructing a discriminative decision boundary
based on a few samples. On the other hand, the mid-level features
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are more transferable [25] to novel classes, and the relation-level
representation exhibits higher-level abstraction and more specific
to base categories. Therefore, by jointly representing images us-
ing these two additional information sources, the resulting model
has higher transferability for characterizing novel classes and bet-
ter preserves classification capability for base classes.

We extensively evaluate our approach on two low-shot classifi-
cation benchmarks in both standard and generalized FSL learning
settings. Experiments show that our proposed method significantly
outperforms its counterparts in both learning settings and using
different network backbones. We also demonstrate that the mid-
level features exhibit strong transferability even in a cross-task en-
vironment and the relation-level features help preserve base-class
accuracy in the generalized FSL setting.

The contribution of this paper can be summarized as :

o We propose a weight-centric learning strategy that helps re-
duce the intra-class variance of novel-class data.

e we propose a multi-level feature learning framework, which
demonstrates its strong prototype-ability and transferability
even in a cross-task environment for few-shot learning.

o We extensively evaluate our approach on two low-shot classifi-
cation benchmarks in both standard and generalized FSL learn-
ing settings. Our results show that the mid-level features ex-
hibit strong transferability even in a cross-task environment
while the relation-level features help preserve base-class accu-
racy in the generalized FSL setting

2. Related work

Recently proposed approaches to few-shot learning problem can
be roughly divided into meta-learning based [26-31] and weight-
generation based approaches [21-23,32,33].

Meta-learning based methods tackle the few-shot learning
problem by training a meta-learner to help a learner can effectively
learn a new task on very few training data [27,28,34-37]. Most
of these methods are normally designed based on some standard
practices for training deep models on limited data, such as finding
good weights initialization [27] or performing data augmentation
[28] to prevent overfitting. For instance, Finnn et al. [27] propose to
learn a set of parameters to initialize the learner model so that it
can be quickly adapted to a new task with only a few gradient de-
scent steps [28]; deal with the data deficiency in a more straight-
forward way, in which a generator is trained on meta-training data
and used to augment feature of novel examples for training the
learner. Another line of work addresses the problem in a “learning-
to-optimize” way [29,36]. For example, Ravi et al. [29] train an
LSTM-based meta-learner as an optimizer to update the learner
and store the previous update records into the external memory.
Though this group of methods achieves promising results, they ei-
ther require to design complex inference mechanisms [38] or to
further train a classifier for novel concepts [27,29]. Our work fo-
cuses on learning a feature extractor with dual functions (ie feature
representation and classifier weight generation) for FSL problems.
Therefore, the major difference from meta-learning techniques is
that our method only needs to learn a base model and can con-
struct new models directly using sample features.

Weight-genration based approaches mainly learn an embed-
ding space, in which images are easy to classify using a distance-
based classifier such as cosine similarity or nearest neighbor. To
do so, Koch et al. [32] trains a Siamese network that learns a met-
ric space to perform comparisons between images. Vinyals et al.
[23] propose Matching Networks to learn a contextual embed-
ding,with which the label of a test example can be predicted by
looking for its nearest neighbors from the support set. Prototypi-
cal networks [39] determine the class label of a test example by
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measuring the distance from all the class means of the support
set. Since the distance functions of these two works are prede-
fined, [40] further introduce a learnable distance metric for com-
paring query and support samples. Ji et al. [41] propose a re-
weighting mechanism to improve the instance representativeness
and an information-guidance mechanism to encode discriminative
knowledge. Guo and Cheung [42] presents an Attentive Weights
Generation via Information Maximization strategy that generates
optimal classification weights for each query sample within the
task by self-attention and cross-attention paths.

The most related methods to ours are [21,22,43]. These ap-
proaches learn a feature representation by a cosine softmax loss,
allowing a few novel examples to construct the classifier. Our pro-
posed method differs from them in two folds. First, they only learn
a single level of representation, resulting in a limited representa-
tion capability, while ours constructs a multi-level model that con-
siders multiple knowledge sources. Furthermore, those methods do
not explicitly consider the prototype-ability (the ability to approx-
imate the corresponding prototype by one or several sample fea-
tures) in learning the feature extractor. In contrast, we introduce
a weight-centric learning strategy that makes it more feasible to
construct classifier weights from a few samples.

2.1. Analyzing the transferability of ConvNets

Deep learning models are quite data-hungry but nonetheless
transfer learning have been proven highly effective to avoid over-
fitting when training larger models on smaller datasets [44-46].
These findings raise interest in studying the transferability of deep
models features in recent years. Yosinski et al. [24] experimentally
show how transferable of each layer by quantifying the generality
versus specificity of its features from a deep ConvNet, and suggest
that higher layer activations with higher specialization to source
tasks are less transferable to target tasks. Pulkit et al. [47] inves-
tigates several aspects that impact the performance of ConvNet
models for object recognition. Hossein et al. [48] identifies sev-
eral factors that affect the transferability of ConvNet features and
demonstrates optimizing these factors aid transferring task. How-
ever, these works mainly explore the transferability and generaliza-
tion ability of ConvNet features in terms of target datasets where
the training samples are much more than the few-shot setting. In
this work, we investigate the capacities of the intermediate layer,
last feature layer, and softmax logits to perform few-shot learning
tasks.

3. Methodology

In this section, we first introduce some general notation used
throughout the paper. We first briefly review a general weight-
generation-based framework for few-shot learning. We further in-
troduce our method for learning base models. Finally, we describe
how to utilize these base models in few-shot learning.

3.1. Notation

Let fo(-) e RY be a feature extractor parameterized by ® and
W e Rx¢ be a weight matrix of a linear classifier. Here, d is the di-
mension of the output feature and c is the number of labels for the
classification task. We further define M(-) as a neural network clas-
sification model, such that M(fg (x), W) = WT fg (x) given an input
image x. We denote the training set Dy, and the test set Diest.
Slightly different from the general classification setting, few-shot
learning train a model M(-) on the training data that consists of

a base- and novel-class dataset, that is D;giy = Df’mm UDg ;.- Here,
b _f(x. v.) v. c YDIND ; noo_
DY 4in = (i, ¥),y; € YP}| is an abundant dataset while Df . =

{(xi, D).y € Y”}ﬁ\’znl contains very few samples for each label; Y?
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Base class

W, = g(fo(X,), Wp)

Base-model
| data X;, @ learning L(Xp, Yy; fo, Wp)!
_______________________________ foWo
Weight
: Novel class generator R !
| data X, MC; fo, W) |

Fig. 2. A general weight-generation-based framework for few-shot learning. Here, £
is the loss function for learning a base model on base-class data. fe and W, are the
feature extractor and classifier weights of the base model. g(-) is weight generator
which can be defined or learned from data. M(-) is novel model built for novel
categories.

and Y" refers to two different label spaces and Y’ nY" =¢. We
further denote the weight matrices WP and W" which are corre-
sponding to Y? and Y" respectively.

3.2. Weight-generation-based framework

Weight-generation-based approaches have gained increasing at-
tention in recent years, due to its simplicity and flexibility. The
general framework for these methods usually consists of two
stages: base-model learning and weight generation. As shown in
Fig. 2, this framework first learns a classification base-model on
base-class dataset. In the second stage, based on the feature ex-
tractor fo () and classifier weights W? of the base-model, a weight
generator g4 (.) is used to infer the weight vector w given training
set XV =[x, .. .,x{}. Here, the label y is in an unseen label space
Y™ and k is usually a small number. In recent literature, there are
two typical weight generators : average-based wqye = 88 (fg (XY))
and attention-based wm:gg;f(f(.)(xw,wb). The former simply
compute the mean of the normalized features of training samples,
which is expressed as:

k
1
Wuvg:EZZia (1)
i=1

where z; is a L, norm of the feature vector fg (x%’ ).

The second one employs an attention-based mechanism to ex-
ploit both the sample features and the base-class weights in gener-
ating the novel-class weights. The weight computation for an un-
seen label is expressed as:

kK,

1
Watt = ¢avg O Wayg + QPatt © (E Z ZAtt(¢qZ,', ky) - wy (2)

i=1 b=1
where odot is the Hadamard product, ¢ayg, dare, ¢q are learnable

parameters, Att(.,.) is an attention kernel, and {k;, € Rd}gi] is a set
of K}, learnable keys.

3.3. Multi-level weight-centric (MLWC) representation learning

Fig. 3 provides an overview of our proposed method. The
method mainly consists of two techniques: a multi-level feature
extractor and a weight-centric feature learning strategy. The for-
mer aims to explicitly enforce each single sample feature vector
closer to its corresponding classifier weight. Specifically, we con-
struct three levels of feature representations namely mid-level,
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Fig. 3. An overview of our learning framework for representation learning. The framework first construct three levels of feature representations namely mid-level,high-
level,and relation-level. For forwarding the networks, the outputs of intermediate layer outputs are detached and fed to the mid-level feature extractor, the output of the last
conv layer is forwarded to high-level feature extractor, and the prediction logits of high-level branch are detached and input and sent to the relation-level feature extractor.
The three feature extractors are first trained to converge with the classification loss, and then are further fine-tuned with both the classification and the weight-centric loss.

high-level, and relation-level. The mid-level representation cap-
tures more subtle discriminative patterns, such as subordinary
components of object parts, while the high-level encodes more
holistic information. The relation-level is designed to describe the
input’s category structural relations, like how the input image re-
lates to other categories. The second technique intends to obtain
multiple representations that encode different levels of semantic
information. Overall, the multi-level extractor improves the repre-
sentation ability by considering multiple sources of information,
and the weight-centric strategy increases the feasibility of gener-
ating classifier weights from few-shot sample features. These two
techniques can seamlessly join together to provide a simple and
effective solution to few-shot learning problems.

3.3.1. Learning weight-centric Feature Embedding

In this subsection, we first review cosine softmax loss for few-
shot learning. We then introduce our proposed weight-centric em-
bedding learning strategy. This strategy can be incorporated with
cosine softmax loss to facilitate the subsequent step of generating
weights from few-shot training examples.

Cosine Softmax Loss. In standard classification framework,
Softmax Loss is usually adopted for supervised learning. It gener-
ally refers to a Softmax Activation plus a Cross-Entropy Loss. Given
an input (x;,y;), the softmax loss function is expressed as:

exp(wy fo (i) )

_ 3
X, eXPOVT fo (%)) ®

Ls(X, Y1) = —108(

where fg(-) is the feature extractor and w; is the jt column of
the weight matrix W of the classifier layer.

However, recent works show the softmax loss fails to learn a
feature extractor that generalizes well to unseen categories [21,22].
As discussed previously, the feature extractor of the base model is
used to generate weights of novel categories. However, the model
transferability gap increases as the distance between tasks grows
[24]. Therefore, the more significant difference between the base-
and novel tasks, the poorer performance of the few-shot learning
model due to the weak transferability of the feature extractor. To
ease this issue, Gidaris and Komodakis [21]; Qi et al. [22]| propose
to adopt cosine softmax loss in learning the base model. Compared
with softmax loss, Cosine softmax loss applies [,-normalization on
both the feature vector and the weight vector before the loss cal-

culation, which is expressed as:

iz fo i)

= w1 0% = T Gl

This normalization step will cause the softmax function to fail
to produce a one-hot categorical distribution, making the neural
networks hard to converge. As suggested in Qi et al. [22], a sim-
ple solution to this is to introduce a trainable scale factor s into
to the softmax function. Thus, the cosine softmax loss function is
expressed as:

oW

(4)

¥ exp(W! fo (x;))

Based on this loss function, Gidaris and Komodakis [21]; Qi et al.
[22] learn the feature extractor by minimizing the cost function

Les(xi, yi; O, W) = —log (5)

N
Lo= L;(ecs(xf,yf; ©.W)) + ARW), (6)

where AR(W) is a weight L, regularization term. Weight-Centric
feature learning. As illustrated in Fig. 4(a) and (b), learning with
cosine softmax loss reduces intra-class variations by comparison
with original softmax loss. Thus it increases the feasibility to char-
acterize an unseen concept with few-shot examples. Gidaris and
Komodakis [21]; Qi et al. [22] assume that the samples of the same
class are concentrated in the feature space learned with cosine
softmax loss, then the feature embedding of some random samples
can be used to approximate the classifier weights. However, this
assumption is not strictly held in some cases, such as data with
large intraclass variance and small inter-class variance might tend
to be scattered in the feature space. To ensure that using one or
few embedded points of each category can construct a stable deci-
sion boundary, we explicitly constraint a feature point f(x;) should
be near its classifier weight wy, after the classifier is learned, and
the constraint loss is given by

ECEH(XisW;i;®) =||f®(xi)*w;,- 112, (7)
where wy, represents the sample x;’s corresponding class weight

vector, which specifically refers to the y;" column of a constant
matrix W*. Noted we obtain W* from the classifier layer after
first training the model to converge using the cost function L.
To couple the constraint with cosine softmax loss, we also apply
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Fig. 4. A geometry interpretation for learning feature space with different loss
functions.

I,-normalization on both the feature vector and the weight vector.
Thus, the weight-centric constraint can be rewritten as

Jolx) Wy,
I foxll  llwyl

By integrating the cosine softmax loss and the weight-centric
constraint, we now have the cost function L.

oo {ccs

2
Leen (Xi, W;F/i; 0)= ‘ . (8)

Les > €
otherwise,

9
Lecen + Lcs, )
where Leen = %Zf\’ (€cen (X;, w;;l_)) and L > € means that the stop-
ping criteria is not met when training with loss L. Since the Leepn
required W* as input, we optimize the cost function using a two-
stage algorithm which is detailed in Algorithm 1.

Algorithm 1: Learning weight-centric features.

Input : Base-class Training data {X, Y},feature extractor with
parameters of ©
Jinear classifier weights W.Output: Updated ® and W
Initialize parameters ® and W while L. not converge do
Sample a minibatch of m examples from the training set
{xM_ .. x(M} with corresponding targets y®;
Compute gradient: gg «— & veo Y; LasXD,yD; 0, W) ;
> Lcs is computed using eq.6
Compute gradient: gy <— & vw X Lgs(xD,yD: 0, W) ;
update ® and W ;
end
W* «— W, > Frozen classifier weights
while L .;ic and L not converge do
Sample a minibatch of m examples from the training set
{x(M ... x(M} with corresponding targets y ;
Compute gradient:
8o <— % Ve Zi(l:cls(x(i)vy(i)Q O,W*) + ﬁcen(x(i)Q O, W*));
update ©;
end

As illustrated in Fig. 4(c), the weight-centric constraint push
samples closer to their corresponding classifier weights, which
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brings two advantages. First, it enforces the neural network to
learn a feature space with smaller intra-class variance. Moreover,
the constraint also implicitly drives samples far away from the de-
cision boundary. This increases the feasibility of constructing a dis-
criminative decision boundary based on a small number of sam-
ples.

3.3.2. Multi-level Feature Extractor

A good representation of generalized few-shot learning is it can
generalize well to novel concepts while maximizing its original
ability to discriminate base categories. A single high-level of fea-
ture representation usually has limited capacity to meet these cri-
teria simultaneously. In this subsection, we introduce two addi-
tional levels of representation namely mid- and relation-level to
complement the representative capacity of high-level representa-
tion.

High-level feature extractor is a common practice in most ex-
isting few-shot learning methods. As illustrated in Fig. 5(1), It takes
inputs from the last convolutional layer and then maps them into
an embedding space after applying global-average pooling. This de-
sign results in the extracted features naturally capture the global
visual discriminative patterns, because of the high-level feature ab-
straction source and the property of the pooling operation.

Mid-level feature extractor aims to obtain features that fo-
cus more on encoding mid-level discriminative patterns. Compared
with the high-level features, it exhibits a better generalization
ability in representing novel concepts but weaker discriminatory
power for the base concepts. This can be attributed to the fact
that it tends to abstract information that is less specific to the base
concepts. A naive scheme to learn mid-level features is to plug an
additional global-extractor head on top of the intermediate layers.
However, this solution might still learn features more similar to
the high-level ones because of the global average pooling opera-
tion, though the input source is switched to the lower layers. To
avoid such undesirable effects, we design the mid-level feature ex-
tractor, shown in Fig. 5(2). Specifically, we insert a 1x1 Conv layer
on top of each intermediate layer and employ global-max pool-
ing to prevent the 1x1 Conv layer from learning global abstraction.
Lastly, we concatenate all the intermediate-layer features into one
and map it into embedding space to form a compact mid-level rep-
resentation.

Relation-level feature extractor. As discussed previously, the
model’s generalization to novel concepts can be improved by incor-
porating the mid-level representation. However, its ability to clas-
sify base classes is degrading when the label space is expanding
with more novel classes (some base-class examples might be mis-
classified to novel classes). Thus, we propose to preserve such abil-
ity by encoding more specific information of base classes. Specif-
ically, we introduce another relation-level representation that de-
scribes an input using its structural relationships within the base
classes. This representation is more specific to base classes than
both the high- and mid-level representation. Though it has a poor
generalization to novel concepts, it helps strengthen the classifica-
tion capacity for base classes. As shown in Fig. 5(3), the relation-
level extractor takes inputs the predicted logits ¥, from the high-
level branch. Here, when the ¥, from a trained model is fed to a
softmax layer, the outputs will tend to be a one-hot vector, which
fails to describe the data’s structural relation over classes. There-
fore, we feed Y}, to a softmax function with a high temperature, so
that it can encode a richer class structural information of the data.
Finally, we use this soften prediction outputs to learn the embed-
ding space that characterizes the similarity of samples according to
their categorical distribution.

Jointly Learning multiple feature extractors. As shown in
Fig. 3, we learn the three feature extractors using three classifi-
cation branches that are all based on a single network backbone.
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Fig. 6. Utilizing the base models to construct classification models in few-shot learning. We first combine the base modes to obtain a multi-level feature extractor and a
base-class weight matrix. Then the feature extractor is used to produce a novel-class weight matrix. Finally, we can construct classification models for few-shot learning by

integrating the feature extractor, base- and novel-class weight matrix.

We also apply the weight-centric learning strategy for each branch.
Thus, the overall classification loss and weight-centric loss

Les = LM+ L0+ 27,

Leen = ﬁgn + ﬁlclen + ﬁzen (10)

respectively. Finally, our overall cost function is obtained by substi-
tuting these two equations into Eq. (9).

3.4. Few-shot leaning

In the previous section, we describe how our proposed method
learns base models on the base-class dataset. In this section, we
describe how to utilize these base models to perform few-shot
learning. This procedure mainly consists of two operations: model
combination and weight generation, which are detailed in the fol-
lowing.

Model combination. After training the base models us-
ing our proposed method, we have three base models
M(fm(x). W), M(fy(x).WP),and  M(fr(x),Wp), which denote
the mid-, high-, and relation-level classification model respec-
tively. We simply combine them into a single model M(fc(x), WC”)
by concatenating their normalized features and classifier weights

separately. Here, f-(x) =concat(‘|ﬁg;”, H;:Ei;”, ||§:83||) forms a

multi-level feature extractor and W2 = concat (W}, WP, WP) is the

classifier weight matrix for base categories. Given a test image x?,
this model can be used to predict the label in the base label space
Y®, that is argmax(M(fc(x),W})) e YP.

Generating weights for few-shot learning. Now, we can uti-
lize the feature extractor fc(-) and weight matrix ch to con-
struct different models for different few-shot learning settings. We
first construct the weight matrix W for Y" using a weight gen-
erator (AvgGen [22] or AttGen [21]). Then, we can build classifi-
cation models M(fc(x),W[r) and M(fc(x), [W”,WC”]) for standard
and generalized few-shot learning scenario respectively. Here, the
weight matrix W# is obtained by stacking each weight vector in
order according to its label index in Y™.

Let Y2 and Y" denote the base- and novel-label space respec-
tively, we obtain its corresponding weight vector w¥ by normaliz-

ing the prototype of the given k training samples {x],...,x}}.
150 y
1 " X
Wy= ];Zzn_]f(;,) ) (.1.1)
I & e S

where f(.) is the multi-level feature extractor derived from the
combined base model. Now, Given a unseen label space, we can
build classification models M(f(x), W") and M(f(x), [W®? W"]) for
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standard and generalized few-shot learning scenario respectively.
Here, the weight matrix W" is obtained by stacking each weight
vector in order according to its label index in Y", W’ is weight
matrix derived from the combined base model.

4. Experiments
4.1. Datasets and evaluation metrics

We validate our proposed method on Low-shot-ImageNet
[28] and Low-shot-CUB [22] based on three performance metrics.

Low-shot-ImageNet contains 193 base categories,300 novel cat-
egories, 196 base categories, and 311 novel categories respectively.
The first two groups are made for validating hyper-parameters, the
remaining two groups are used for the final evaluation.

Low-shot-CUB is constructed from Caltech-UCSD bird dataset
[49]. The dataset consists of 100 base classes and 100 novel classes.
Since each category of this dataset contains only about 30 images,
we repeat 20 experiments and take the average top-1 accuracy.

Performance evaluation metrics. Few-shot learning methods
are evaluated differently according to different few-shot learning
setting. These performance measures mainly differs in the way
of constructing a test dataset. To evaluate our proposed method
in both standard and generalized setting, we use three evaluation
metrics summarized as below:

1) Novel/Novel: the model’s performance is measured by the
accuracy of novel test examples within the novel label space, that
is Dtest = {(Xisyi) € D?est*yi € Yn}

2) Novel/All: the model’s performance is measured only by the
accuracy of novel test examples in all label space, that is Diest =
{(x;, 1) € Dfpyy. yi € YO LY.

3) All: the model’s performance is measured only by the accu-
racy of all test examples in all label space, that is Deesr = {(X;,¥;) €
D?est U Dfg Yi € Ybu yn}.

Here, standard few-shot learning setting only consider
Novel/Novel as the major performance measure, while the gener-
alized setting consider results of both Novel/All and All. We report
results of these metrics based on multiple tries. Specifically, in
our experiments, we randomly select training images of the novel
categories and repeat experiments 100 times, and finally report
the mean accuracies within 95% confidence intervals.

4.2. Network architecture and training details

Network architecture. We conduct experiments on the Few-
shot-Imagenet benchmark using ResNet-10 and -50 [1] architecture
in our learning framework. For experiments on the Few-shot-CUB
dataset, as Qi et al. [22] obtained their results based on Incep-
tionV1 [50], we implement our method based on the same net-
work structure for performance comparison.

Training details. For all experiments on imageNet based few-
shot benchmarks, we trained our model from scratch for 90 epochs
on the base classes. The learning rate starts from 0.1 and is di-
vided by 10 every 30 epochs with a fixed weight decay of 0.0001.
We then fine-tune the model for further with the classifier-centric
constraint with a small learning rate 0.0001. For the CUB dataset
experiment, all the pre-trained models we used are from the Py-
torch official model zoo. During the training, the initial learning if
0.001 decreases by 0.1 times at 30 epoch intervals.

4.3. Results and analysis

4.3.1. Low-shot Classification accuracy
We evaluated the performance of the proposed method on two
low-shot benchmarks.
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Low-shot-ImageNet. Tables 1 and 2 provide the comparative
results of different techniques using two network backbones on
the large-scale Few-shot-ImageNet dataset. First, we can observe
that some existing methods show significant improvement on one
evaluation metric but minor on another one. For example, both
Weight imprinting [22] and AttGen [21] have better performance
than Matching Nets [23] in the "Novel/Novel” setting but similar or
even worse results in the "Novel/ALL” setting. In comparison, our
approach consistently achieves the best results on all evaluation
metrics. Specifically, using the same weight generator AttGen, our
method significantly outperforms the current best model TRAML
[51] in testing both novel-class and all-class classification accu-
racy. Besides, without learning the weight generator, our proposed
method also achieves a comparable performance to the current
top-performing methods that require training a weight generator.
For instance, compared to the TRAML method that needs to learn
an attention-based weight generator, our approach obtains a sim-
ilar performance using the mean feature as classifier weights. All
these results indicate that our learned representation yields a bet-
ter generalization ability and versatility for FSL learning.

Low-shot-CUB. Since existing method reported on this dataset
is based on Inception V1 network, we first evaluate our method
with the same backbone network. Table 3 shows performance
comparison result of different approaches. Our proposed method
outperforms all the comparing method by a large margin in all
evaluation metrics. For instance, our method achieves top-1 ac-
curacies of 30.72% and 37.65% under the 1 and 2 shot settings
respectively, the previous best results are 21.40% and 28.69%. To
evaluate out method’s effectiveness on this dataset when using
different network architecture, we further use the Resnet-50 as
backbone for both the Imprinting and our method and compare
their performance. Table 4 shows the corresponding results and,
again, demonstrates our method’s superior performance in low-
shot learning.

Cross-domain performance of low-shot learning. We inves-
tigate the transferability of different levels of representations in
the FSL setting. To achieve this, we perform a cross-domain eval-
uation, where we evaluate the learned model on both the same-
domain and different domain data. Specifically, we first train a
model on the base-class data from the ImageNet dataset. Then
we evaluate it on both the ImageNet and the Caltech-UCSD bird
dataset [49]. Table 5 presents the comparison results obtained
based on the Resnet-50 backbone and the Avg weight genera-
tor. First, we can observe that learning with weight-centric con-
straint improves performance on both the same-domain and cross-
domain settings. Also, the mid-level features achieve the best accu-
racy in cross-domain testing while the relation-level performs the
worst. This result reveals that the mid-level representation exhibit
strong transferability in the FSL setting. Furthermore, the proposed
multi-level representation achieves the best accuracy on the same-
domain data and obtains comparable performance with the mid-
level features. This indicates that using multi-level features for FSL
help improve generalization ability and handle domain shift prob-
lem.

4.3.2. Analysis and ablation study

Effectiveness of the classifier-centric constraint. To verify the
effectiveness of the classifier-centric constraint, we established the
following experiments. First, we train two ConvNet models on the
base class data, with and without classifier-centric constraints to
learn the two feature spaces. Then we randomly sample some
samples from each class of the base class dataset to construct
two classifiers to classify the test set. Finally, by evaluating their
classification performance, it is indicated in which feature space
the sample can construct a better decision boundary. The exper-
imental results are shown in Table 6. We can observe that the
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Table 1
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Comparison of top-5 accuracy with the state-of-art methods using Resnet-10 on the Low-shot-ImageNet dataset. Best are bolded. * indicates that we get 5 random crops
from each training example, then use the average feature as the weight of novel class.

Novel | Novel Novel | All All
Method n=1 2 5 10 20 n=1 2 5 10 20 n=1 2 5 10 20
Pro. Nets [39] (from [47]) 394 54.4 66.3 71.2 73.9 - - - - - 49.5 61.0 69.7 72.9 74.6
Log. Reg. (from [10]) 38.4 51.1 64.8 71.6 76.6 - - - - - 40.8 49.9 64.2 71.9 76.9
Log. Reg w/G. (from [10]) 40.7 50.8 62.0 69.3 76.5 - - - - - 52.2 59.4 67.6 72.8 76.9
Pro. Mat. Nets [10] 433 55.7 68.4 74.0 77.0 - - - - - 55.8 63.1 711 75.0 771
Pro. Mat. Nets w/G [10] 45.8 57.8 69.0 74.3 774 - - - - - 57.6 64.7 71.9 75.2 77.5
SGM w/G [28]. - - - - - 32.8 46.4 61.7 69.7 73.8 54.3 62.1 71.3 75.8 78.1
Batch SGM [28] - - - - - 23.0 424 61.9 69.9 74.5 49.3 60.5 71.4 75.8 78.5
Mat. Nets [23] (from [10,28])  43.6 54.0 66.0 72.5 76.9 413 51.3 62.1 67.8 71.8 54.4 61.0 69.0 73.7 76.5
Wei. Imprint* + AvgGen [22] 44.05 5542 68.06 7396 7721 38.70 5136 6589 72,60 7621 56.73 63.66 71.04 74.05 7547
+.21 +.16 +.09 +.07 +.05 +.21 +.17 +.09 +.07 +.05 +.13 +.10 +.06 +.04 +.03
AvgGen (with retraining) [21] 45.23 56.90 68.68 7436 77.69 39.33 50.27 63.16 69.56 73.47 54.65 64.69 7235 76.18 78.46
+.25 +.16 +.09 +.06 +.06 +.25 +.16 +11 +.07 +.06 +.15 +.10 +.06 +.04 +.04
AttGen [21] 46.02 5751 69.16 7484 78.81 40.79 5151 63.77 70.07 7402 5816 6521 7272 76.65 78.74
+.25 +.15 +.09 +.06 +.05 +.25 +.15 +.12 +.07 +.06 +.15 +.09 +.06 +.04 +.03
TRAML [51] + AttGen 48.1 59.2 70.3 76.4 79.4 - - - - - 59.2 66.2 73.6 77.3 80.2
MLWC + AvgGen 4822 5877 69.71 7445 7691 4406 55.83 68.15 7336 76.07 5896 6518 71.28 73.63 74.78
+.12 +.09 +.05 +.03 +.02 +.12 +.09 +.05 +.04 +.02 +.07 +.05 +.03 +.02 +.02
MLWC* + AvgGen 49.09 59.66 70.26 7472 77.04 4556 57.12 6885 73.73 76.24 5937 6548 7136 73.63 74.72
+11 +.08 +.04 +.03 +.02 +11 +.09 +.05 +.03 +.02 +.07 +.05 +.03 +.02 +.02
MLWC* + AttGen 50.87 62.13 72,61 77.02 79.67 46.18 5721 68.63 7364 7659 61.72 68.58 7535 78.29 80.03
+.22 +.15 +.09 +.06 +.23 +.15 +.09 +.09 +.07 +.05 +.14 +.08 +.06 +.05 +.03

Table 2

Comparison of top-5 accuracy with the state-of-art methods using Resnet-50 on the Low-shot-ImageNet dataset.Best are bolded. * indicates that we get 5 random crops from
each training example, then use the average feature as the weight of novel class.

Novel | Novel Novel | All All
Method n=1 2 5 10 20 n=1 2 5 10 20 n=1 2 5 10 20
Mat. Nets [23] (from [10])  53.5 63.5 72.7 774 81.2 - - - - - 64.9 71.0 77.0 80.2 82.7
Pro. Nets [39] 49.6 64.0 74.4 78.1 80.0 - - - - - 61.4 71.4 78.0 80.0 81.1
Pro. Mat. Nets w/G [10] 54.7 66.8 77.4 81.4 83.8 - - - - - 65.7 73.5 80.2 82.8 84.5
SGM w/G. (from [10]) - - - - - 45.1 58.8 72.7 79.1 82.6 63.6 71.5 80.0 83.3 85.2
MLWC + AvgGen 57.12 6828 7777 8180 83.72 5348 6505 76,59 8095 83.07 6749 7336 79.87 8198  82.95

+.20 +.14 +.07 +.07 +.04 +.23 +.13 +.08 +.08 +.04 +.14 +.08 +.05 +.05 +.02
MLWC* +AvgGen 5797 69.08 7819 8199 83.80 54.82 6693 77.12 81.22 83.16 68.01 7472 7998 8199 82388

+.20 +.15 +.06 +.07 +.03 +.22 +.05 +.05 +.08 +.03 +.13 +.09 +.05 +.05 +.02
Table 3

Comparison of top-1 accuracy with the state-of-art methods on the Few-shot-Cub dataset. * indicates that we get 5 random crops from each training example, then use the
average feature as the weight of novel class.

Novel | Novel Novel / All All

Method n=1 2 5 10 20 n=1 2 5 10 20 n=1 2 5 10 20
Gen. + Cla [28] (from [22]) - - - - - 18.56 19.07 20.00 20.27 20.88 45.42 46.56 47.79 47.88 48.22
Mat. Nets [23] (from [22]) - - - - - 1345 1475 1665 1818 2577 4171 43.15 4446 4565 4863
Imprinting [22] - - - - - 21.26 28.69 39.52 45.77 49.32 44.75 48.21 52.95 55.99 57.47
Imprinting* [22] - - - - - 21.40 30.03 39.35 46.35 49.80 44.60 48.48 52.78 56.51 57.84
MLWC 3235 39.78 4947 5467 5737 3072 37.65 4817 53,56 5645 49.80 5341 57.87 6046 61.61
MLWC* 33.56 40.82 50.28 54.67 57.53 30.87 39.01 49.17 53.66 56.61 49.96 53.73 58.18 60.30 61.60
Table 4

Comparison of top-1 accuracy with the state-of-art methods on the Few-shot-Cub dataset. * indicates that we get 5 random crops from each training example, then use the
average feature as the weight of novel class.

Novel | Novel Novel [ All All
Method n=1 2 5 10 20 n=1 2 5 10 20 n= 2 5 10 20
Imprinting* [22] (Resnet50*) 32,15 4048 5241 57.93 61.72 2624 3579 4931 5531 5938 5243 56.83 6289 6553 67.27
MLWC 3591 4491 56.95 6248 66.01 3354 4347 5621 6196 65.61 5545 59.58 64.94 67.32 68.78
MLWC* 3696 45.53 5743 63.03 6635 3491 4421 56.81 6252 6596 55.60 59.66 65.02 6746 68.89

feature space learned with cosine softmax loss achieve poor ac-
curacy, that indicates the sample points in this space might be
scattered and not close to the classifier weight. By applying the
classifier-centric constraint, the accuracy is significantly improved.
This demonstrates that the feature space learned with classifier-
centric constraint is more suitable for building classifiers using

samples. We further evaluate the classifier-centric constraint un-
der different evaluation metrics and provide the results in Fig. 7.
We can see that our proposed constraint improves the baseline
consistently in three evaluation metrics. More importantly, the im-
provements under the “ALL/ALL” setting are the most significant,
revealing that the classifier-centric constraint exhibits superiority



M. Liang, S. Huang, S. Pan et al.

Table 5
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The performance of using different levels of representation for few-shot learning on the same task (Generic object classifica-
tion) and another different task (Fine-grained object classification). Top-5 accuracy of the novel categories in the novel label
space (Novel/Novel) is reported. WC denotes our proposed weight-centric constrain. Best are bolded.

Novel classes from ImageNet

Novel classes from CUB2011

Method n=1 2 5 10 20 n=1 2 5 10 20
High-level (baseline) 51.56 63.67 74.78 79.68 82.45 30.55 40.76 53.68 60.79 65.54
High-level (baseline)+WC 54.24 65.71 75.75 81.33 82.80 35.92 47.67 61.92 69.35 73.42
Mid-level 51.59 63.80 75.57 80.60 83.21 35.99 48.40 62.51 70.26 74.92
Relation-level 48.94 58.64 69.23 73.32 75.65 24.45 32.19 40.92 46.18 49.18
Multi-level 55.50 67.51 78.26 82.75 85.00 36.15 48.34 62.44 69.94 74.37
Novel / Novel Novel / All All / All
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Fig. 7. Top-1 Classification accuracy of few-shot setting on CUB set. Here, baseline refers to the feature space learned with cosine softmax loss, WC denotes our proposed

weight-centric constrain.
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Fig. 8. Comparison of the intra-class variance between two feature spaces both learned on base training set. Here, baseline refers to the feature space learned with cosine
softmax loss, WC denotes our proposed weight-centric constrain. Noted that we report the average intra-class variance for each dataset.

Table 6
Top-1 Classification accuracy on CUB Base-class test set using samples as the clas-
sifier in two feature spaces.

Method n=1 2 5 10 20 Classifier
Baseline [21,22] 53.96 62.88 69.55 7156 7342 81.80
Baseline + WC 6993 7494 7830 7899 79.68 81.71

in generalized few-shot learning. Fig. 8 shows a comparison of the
intra-class variance between two feature spaces learned by with
and without weight-centric constraint. It can be seen that training

with weight-constraint reduce intra-class variance on both training
and test set, and also both base and novel class data.

The contribution of each component. We conduct ablation
study to compare the performance of different levels representa-
tion in the FSL setting. Table 7 provides an ablation study on the
Few-shot-imagenet benchmarks to observe the effect of each ele-
ment. On the one hand, we can see that when evaluating only the
novel label space, adding the weight-centric and mid-level com-
ponent in sequence continuously improves the performance. This
demonstrates that both pieces help enhance the model generaliza-
tion ability, which also implies that increasing the prototype-ability
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Novel training example
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Fig. 9. Some successful exemplars using our proposed method. The first column shows a single training image of novel class, all images in the remaining three columns
are correctly predicted by using the proposed multi-level representation. The second column shows some successful predictions using only global-level features but they are
mis-classified if using local or higher-level representation, and so on for the second and the third column.

Table 7

Oblation study experiments on the ImageNet based few-shot benchmark. H, M,and
R refer to High-, Mid-, and relation-level features, respectively. WC refers to using
weight-centric learning strategy.

Novel | Novel Novel / All

n=1 2 5 n=1 2 5
H(baseline) 51.56 63.67 74.78 45.26 58.53 71.80
H+WC 54.24 65.71 75.75 47.95 60.77 72.91
(H+WC)+M 56.96 68.50 78.58 50.79 64.30 76.52
(H+WC+M)+R 57.12 68.28 71.77 53.48 65.82 76.95

and transferability of feature representation can benefit few-shot
learning. On the other hand, incorporating relation-level features
does not further raise the performance in this setting. However, it
shows a significant improvement under the "novel/all” evaluation
metric. This indicates that the relation-level features have weaker
generalization to novel classes but can effectively prevent novel-
class data from being classified into the base categories.

We also provide some prediction results in Fig. 9, which can
be used to intuitively analyze the few-shot learning ability of dif-
ferent representation. For example, the test images in the second
column mostly contain some patterns (e.g., objects or parts of ob-
jects) which are very similar to those occurs in the training exam-
ples, while the similarities between images in the last two columns
and the training images tend to be subtle.

5. Conclusion

This work investigates the problem of feature representation in
few-shot learning. To improve the representation power for un-
seen categories and weight generation capacity in feature learn-
ing, we proposed a multi-level weight-centric representation learn-
ing approach. The method first incorporated mid- and relation-
level features with high-level to enhance representation capacity.

10

Also, a classifier-centric learning strategy was proposed to allow a
few sample features to construct a more discriminative classifier.
Compared with existing methods, the method increases the fea-
sibility of building a discriminative decision boundary based on a
few samples. Also, it improves the transferability for characterizing
novel classes and preserve classification capability for base classes.
In experiments, we extensively evaluate our approach on two low-
shot classification benchmarks and demonstrate its effectiveness
in improving generalization. Our proposed method can also ben-
efit other tasks such as zero-shot learning and image retrieval, in
which feature extractors play a critical role. However, one draw-
back of our approach is that it constructed multi-level features by
concatenating multiple features, introducing redundancy in learn-
ing. Therefore, we will investigate how to learn a compact rep-
resentation from numerous information sources in future work.
In addition, our proposed method may suffer from forgetting the
base-class knowledge when more novel classes are expanded into
the classification model. Thus, our future work will investigate how
to prevent forgetting issues in long-term incremental learning set-
tings.
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