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a b s t r a c t 

Few-shot learning is currently enjoying a considerable resurgence of interest, aided by the recent advance 

of deep learning. Contemporary approaches based on weight-generation scheme delivers a straightfor- 

ward and flexible solution to the problem. However, they did not fully consider both the representation 

power for unseen categories and weight generation capacity in feature learning, making it a significant 

performance bottleneck. This paper proposes a multi-level weight-centric feature learning to give full 

play to feature extractor’s dual roles in few-shot learning. Our proposed method consists of two essential 

techniques: a weight-centric training strategy to improve the features’ prototype-ability and a multi-level 

feature incorporating a mid- and relation-level information. The former increases the feasibility of con- 

structing a discriminative decision boundary based on a few samples. Simultaneously, the latter helps 

improve the transferability for characterizing novel classes and preserve classification capability for base 

classes. We extensively evaluate our approach to low-shot classification benchmarks. Experiments demon- 

strate our proposed method significantly outperforms its counterparts in both standard and generalized 

settings and using different network backbones. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Despite remarkable success made in visual recognition tasks 

1–4] , deep learning models generally lack versatility and extend- 

bility, hindering their applicability in practice. For instance, being 

ata-hungry to learn massive parameters, deep neural networks of- 

en fail to work well in data-scarce environments [5,6] . Besides, a 

rained model’s prediction domain is usually not expandable unless 

e-executing the training process. In response to these deficien- 

ies, there has been increasing effort s devoted to few-shot learn- 

ng (FSL) [7–11] . Moreover, the exploration of FSL is gradually ex- 

anding in various research problems such as FKP recognition [12] , 

edical image classification [13] , object detection [14] , text classi- 

cation [15] , and instance credibility inference [16] . 

FSL refers to a technique that exploits knowledge from base- 

lass data (provided auxiliary training set) to allow models to un- 

erstand new concepts from only a few examples [15,17–20] . Ex- 
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sting approaches to this problem mainly consist of meta-learning 

nd weight-generation based frameworks. The former focuses on 

earning a meta-learner from base-class data to facilitate learn- 

ng a new-task learner. Although meta-learning approaches achieve 

reat success, they often require sophisticated training procedures 

nd are difficult to extend to generalized few-shot learning (GFSL) 

ettings. By contrast, the weight-generation framework delivers a 

ore straightforward and flexible solution. This type of method 

rst learns an embedding space from base-class data and then uti- 

izes the embedding of support set (novel-class training samples) 

o construct the corresponding classifier weights(as illustrated in 

ig. 1 . This learning regime simplifies the few-shot learning prob- 

em by mainly focusing on feature learning and weight generation, 

nabling a trained model’s extendability. 

In the framework, feature learning is crucial due to its 

ual-use mechanism (representing images and constructing 

lassifiers). However, existing methods learn a feature extrac- 

or without considering three essential issues associated with its 

ual-functionality: representation transferability, base-class memo- 

ability, and prototype-ability. The transferability refers to whether 

he learned representation from base-class data is transferable 

o the novel-class data. Recent works [10,21–23] mainly extract 

eatures from the last Conv layer of deep models, leading to less 

ransferability of the feature extractor. This can be attributed to 
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Fig. 1. A general framework of weight generation methods for few-shot learning. 

Learning a good feature extractor plays a vital role in this framework, as it is used 

for novel models to extract image features and generate classifier weights for new 

categories. 
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he fact that higher layer activations with higher specialization to 

ase-class task are less transferable to novel-class task [24] when 

here is a large domain gap between the two tasks. The memora- 

ility and prototype-ability are more related to the quality of the 

enerated classifier weights. A GFSL model requires preserving the 

lassification performance for the base-class data. This require- 

ent necessitates base-class memorability to prevent novel-class 

eights from classifying base-class data to novel classes. The 

rototype-ability refers to the feature extractor’s capacity in 

llowing few-shot examples to approximate their class-specific 

rototype. Current methods attempt to complement these two 

apabilities by learning a weight generation network. Nevertheless, 

imilar to meta-learning approaches, they need training a new 

ask-specific learner for weight generation, limiting the flexibility 

o construct few-shot classification models. Besides, the weight 

enerator learns the required information from extracted features 

ut fails to access more information through the feature learning 

tage. To sum up, the existing weight-generation methods do not 

ully consider the feature extractor’s dual-capacity in FSL, which 

ay be a bottleneck of performance. 

In this paper, we propose a multi-level weight-centric feature 

xtractor to complement the capacity of current weight-generation 

ethods. We first introduce a weight-centric training strategy to 

ncrease the possibility that each sample can approximate its cat- 

gory prototype. Specifically, we fix the classifier weights in the 

atter learning stage and then enforce samples closer to their cor- 

esponding classifier weight in the embedding space. Besides, we 

uild the multi-level feature by incorporating a mid-level and 

elation-level learning branch with high-level feature learning. The 

id-level learning branch extracts mid-level features from in- 

ermediate layers while the relation-level one obtains category- 

elation information from softening predictions. We finally inte- 

rate the multi-level information extraction and the weigh-centric 

trategy into an overall feature learning framework. 

Our proposed method ensures the feature extractor’s compre- 

ensiveness for advancing few-shot learning. On the one hand, 

he weight-centric strategy reduces the intra-class variance, im- 

roving feature representation generalization. It also pushes data 

oints that are closer to the hyperplane far way. This effect indi- 

ectly achieves larger margin classification-boundaries, increasing 

he feasibility of constructing a discriminative decision boundary 

ased on a few samples. On the other hand, the mid-level features 
2 
re more transferable [25] to novel classes, and the relation-level 

epresentation exhibits higher-level abstraction and more specific 

o base categories. Therefore, by jointly representing images us- 

ng these two additional information sources, the resulting model 

as higher transferability for characterizing novel classes and bet- 

er preserves classification capability for base classes. 

We extensively evaluate our approach on two low-shot classifi- 

ation benchmarks in both standard and generalized FSL learning 

ettings. Experiments show that our proposed method significantly 

utperforms its counterparts in both learning settings and using 

ifferent network backbones. We also demonstrate that the mid- 

evel features exhibit strong transferability even in a cross-task en- 

ironment and the relation-level features help preserve base-class 

ccuracy in the generalized FSL setting. 

The contribution of this paper can be summarized as : 

• We propose a weight-centric learning strategy that helps re- 

duce the intra-class variance of novel-class data. 
• we propose a multi-level feature learning framework, which 

demonstrates its strong prototype-ability and transferability 

even in a cross-task environment for few-shot learning. 
• We extensively evaluate our approach on two low-shot classifi- 

cation benchmarks in both standard and generalized FSL learn- 

ing settings. Our results show that the mid-level features ex- 

hibit strong transferability even in a cross-task environment 

while the relation-level features help preserve base-class accu- 

racy in the generalized FSL setting 

. Related work 

Recently proposed approaches to few-shot learning problem can 

e roughly divided into meta-learning based [26–31] and weight- 

eneration based approaches [21–23,32,33] . 

Meta-learning based methods tackle the few-shot learning 

roblem by training a meta-learner to help a learner can effectively 

earn a new task on very few training data [27,28,34–37] . Most 

f these methods are normally designed based on some standard 

ractices for training deep models on limited data, such as finding 

ood weights initialization [27] or performing data augmentation 

28] to prevent overfitting. For instance, Finnn et al. [27] propose to 

earn a set of parameters to initialize the learner model so that it 

an be quickly adapted to a new task with only a few gradient de- 

cent steps [28] ; deal with the data deficiency in a more straight- 

orward way, in which a generator is trained on meta-training data 

nd used to augment feature of novel examples for training the 

earner. Another line of work addresses the problem in a “learning- 

o-optimize” way [29,36] . For example, Ravi et al. [29] train an 

STM-based meta-learner as an optimizer to update the learner 

nd store the previous update records into the external memory. 

hough this group of methods achieves promising results, they ei- 

her require to design complex inference mechanisms [38] or to 

urther train a classifier for novel concepts [27,29] . Our work fo- 

uses on learning a feature extractor with dual functions (ie feature 

epresentation and classifier weight generation) for FSL problems. 

herefore, the major difference from meta-learning techniques is 

hat our method only needs to learn a base model and can con- 

truct new models directly using sample features. 

Weight-genration based approaches mainly learn an embed- 

ing space, in which images are easy to classify using a distance- 

ased classifier such as cosine similarity or nearest neighbor. To 

o so, Koch et al. [32] trains a Siamese network that learns a met- 

ic space to perform comparisons between images. Vinyals et al. 

23] propose Matching Networks to learn a contextual embed- 

ing,with which the label of a test example can be predicted by 

ooking for its nearest neighbors from the support set. Prototypi- 

al networks [39] determine the class label of a test example by 
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Fig. 2. A general weight-generation-based framework for few-shot learning. Here, L 
is the loss function for learning a base model on base-class data. f � and W b are the 

feature extractor and classifier weights of the base model. g(·) is weight generator 

which can be defined or learned from data. M(·) is novel model built for novel 

categories. 
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easuring the distance from all the class means of the support 

et. Since the distance functions of these two works are prede- 

ned, [40] further introduce a learnable distance metric for com- 

aring query and support samples. Ji et al. [41] propose a re- 

eighting mechanism to improve the instance representativeness 

nd an information-guidance mechanism to encode discriminative 

nowledge. Guo and Cheung [42] presents an Attentive Weights 

eneration via Information Maximization strategy that generates 

ptimal classification weights for each query sample within the 

ask by self-attention and cross-attention paths. 

The most related methods to ours are [21,22,43] . These ap- 

roaches learn a feature representation by a cosine softmax loss, 

llowing a few novel examples to construct the classifier. Our pro- 

osed method differs from them in two folds. First, they only learn 

 single level of representation, resulting in a limited representa- 

ion capability, while ours constructs a multi-level model that con- 

iders multiple knowledge sources. Furthermore, those methods do 

ot explicitly consider the prototype-ability (the ability to approx- 

mate the corresponding prototype by one or several sample fea- 

ures) in learning the feature extractor. In contrast, we introduce 

 weight-centric learning strategy that makes it more feasible to 

onstruct classifier weights from a few samples. 

.1. Analyzing the transferability of ConvNets 

Deep learning models are quite data-hungry but nonetheless 

ransfer learning have been proven highly effective to avoid over- 

tting when training larger models on smaller datasets [44–46] . 

hese findings raise interest in studying the transferability of deep 

odels features in recent years. Yosinski et al. [24] experimentally 

how how transferable of each layer by quantifying the generality 

ersus specificity of its features from a deep ConvNet, and suggest 

hat higher layer activations with higher specialization to source 

asks are less transferable to target tasks. Pulkit et al. [47] inves- 

igates several aspects that impact the performance of ConvNet 

odels for object recognition. Hossein et al. [48] identifies sev- 

ral factors that affect the transferability of ConvNet features and 

emonstrates optimizing these factors aid transferring task. How- 

ver, these works mainly explore the transferability and generaliza- 

ion ability of ConvNet features in terms of target datasets where 

he training samples are much more than the few-shot setting. In 

his work, we investigate the capacities of the intermediate layer, 

ast feature layer, and softmax logits to perform few-shot learning 

asks. 

. Methodology 

In this section, we first introduce some general notation used 

hroughout the paper. We first briefly review a general weight- 

eneration-based framework for few-shot learning. We further in- 

roduce our method for learning base models. Finally, we describe 

ow to utilize these base models in few-shot learning. 

.1. Notation 

Let f �(·) ∈ R 

d be a feature extractor parameterized by � and 

 ∈ R 

d×c be a weight matrix of a linear classifier. Here, d is the di-

ension of the output feature and c is the number of labels for the 

lassification task. We further define M(·) as a neural network clas- 

ification model, such that M( f �(x ) , W ) = W 

T f �(x ) given an input

mage x . We denote the training set D train and the test set D test .

lightly different from the general classification setting, few-shot 

earning train a model M(·) on the training data that consists of 

 base- and novel-class dataset, that is D train = D 

b 
train 

∪ D 

n 
train 

. Here,

 

b 
train 

= { (x i , y i ) , y i ∈ Y b } N b 
i =1 

is an abundant dataset while D 

n 
train 

=
 (x i , y i ) , y i ∈ Y n } N n 

i =1 
contains very few samples for each label; Y b 
3 
nd Y n refers to two different label spaces and Y b ∩ Y n = ∅ . We

urther denote the weight matrices W 

b and W 

n which are corre- 

ponding to Y b and Y n respectively. 

.2. Weight-generation-based framework 

Weight-generation-based approaches have gained increasing at- 

ention in recent years, due to its simplicity and flexibility. The 

eneral framework for these methods usually consists of two 

tages: base-model learning and weight generation. As shown in 

ig. 2 , this framework first learns a classification base-model on 

ase-class dataset. In the second stage, based on the feature ex- 

ractor f �(·) and classifier weights W 

b of the base-model, a weight 

enerator g φ(. ) is used to infer the weight vector w given training

et X y = { x y 
1 
, . . . , x 

y 

k 
} . Here, the label y is in an unseen label space

 

n and k is usually a small number. In recent literature, there are 

wo typical weight generators : average-based w a v g = g a v g ( f �(X y )) 

nd attention-based w att = g att 
φ

( f �(X y ) , W 

b ) . The former simply

ompute the mean of the normalized features of training samples, 

hich is expressed as: 

 a v g = 

1 

k 

k ∑ 

i =1 

z i , (1) 

here z i is a L 2 norm of the feature vector f �(x 
y 
i 
) . 

The second one employs an attention-based mechanism to ex- 

loit both the sample features and the base-class weights in gener- 

ting the novel-class weights. The weight computation for an un- 

een label is expressed as: 

 att = φa v g � w a v g + φatt � ( 
1 

k 

k ∑ 

i =1 

K b ∑ 

b=1 

At t (φq z i , k b ) · w b (2) 

here odot is the Hadamard product, φa v g , φatt , φq are learnable 

arameters, At t (., . ) is an attention kernel, and { k b ∈ R d } K b 
b=1 

is a set

f K b learnable keys. 

.3. Multi-level weight-centric (MLWC) representation learning 

Fig. 3 provides an overview of our proposed method. The 

ethod mainly consists of two techniques: a multi-level feature 

xtractor and a weight-centric feature learning strategy. The for- 

er aims to explicitly enforce each single sample feature vector 

loser to its corresponding classifier weight. Specifically, we con- 

truct three levels of feature representations namely mid-level, 
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Fig. 3. An overview of our learning framework for representation learning. The framework first construct three levels of feature representations namely mid-level,high- 

level,and relation-level. For forwarding the networks, the outputs of intermediate layer outputs are detached and fed to the mid-level feature extractor, the output of the last 

conv layer is forwarded to high-level feature extractor, and the prediction logits of high-level branch are detached and input and sent to the relation-level feature extractor. 

The three feature extractors are first trained to converge with the classification loss, and then are further fine-tuned with both the classification and the weight-centric loss. 
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igh-level, and relation-level. The mid-level representation cap- 

ures more subtle discriminative patterns, such as subordinary 

omponents of object parts, while the high-level encodes more 

olistic information. The relation-level is designed to describe the 

nput’s category structural relations, like how the input image re- 

ates to other categories. The second technique intends to obtain 

ultiple representations that encode different levels of semantic 

nformation. Overall, the multi-level extractor improves the repre- 

entation ability by considering multiple sources of information, 

nd the weight-centric strategy increases the feasibility of gener- 

ting classifier weights from few-shot sample features. These two 

echniques can seamlessly join together to provide a simple and 

ffective solution to few-shot learning problems. 

.3.1. Learning weight-centric Feature Embedding 

In this subsection, we first review cosine softmax loss for few- 

hot learning. We then introduce our proposed weight-centric em- 

edding learning strategy. This strategy can be incorporated with 

osine softmax loss to facilitate the subsequent step of generating 

eights from few-shot training examples. 

Cosine Softmax Loss . In standard classification framework, 

oftmax Loss is usually adopted for supervised learning. It gener- 

lly refers to a Softmax Activation plus a Cross-Entropy Loss. Given 

n input (x i , y i ) , the softmax loss function is expressed as: 

 s (x i , y i ) = −log 

(
exp(w 

T 
y i 

f �(x i )) ∑ 

j exp(w 

T 
j 

f �(x j )) 

)
, (3) 

here f �(·) is the feature extractor and w j is the j th column of

he weight matrix W of the classifier layer. 

However, recent works show the softmax loss fails to learn a 

eature extractor that generalizes well to unseen categories [21,22] . 

s discussed previously, the feature extractor of the base model is 

sed to generate weights of novel categories. However, the model 

ransferability gap increases as the distance between tasks grows 

24] . Therefore, the more significant difference between the base- 

nd novel tasks, the poorer performance of the few-shot learning 

odel due to the weak transferability of the feature extractor. To 

ase this issue, Gidaris and Komodakis [21] ; Qi et al. [22] propose 

o adopt cosine softmax loss in learning the base model. Compared 

ith softmax loss, Cosine softmax loss applies l 2 -normalization on 

oth the feature vector and the weight vector before the loss cal- 
4 
ulation, which is expressed as: 

˜ 
 j = 

w j 

‖ w j ‖ 

, ˜ f �(x i ) = 

f �(x i ) 

‖ f �(x i ) ‖ 

. (4) 

This normalization step will cause the softmax function to fail 

o produce a one-hot categorical distribution, making the neural 

etworks hard to converge. As suggested in Qi et al. [22] , a sim-

le solution to this is to introduce a trainable scale factor s into 

o the softmax function. Thus, the cosine softmax loss function is 

xpressed as: 

 cs (x i , y i ;�, W ) = −log 

( 

s · exp( ̃  w 

T 
y i 

˜ f �(x i )) ∑ 

j exp( ̃  w 

T 
j 

˜ f �(x i )) 

) 

. (5) 

ased on this loss function, Gidaris and Komodakis [21] ; Qi et al. 

22] learn the feature extractor by minimizing the cost function 

 cs = 

1 

N 

N ∑ 

i 

(� cs (x i , y i ;�, W )) + λR (W ) , (6)

here λR (W ) is a weight L 2 regularization term. Weight-Centric 

eature learning . As illustrated in Fig. 4 (a) and (b), learning with 

osine softmax loss reduces intra-class variations by comparison 

ith original softmax loss. Thus it increases the feasibility to char- 

cterize an unseen concept with few-shot examples. Gidaris and 

omodakis [21] ; Qi et al. [22] assume that the samples of the same 

lass are concentrated in the feature space learned with cosine 

oftmax loss, then the feature embedding of some random samples 

an be used to approximate the classifier weights. However, this 

ssumption is not strictly held in some cases, such as data with 

arge intraclass variance and small inter-class variance might tend 

o be scattered in the feature space. To ensure that using one or 

ew embedded points of each category can construct a stable deci- 

ion boundary, we explicitly constraint a feature point ˜ f (x i ) should 

e near its classifier weight ˜ w y i after the classifier is learned, and 

he constraint loss is given by 

 cen (x i , w 

∗
y i 
;�) = ‖ f �(x i ) − w 

∗
y i 
‖ 

2 , (7) 

here w 

∗
y i 

represents the sample x i ’s corresponding class weight 

ector, which specifically refers to the y i 
th column of a constant 

atrix W 

∗. Noted we obtain W 

∗ from the classifier layer after 

rst training the model to converge using the cost function L cs . 

o couple the constraint with cosine softmax loss, we also apply 
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Fig. 4. A geometry interpretation for learning feature space with different loss 

functions. 
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 2 -normalization on both the feature vector and the weight vector. 

hus, the weight-centric constraint can be rewritten as 

 cen (x i , w 

∗
y i 
;�) = 

∥∥∥∥ f �(x i ) 

‖ f �(x i ) ‖ 

− w 

∗
y i 

‖ w 

∗
y i 
‖ 

∥∥∥∥
2 

. (8) 

By integrating the cosine softmax loss and the weight-centric 

onstraint, we now have the cost function L . 

 = 

{
L cs L cs > ε
L cen + L cs , otherwise, 

(9) 

here L cen = 

1 
N 

∑ N 
i (� cen (x i , w 

∗
y i 
)) and L cs > ε means that the stop-

ing criteria is not met when training with loss L cs . Since the L cen 

equired W 

∗ as input, we optimize the cost function using a two- 

tage algorithm which is detailed in Algorithm 1 . 

Algorithm 1: Learning weight-centric features. 

Input : Base-class Training data { X, Y } ,feature extractor with 

parameters of �

,linear classifier weights W . Output : Updated � and W 

Initialize parameters � and W while L cs not converge do 

Sample a minibatch of m examples from the training set 

{ x (1) , . . . , x (m ) } with corresponding targets y (i ) ; 

Compute gradient: g � ← − 1 
m 

	 �

∑ 

i L cls (x (i ) , y (i ) ;�, W) ; 

� L cs is computed using eq.6 
Compute gradient: g W 

← − 1 
m 

	 W 

∑ 

i L cls (x (i ) , y (i ) ;�, W) ; 

update � and W ; 

end 

W 

∗ ← − W ; � Frozen classifier weights 
while L centric and L cls not converge do 

Sample a minibatch of m examples from the training set 

{ x (1) , . . . , x (m ) } with corresponding targets y (i ) ; 

Compute gradient: 

g � ← − 1 
m 

	 �

∑ 

i (L cls (x (i ) , y (i ) ;�, W 

∗) + L cen (x (i ) ;�, W 

∗)) ; 
update �; 

end 

As illustrated in Fig. 4 (c), the weight-centric constraint push 

amples closer to their corresponding classifier weights, which 
5 
rings two advantages. First, it enforces the neural network to 

earn a feature space with smaller intra-class variance. Moreover, 

he constraint also implicitly drives samples far away from the de- 

ision boundary. This increases the feasibility of constructing a dis- 

riminative decision boundary based on a small number of sam- 

les. 

.3.2. Multi-level Feature Extractor 

A good representation of generalized few-shot learning is it can 

eneralize well to novel concepts while maximizing its original 

bility to discriminate base categories. A single high-level of fea- 

ure representation usually has limited capacity to meet these cri- 

eria simultaneously. In this subsection, we introduce two addi- 

ional levels of representation namely mid- and relation-level to 

omplement the representative capacity of high-level representa- 

ion. 

High-level feature extractor is a common practice in most ex- 

sting few-shot learning methods. As illustrated in Fig. 5 (1), It takes 

nputs from the last convolutional layer and then maps them into 

n embedding space after applying global-average pooling. This de- 

ign results in the extracted features naturally capture the global 

isual discriminative patterns, because of the high-level feature ab- 

traction source and the property of the pooling operation. 

Mid-level feature extractor aims to obtain features that fo- 

us more on encoding mid-level discriminative patterns. Compared 

ith the high-level features, it exhibits a better generalization 

bility in representing novel concepts but weaker discriminatory 

ower for the base concepts. This can be attributed to the fact 

hat it tends to abstract information that is less specific to the base 

oncepts. A naive scheme to learn mid-level features is to plug an 

dditional global-extractor head on top of the intermediate layers. 

owever, this solution might still learn features more similar to 

he high-level ones because of the global average pooling opera- 

ion, though the input source is switched to the lower layers. To 

void such undesirable effects, we design the mid-level feature ex- 

ractor, shown in Fig. 5 (2). Specifically, we insert a 1x1 Conv layer 

n top of each intermediate layer and employ global-max pool- 

ng to prevent the 1x1 Conv layer from learning global abstraction. 

astly, we concatenate all the intermediate-layer features into one 

nd map it into embedding space to form a compact mid-level rep- 

esentation. 

Relation-level feature extractor. As discussed previously, the 

odel’s generalization to novel concepts can be improved by incor- 

orating the mid-level representation. However, its ability to clas- 

ify base classes is degrading when the label space is expanding 

ith more novel classes (some base-class examples might be mis- 

lassified to novel classes). Thus, we propose to preserve such abil- 

ty by encoding more specific information of base classes. Specif- 

cally, we introduce another relation-level representation that de- 

cribes an input using its structural relationships within the base 

lasses. This representation is more specific to base classes than 

oth the high- and mid-level representation. Though it has a poor 

eneralization to novel concepts, it helps strengthen the classifica- 

ion capacity for base classes. As shown in Fig. 5 (3), the relation- 

evel extractor takes inputs the predicted logits ˜ Y h from the high- 

evel branch. Here, when the ˜ Y h from a trained model is fed to a 

oftmax layer, the outputs will tend to be a one-hot vector, which 

ails to describe the data’s structural relation over classes. There- 

ore, we feed 

˜ Y h to a softmax function with a high temperature, so 

hat it can encode a richer class structural information of the data. 

inally, we use this soften prediction outputs to learn the embed- 

ing space that characterizes the similarity of samples according to 

heir categorical distribution. 

Jointly Learning multiple feature extractors . As shown in 

ig. 3 , we learn the three feature extractors using three classifi- 

ation branches that are all based on a single network backbone. 
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Fig. 5. Sub-network structures for different levels of feature extractor. 

Fig. 6. Utilizing the base models to construct classification models in few-shot learning. We first combine the base modes to obtain a multi-level feature extractor and a 

base-class weight matrix. Then the feature extractor is used to produce a novel-class weight matrix. Finally, we can construct classification models for few-shot learning by 

integrating the feature extractor, base- and novel-class weight matrix. 
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e also apply the weight-centric learning strategy for each branch. 

hus, the overall classification loss and weight-centric loss 

L cs = L 

m 

cs + L 

h 
cs + L 

r 
cs , 

 cen = L 

m 

cen + L 

h 
cen + L 

r 
cen (10) 

espectively. Finally, our overall cost function is obtained by substi- 

uting these two equations into Eq. (9) . 

.4. Few-shot leaning 

In the previous section, we describe how our proposed method 

earns base models on the base-class dataset. In this section, we 

escribe how to utilize these base models to perform few-shot 

earning. This procedure mainly consists of two operations: model 

ombination and weight generation, which are detailed in the fol- 

owing. 

Model combination. After training the base models us- 

ng our proposed method, we have three base models 

( f m 

(x ) , W 

b 
m 

) , M( f h (x ) , W 

b 
h 
) ,and M( f r (x ) , W 

b 
r ) , which denote

he mid-, high-, and relation-level classification model respec- 

ively. We simply combine them into a single model M( f C (x ) , W 

b 
C 
)

y concatenating their normalized features and classifier weights 

eparately. Here, f C (x ) = concat( f m (x ) 
‖ f m (x ) ‖ , 

f h (x ) 

‖ f (x ) ‖ , 
f r (x ) 

‖ f r (x ) ‖ ) forms a 

h 

6 
ulti-level feature extractor and W 

b 
C 

= concat(W 

b 
m 

, W 

b 
h 
, W 

b 
t ) is the

lassifier weight matrix for base categories. Given a test image x b , 

his model can be used to predict the label in the base label space 

 

b , that is argmax (M( f C (x ) , W 

b 
C 
)) ∈ Y b . 

Generating weights for few-shot learning. Now, we can uti- 

ize the feature extractor f C (·) and weight matrix W 

b 
C 

to con- 

truct different models for different few-shot learning settings. We 

rst construct the weight matrix W 

n 
C 

for Y n using a weight gen- 

rator (AvgGen [22] or AttGen [21] ). Then, we can build classifi- 

ation models M( f C (x ) , W 

n 
C 
) and M( f C (x ) , [ W 

b 
C 
, W 

n 
C 

]) for standard

nd generalized few-shot learning scenario respectively. Here, the 

eight matrix W 

n 
C 

is obtained by stacking each weight vector in 

rder according to its label index in Y n . 

Let Y b and Y n denote the base- and novel-label space respec- 

ively, we obtain its corresponding weight vector w 

y by normaliz- 

ng the prototype of the given k training samples { x y 
1 
, . . . , x 

y 

k 
} . 

 

y = 

1 
k 

∑ n 
i =1 f (x y 

i 
) 

‖ 

1 
k 

∑ n 
i =1 f (x y 

i 
) ‖ 

, (11) 

here f (. ) is the multi-level feature extractor derived from the 

ombined base model. Now, Given a unseen label space, we can 

uild classification models M( f (x ) , W 

n ) and M( f (x ) , [ W 

b , W 

n ]) for
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tandard and generalized few-shot learning scenario respectively. 

ere, the weight matrix W 

n is obtained by stacking each weight 

ector in order according to its label index in Y n , W 

b is weight

atrix derived from the combined base model. 

. Experiments 

.1. Datasets and evaluation metrics 

We validate our proposed method on Low-shot-ImageNet 

28] and Low-shot-CUB [22] based on three performance metrics. 

Low-shot-ImageNet contains 193 base categories,300 novel cat- 

gories, 196 base categories, and 311 novel categories respectively. 

he first two groups are made for validating hyper-parameters, the 

emaining two groups are used for the final evaluation. 

Low-shot-CUB is constructed from Caltech-UCSD bird dataset 

49] . The dataset consists of 100 base classes and 100 novel classes. 

ince each category of this dataset contains only about 30 images, 

e repeat 20 experiments and take the average top-1 accuracy. 

Performance evaluation metrics . Few-shot learning methods 

re evaluated differently according to different few-shot learning 

etting. These performance measures mainly differs in the way 

f constructing a test dataset. To evaluate our proposed method 

n both standard and generalized setting, we use three evaluation 

etrics summarized as below: 

1) Novel/Novel: the model’s performance is measured by the 

ccuracy of novel test examples within the novel label space, that 

s D test = { (x i , y i ) ∈ D 

n 
test , y i ∈ Y n } . 

2) Novel/All: the model’s performance is measured only by the 

ccuracy of novel test examples in all label space, that is D test = 

 (x i , y i ) ∈ D 

n 
test , y i ∈ Y b ∪ Y n } . 

3) All: the model’s performance is measured only by the accu- 

acy of all test examples in all label space, that is D test = { (x i , y i ) ∈
 

b 
test ∪ D 

n 
test , y i ∈ Y b ∪ Y n } . 

Here, standard few-shot learning setting only consider 

ovel/Novel as the major performance measure, while the gener- 

lized setting consider results of both Novel/All and All . We report 

esults of these metrics based on multiple tries. Specifically, in 

ur experiments, we randomly select training images of the novel 

ategories and repeat experiments 100 times, and finally report 

he mean accuracies within 95% confidence intervals. 

.2. Network architecture and training details 

Network architecture . We conduct experiments on the Few- 

hot-Imagenet benchmark using ResNet-10 and -50 [1] architecture 

n our learning framework. For experiments on the Few-shot-CUB 

ataset, as Qi et al. [22] obtained their results based on Incep- 

ionV1 [50] , we implement our method based on the same net- 

ork structure for performance comparison. 

Training details . For all experiments on imageNet based few- 

hot benchmarks, we trained our model from scratch for 90 epochs 

n the base classes. The learning rate starts from 0.1 and is di- 

ided by 10 every 30 epochs with a fixed weight decay of 0.0 0 01.

e then fine-tune the model for further with the classifier-centric 

onstraint with a small learning rate 0.0 0 01. For the CUB dataset 

xperiment, all the pre-trained models we used are from the Py- 

orch official model zoo. During the training, the initial learning if 

.001 decreases by 0.1 times at 30 epoch intervals. 

.3. Results and analysis 

.3.1. Low-shot Classification accuracy 

We evaluated the performance of the proposed method on two 

ow-shot benchmarks. 
7 
Low-shot-ImageNet. Tables 1 and 2 provide the comparative 

esults of different techniques using two network backbones on 

he large-scale Few-shot-ImageNet dataset. First, we can observe 

hat some existing methods show significant improvement on one 

valuation metric but minor on another one. For example, both 

eight imprinting [22] and AttGen [21] have better performance 

han Matching Nets [23] in the ”Novel/Novel” setting but similar or 

ven worse results in the ”Novel/ALL” setting. In comparison, our 

pproach consistently achieves the best results on all evaluation 

etrics. Specifically, using the same weight generator AttGen, our 

ethod significantly outperforms the current best model TRAML 

51] in testing both novel-class and all-class classification accu- 

acy. Besides, without learning the weight generator, our proposed 

ethod also achieves a comparable performance to the current 

op-performing methods that require training a weight generator. 

or instance, compared to the TRAML method that needs to learn 

n attention-based weight generator, our approach obtains a sim- 

lar performance using the mean feature as classifier weights. All 

hese results indicate that our learned representation yields a bet- 

er generalization ability and versatility for FSL learning. 

Low-shot-CUB. Since existing method reported on this dataset 

s based on Inception V1 network, we first evaluate our method 

ith the same backbone network. Table 3 shows performance 

omparison result of different approaches. Our proposed method 

utperforms all the comparing method by a large margin in all 

valuation metrics. For instance, our method achieves top-1 ac- 

uracies of 30.72% and 37.65% under the 1 and 2 shot settings 

espectively, the previous best results are 21.40% and 28.69%. To 

valuate out method’s effectiveness on this dataset when using 

ifferent network architecture, we further use the Resnet-50 as 

ackbone for both the Imprinting and our method and compare 

heir performance. Table 4 shows the corresponding results and, 

gain, demonstrates our method’s superior performance in low- 

hot learning. 

Cross-domain performance of low-shot learning . We inves- 

igate the transferability of different levels of representations in 

he FSL setting. To achieve this, we perform a cross-domain eval- 

ation, where we evaluate the learned model on both the same- 

omain and different domain data. Specifically, we first train a 

odel on the base-class data from the ImageNet dataset. Then 

e evaluate it on both the ImageNet and the Caltech-UCSD bird 

ataset [49] . Table 5 presents the comparison results obtained 

ased on the Resnet-50 backbone and the Avg weight genera- 

or. First, we can observe that learning with weight-centric con- 

traint improves performance on both the same-domain and cross- 

omain settings. Also, the mid-level features achieve the best accu- 

acy in cross-domain testing while the relation-level performs the 

orst. This result reveals that the mid-level representation exhibit 

trong transferability in the FSL setting. Furthermore, the proposed 

ulti-level representation achieves the best accuracy on the same- 

omain data and obtains comparable performance with the mid- 

evel features. This indicates that using multi-level features for FSL 

elp improve generalization ability and handle domain shift prob- 

em. 

.3.2. Analysis and ablation study 

Effectiveness of the classifier-centric constraint . To verify the 

ffectiveness of the classifier-centric constraint, we established the 

ollowing experiments. First, we train two ConvNet models on the 

ase class data, with and without classifier-centric constraints to 

earn the two feature spaces. Then we randomly sample some 

amples from each class of the base class dataset to construct 

wo classifiers to classify the test set. Finally, by evaluating their 

lassification performance, it is indicated in which feature space 

he sample can construct a better decision boundary. The exper- 

mental results are shown in Table 6 . We can observe that the 
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Table 1 

Comparison of top-5 accuracy with the state-of-art methods using Resnet-10 on the Low-shot-ImageNet dataset. Best are bolded. ∗ indicates that we get 5 random crops 

from each training example, then use the average feature as the weight of novel class. 

Novel / Novel Novel / All All 

Method n = 1 2 5 10 20 n = 1 2 5 10 20 n = 1 2 5 10 20 

Pro. Nets [39] (from [47] ) 39.4 54.4 66.3 71.2 73.9 - - - - - 49.5 61.0 69.7 72.9 74.6 

Log. Reg. (from [10] ) 38.4 51.1 64.8 71.6 76.6 - - - - - 40.8 49.9 64.2 71.9 76.9 

Log. Reg w/G. (from [10] ) 40.7 50.8 62.0 69.3 76.5 - - - - - 52.2 59.4 67.6 72.8 76.9 

Pro. Mat. Nets [10] 43.3 55.7 68.4 74.0 77.0 - - - - - 55.8 63.1 71.1 75.0 77.1 

Pro. Mat. Nets w/G [10] 45.8 57.8 69.0 74.3 77.4 - - - - - 57.6 64.7 71.9 75.2 77.5 

SGM w/G [28] . - - - - - 32.8 46.4 61.7 69.7 73.8 54.3 62.1 71.3 75.8 78.1 

Batch SGM [28] - - - - - 23.0 42.4 61.9 69.9 74.5 49.3 60.5 71.4 75.8 78.5 

Mat. Nets [23] (from [10,28] ) 43.6 54.0 66.0 72.5 76.9 41.3 51.3 62.1 67.8 71.8 54.4 61.0 69.0 73.7 76.5 

Wei. Imprint ∗ + AvgGen [22] 44.05 55.42 68.06 73.96 77.21 38.70 51.36 65.89 72.60 76.21 56.73 63.66 71.04 74.05 75.47 

±. 21 ±. 16 ±. 09 ±. 07 ±. 05 ±. 21 ±. 17 ±. 09 ±. 07 ±. 05 ±. 13 ±. 10 ±. 06 ±. 04 ±. 03 

AvgGen (with retraining) [21] 45.23 56.90 68.68 74.36 77.69 39.33 50.27 63.16 69.56 73.47 54.65 64.69 72.35 76.18 78.46 

±. 25 ±. 16 ±. 09 ±. 06 ±. 06 ±. 25 ±. 16 ±. 11 ±. 07 ±. 06 ±. 15 ±. 10 ±. 06 ±. 04 ±. 04 

AttGen [21] 46.02 57.51 69.16 74.84 78.81 40.79 51.51 63.77 70.07 74.02 58.16 65.21 72.72 76.65 78.74 

±. 25 ±. 15 ±. 09 ±. 06 ±. 05 ±. 25 ±. 15 ±. 12 ±. 07 ±. 06 ±. 15 ±. 09 ±. 06 ±. 04 ±. 03 

TRAML [51] + AttGen 48.1 59.2 70.3 76.4 79.4 - - - - - 59.2 66.2 73.6 77.3 80.2 

MLWC + AvgGen 48.22 58.77 69.71 74.45 76.91 44.06 55.83 68.15 73.36 76.07 58.96 65.18 71.28 73.63 74.78 

±. 12 ±. 09 ±. 05 ±. 03 ±. 02 ±. 12 ±. 09 ±. 05 ±. 04 ±. 02 ±. 07 ±. 05 ±. 03 ±. 02 ±. 02 

MLWC ∗ + AvgGen 49.09 59.66 70.26 74.72 77.04 45.56 57.12 68.85 73.73 76.24 59.37 65.48 71.36 73.63 74.72 

±. 11 ±. 08 ±. 04 ±. 03 ±. 02 ±. 11 ±. 09 ±. 05 ±. 03 ±. 02 ±. 07 ±. 05 ±. 03 ±. 02 ±. 02 

MLWC ∗ + AttGen 50.87 62.13 72.61 77.02 79.67 46.18 57.21 68.63 73.64 76.59 61.72 68.58 75.35 78.29 80.03 

±. 22 ±. 15 ±. 09 ±. 06 ±. 23 ±. 15 ±. 09 ±. 09 ±. 07 ±. 05 ±. 14 ±. 08 ±. 06 ±. 05 ±. 03 

Table 2 

Comparison of top-5 accuracy with the state-of-art methods using Resnet-50 on the Low-shot-ImageNet dataset.Best are bolded. ∗ indicates that we get 5 random crops from 

each training example, then use the average feature as the weight of novel class. 

Novel / Novel Novel / All All 

Method n = 1 2 5 10 20 n = 1 2 5 10 20 n = 1 2 5 10 20 

Mat. Nets [23] (from [10] ) 53.5 63.5 72.7 77.4 81.2 - - - - - 64.9 71.0 77.0 80.2 82.7 

Pro. Nets [39] 49.6 64.0 74.4 78.1 80.0 - - - - - 61.4 71.4 78.0 80.0 81.1 

Pro. Mat. Nets w/G [10] 54.7 66.8 77.4 81.4 83.8 - - - - - 65.7 73.5 80.2 82.8 84.5 

SGM w/G. (from [10] ) - - - - - 45.1 58.8 72.7 79.1 82.6 63.6 71.5 80.0 83.3 85.2 

MLWC + AvgGen 57.12 68.28 77.77 81.80 83.72 53.48 65.05 76.59 80.95 83.07 67.49 73.36 79.87 81.98 82.95 

±. 20 ±. 14 ±. 07 ±. 07 ±. 04 ±. 23 ±. 13 ±. 08 ±. 08 ±. 04 ±. 14 ±. 08 ±. 05 ±. 05 ±. 02 

MLWC ∗+ AvgGen 57.97 69.08 78.19 81.99 83.80 54.82 66.93 77.12 81.22 83.16 68.01 74.72 79.98 81.99 82.88 

±. 20 ±. 15 ±. 06 ±. 07 ±. 03 ±. 22 ±. 05 ±. 05 ±. 08 ±. 03 ±. 13 ±. 09 ±. 05 ±. 05 ±. 02 

Table 3 

Comparison of top-1 accuracy with the state-of-art methods on the Few-shot-Cub dataset. ∗ indicates that we get 5 random crops from each training example, then use the 

average feature as the weight of novel class. 

Novel / Novel Novel / All All 

Method n = 1 2 5 10 20 n = 1 2 5 10 20 n = 1 2 5 10 20 

Gen. + Cla [28] (from [22] ) - - - - - 18.56 19.07 20.00 20.27 20.88 45.42 46.56 47.79 47.88 48.22 

Mat. Nets [23] (from [22] ) - - - - - 13.45 14.75 16.65 18.18 25.77 41.71 43.15 44.46 45.65 48.63 

Imprinting [22] - - - - - 21.26 28.69 39.52 45.77 49.32 44.75 48.21 52.95 55.99 57.47 

Imprinting ∗ [22] - - - - - 21.40 30.03 39.35 46.35 49.80 44.60 48.48 52.78 56.51 57.84 

MLWC 32.35 39.78 49.47 54.67 57.37 30.72 37.65 48.17 53.56 56.45 49.80 53.41 57.87 60.46 61.61 

MLWC ∗ 33.56 40.82 50.28 54.67 57.53 30.87 39.01 49.17 53.66 56.61 49.96 53.73 58.18 60.30 61.60 

Table 4 

Comparison of top-1 accuracy with the state-of-art methods on the Few-shot-Cub dataset. ∗ indicates that we get 5 random crops from each training example, then use the 

average feature as the weight of novel class. 

Novel / Novel Novel / All All 

Method n = 1 2 5 10 20 n = 1 2 5 10 20 n = 1 2 5 10 20 

Imprinting ∗ [22] (Resnet50 ∗) 32.15 40.48 52.41 57.93 61.72 26.24 35.79 49.31 55.31 59.38 52.43 56.83 62.89 65.53 67.27 

MLWC 35.91 44.91 56.95 62.48 66.01 33.54 43.47 56.21 61.96 65.61 55.45 59.58 64.94 67.32 68.78 

MLWC ∗ 36.96 45.53 57.43 63.03 66.35 34.91 44.21 56.81 62.52 65.96 55.60 59.66 65.02 67.46 68.89 
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eature space learned with cosine softmax loss achieve poor ac- 

uracy, that indicates the sample points in this space might be 

cattered and not close to the classifier weight. By applying the 

lassifier-centric constraint, the accuracy is significantly improved. 

his demonstrates that the feature space learned with classifier- 

entric constraint is more suitable for building classifiers using 
8 
amples. We further evaluate the classifier-centric constraint un- 

er different evaluation metrics and provide the results in Fig. 7 . 

e can see that our proposed constraint improves the baseline 

onsistently in three evaluation metrics. More importantly, the im- 

rovements under the “ALL/ALL” setting are the most significant, 

evealing that the classifier-centric constraint exhibits superiority 
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Table 5 

The performance of using different levels of representation for few-shot learning on the same task (Generic object classifica- 

tion) and another different task (Fine-grained object classification). Top-5 accuracy of the novel categories in the novel label 

space (Novel/Novel) is reported. WC denotes our proposed weight-centric constrain. Best are bolded. 

Novel classes from ImageNet Novel classes from CUB2011 

Method n = 1 2 5 10 20 n = 1 2 5 10 20 

High-level (baseline) 51.56 63.67 74.78 79.68 82.45 30.55 40.76 53.68 60.79 65.54 

High-level (baseline) + WC 54.24 65.71 75.75 81.33 82.80 35.92 47.67 61.92 69.35 73.42 

Mid-level 51.59 63.80 75.57 80.60 83.21 35.99 48.40 62.51 70.26 74.92 

Relation-level 48.94 58.64 69.23 73.32 75.65 24.45 32.19 40.92 46.18 49.18 

Multi-level 55.50 67.51 78.26 82.75 85.00 36.15 48.34 62.44 69.94 74.37 

Fig. 7. Top-1 Classification accuracy of few-shot setting on CUB set. Here, baseline refers to the feature space learned with cosine softmax loss, WC denotes our proposed 

weight-centric constrain. 

Fig. 8. Comparison of the intra-class variance between two feature spaces both learned on base training set. Here, baseline refers to the feature space learned with cosine 

softmax loss, WC denotes our proposed weight-centric constrain. Noted that we report the average intra-class variance for each dataset. 

Table 6 

Top-1 Classification accuracy on CUB Base-class test set using samples as the clas- 

sifier in two feature spaces. 

Method n = 1 2 5 10 20 Classifier 

Baseline [21,22] 53.96 62.88 69.55 71.56 73.42 81.80 

Baseline + WC 69.93 74.94 78.30 78.99 79.68 81.71 
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n generalized few-shot learning. Fig. 8 shows a comparison of the 

ntra-class variance between two feature spaces learned by with 

nd without weight-centric constraint. It can be seen that training 
9 
ith weight-constraint reduce intra-class variance on both training 

nd test set, and also both base and novel class data. 

The contribution of each component. We conduct ablation 

tudy to compare the performance of different levels representa- 

ion in the FSL setting. Table 7 provides an ablation study on the 

ew-shot-imagenet benchmarks to observe the effect of each ele- 

ent. On the one hand, we can see that when evaluating only the 

ovel label space, adding the weight-centric and mid-level com- 

onent in sequence continuously improves the performance. This 

emonstrates that both pieces help enhance the model generaliza- 

ion ability, which also implies that increasing the prototype-ability 
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Fig. 9. Some successful exemplars using our proposed method. The first column shows a single training image of novel class, all images in the remaining three columns 

are correctly predicted by using the proposed multi-level representation. The second column shows some successful predictions using only global-level features but they are 

mis-classified if using local or higher-level representation, and so on for the second and the third column. 

Table 7 

Oblation study experiments on the ImageNet based few-shot benchmark. H, M ,and 

R refer to High-, Mid-, and relation-level features, respectively. WC refers to using 

weight-centric learning strategy. 

Novel / Novel Novel / All 

n = 1 2 5 n = 1 2 5 

H(baseline) 51.56 63.67 74.78 45.26 58.53 71.80 

H + WC 54.24 65.71 75.75 47.95 60.77 72.91 

(H + WC)+M 56.96 68.50 78.58 50.79 64.30 76.52 

(H + WC+M)+R 57.12 68.28 77.77 53.48 65.82 76.95 
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nd transferability of feature representation can benefit few-shot 

earning. On the other hand, incorporating relation-level features 

oes not further raise the performance in this setting. However, it 

hows a significant improvement under the ”novel/all” evaluation 

etric. This indicates that the relation-level features have weaker 

eneralization to novel classes but can effectively prevent novel- 

lass data from being classified into the base categories. 

We also provide some prediction results in Fig. 9 , which can 

e used to intuitively analyze the few-shot learning ability of dif- 

erent representation. For example, the test images in the second 

olumn mostly contain some patterns (e.g., objects or parts of ob- 

ects) which are very similar to those occurs in the training exam- 

les, while the similarities between images in the last two columns 

nd the training images tend to be subtle. 

. Conclusion 

This work investigates the problem of feature representation in 

ew-shot learning. To improve the representation power for un- 

een categories and weight generation capacity in feature learn- 

ng, we proposed a multi-level weight-centric representation learn- 

ng approach. The method first incorporated mid- and relation- 

evel features with high-level to enhance representation capacity. 
10 
lso, a classifier-centric learning strategy was proposed to allow a 

ew sample features to construct a more discriminative classifier. 

ompared with existing methods, the method increases the fea- 

ibility of building a discriminative decision boundary based on a 

ew samples. Also, it improves the transferability for characterizing 

ovel classes and preserve classification capability for base classes. 

n experiments, we extensively evaluate our approach on two low- 

hot classification benchmarks and demonstrate its effectiveness 

n improving generalization. Our proposed method can also ben- 

fit other tasks such as zero-shot learning and image retrieval, in 

hich feature extractors play a critical role. However, one draw- 

ack of our approach is that it constructed multi-level features by 

oncatenating multiple features, introducing redundancy in learn- 

ng. Therefore, we will investigate how to learn a compact rep- 

esentation from numerous information sources in future work. 

n addition, our proposed method may suffer from forgetting the 

ase-class knowledge when more novel classes are expanded into 

he classification model. Thus, our future work will investigate how 

o prevent forgetting issues in long-term incremental learning set- 

ings. 
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