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Classification on structure data, such as graphs, has drawn wide interest in recent years. Due to the lack
of explicit features to represent graphs for training classification models, extensive studies have been
focused on extracting the most discriminative subgraphs features from the training graph dataset to
transfer graphs into vector data. However, such filter-based methods suffer from two major disadvan-
tages: (1) the subgraph feature selection is separated from the model learning process, so the selected
most discriminative subgraphs may not best fit the subsequent learning model, resulting in deteriorated
classification results; (2) all these methods rely on users to specify the number of subgraph features K,
and suboptimally specified K values often result in significantly reduced classification accuracy.

In this paper, we propose a new graph classification paradigm which overcomes the above
disadvantages by formulating subgraph feature selection as learning a K-dimensional feature space
from an implicit and large subgraph space, with the optimal K value being automatically determined. To
achieve the goal, we propose a regularized loss minimization-driven (RLMD) feature selection method
for graph classification. RLMD integrates subgraph selection and model learning into a unified frame-
work to find discriminative subgraphs with guaranteed minimum loss w.r.t. the objective function. To
automatically determine the optimal number of subgraphs K from the exponentially large subgraph
space, an effective elastic net and a subgradient method are proposed to derive the stopping criterion, so
that K can be automatically obtained once RLMD converges. The proposed RLMD method enjoys
gratifying property including proved convergence and applicability to various loss functions. Experi-
mental results on real-life graph datasets demonstrate significant performance gain.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

a common practice is to transfer graphs into vectors [5-9] in
structure space or in Euclidean space, so that traditional machine

Recent years have witnessed an increasing number of applica-
tions involving objects with structural relationships, including
chemical compounds in Bioinformatics [1], brain networks [2],
image structures [3], and academic citation networks [4]. For these
applications, graph is a natural and powerful tool for modeling and
capturing dependency relationships between objects.

Unlike conventional data, where each instance is represented in a
feature-value vector format, graphs exhibit node-edge structural
relationships and have no natural vector representation'. As a result,
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learning algorithms such as Support Vector Machines (SVM) and
Decision Tree can be applied. In the structure space (also referred to
as quotient space) [7,8], the distance relations and nature of the
original data are preserved, and some geometrical and analytical
concepts such as derivatives of functions on structures can be
determined, so that it can be applied to solve problems in structural
pattern recognition. In the Euclidean space, the structural relations
may be lost, but it provides simpler and more powerful analytical
techniques for data analysis. Therefore, numerous approaches
[10,9,11-18] have been proposed to represent graphs in Euclidean
space. The key idea of transferring graphs into vectors in Euclidean
space is to extract a set of subgraphs as features and use the
presence/absence of features to represent each graph. From a feature
selection perspective [19], these subgraph-based algorithms follow a
filter approach for graph classification, i.e., the subgraph feature
selection and the subsequent model training are separated into two
steps. In summary, existing filter-based graph classification methods
roughly fall into the following two categories.
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Fig. 1. Subgraph-based methods for graph classification from the feature selection perspective. TFM methods (A) sequentially perform frequent subgraph mining @, optimal
feature selection @, and classifier learning process ®. DFM methods (B) integrate the feature selection @ into the frequent subgraph mining @ process. Our embedding
method RLMD (C) unifies all steps (®®@®) into a whole framework, and iterates until convergence @.

Two-step Filter Methods (TFMs): This type of method first mines
a set of frequent subgraphs as features and then applies a feature
selection procedure to the discovered subgraphs, and uses the
selected subgraph features to learn a classifier (e.g., an SVM or
Naive Bayes), as shown in Fig. 1(A). An early study [9] has shown
that using frequent subgraphs as features can achieve reasonable
good classification results. However, because TFMs separate sub-
graph feature discovery and feature evaluation into two steps, they
may suffer from severe disadvantage in that the number of
discovered subgraphs will grow exponentially when the minimum
support value for subgraph mining is low. As a result, it will make
the feature selection step heavily time-consuming. On the other
hand, for relatively high minimum support values, many good
subgraphs are pruned out because they do not meet the frequency
requirement, so cannot be found to represent graphs.

Direct Filter Methods (DFMs): To improve the subgraph feature
selection efficiency, numerous approaches [11,12,15-17] have been
proposed to combine subgraph mining and feature selection into one
step, representing a direct discriminative feature selection [18] scheme.
So the feature selection is integrated into a subgraph mining process
(Fig. 1 (B)), with pruning rules derived from the anti-monotone
property of the significance (p-value) of each graph being used to
reduce the search space. While DFMs substantially overcome the
subgraph feature selection bottleneck, they also have a number of
major disadvantages: (1) The subgraph selection is separated from the
model learning process, so the selected subgraphs features may not
best fit the underlying learning model, and (2) all these methods
require users to specify the number of subgraph features K, whereas
the optimal number of subgraphs K required for training a good
classifier for graph classification is unknown and difficult to deter-
mine. Although subgraphs are selected using optimized measures, due
to the redundancy inside the feature set, the accuracy of the classifiers,
when varying the number of selected subgraph features K, is highly
variable, as shown in Fig. 2. This is a common problem for all existing
filter-based graph classification methods.

The above observations motivate the proposed research which
aims to integrate subgraph mining, feature selection, and model
training into one single framework (Fig. 1(C)) with the optimal
number of subgraphs K being automatically determined for graph
classification. To achieve this goal, we formulate subgraph feature
selection as the problem of learning a K-dimensional feature space
from a huge subgraph space in order to result in minimum
regularized loss on the training data as follows:
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Fig. 2. Classification accuracy for filter subgraph-based methods w.r.t. different
numbers of subgraphs on the NCI-1 chemical compound dataset. IG is a TFM
method which uses information gain to select subgraphs, whereas gHSIC [12] is a
DFM method. All methods use SVM as a base classifier. The optimal number of
subgraph features K is crucial, but difficult to decide for filter methods. In
comparison, the proposed method (RLMD) automatically finds 180 best subgraphs
and achieves the highest accuracy, which is 6% more accurate than the second best
method.

where {x;,...,x,} are the vector representations of the training
graphs, £ is a loss function measuring the difference between the
prediction f(x;) and the true label y;, and R(w) is a regularization
term on parameters w to avoid over-fitting.

Indeed, the optimization in (1) has been widely studied [20-22]
in machine learning community, but mainly for data with vector
format. Several significant challenges remain for graph data:

1. Implicit Subgraph Features: For graph classification, no subgraph
features are readily available (i.e., x; is unknown) for training
the model in (1). Instead, the feature space used to represent
graphs is implicit and needs to be discovered by subgraph
mining procedure as needed.

2. K-dimensional Features from Huge Subgraph Space: The number
of subgraph candidates representing graphs is exponentially
large. Finding an optimal number of K subgraphs for different
graph datasets (in order to result in best classifiers), is crucial
but has not been addressed by existing research.

In this paper, we propose a unified regularized loss minimization-
driven (RLMD) graph classification framework. Our theme is to
progressively select the most discriminative subgraph features
from the training data in order to achieve minimum regularized
loss for a well defined objective function. To integrate subgraph
selection into the model learning process (Challenge 1), we
formulate an objective function and design a subgradient method
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to induce a measurement to assess the utility of each subgraph, so
that the best subgraph features can be identified and incremen-
tally included to optimize the objective function for maximum
performance gain. To determine the optimal K value for each
dataset (Challenge 2), we use an elastic net [21] and derive a
stopping condition, so that the K value can be automatically
obtained when the algorithm converges. By using the automati-
cally determined optimal K value, as shown in Fig. 2, RLMD finds
180 best subgraphs and achieves the best performance, which is
6% more accurate than the second best method.

The main contributions of this paper are summarized as
follows:

® We propose an embedded and theoretically convergent graph
classification algorithm, which can automatically determine the
optimal number of subgraphs K for graph classification. This is
a unified approach in the sense that (1) it can employ any
differentiable loss function (including least squares, exponen-
tial, and logistic loss functions) for graph classification; and
(2) it integrates subgraph mining, feature selection, and model
learning into one single framework.

® We generalize the column generation technique of gBoost [23]
for graph classification, and demonstrate that gBoost [23] is a
special case of our loss minimization algorithm.

® We propose the use of elastic net (which integrates two
sparsity-inducing regularization norms, #;-norm and #,-norm)
to produce a sparse and robust solution for discriminative
subgraph selection.

® We derive a branch-and-bound rule according to the subgra-
dient of our objective function to prune search space for
optimal subgraph mining.

® Experimental results show that our algorithm RLMD outp-
erforms two-step filter methods (TFMs), direct filter methods
(DFMs), and gBoost algorithm with significant perfor-
mance gain.

2. Related work

Our work is closely related to graph-based learning and graph
classification.

2.1. Graph-based learning

Learning from data with dependency structures has been
commonly addressed by existing research. Instead of considering
samples as LLD observations, graph-based learning takes the
relationships/correlations between samples to ensure effective
learning. For example, graph-based approaches have been popu-
larly used to propagate labels in semi-supervised learning [24-26],
where training samples are connected through one or multiple
graphs. A recent method [27] considers preserving global and local
structures inside the training data for feature selection. For large
scale networks, predicting linkage relationships between nodes
(i.e. link prediction) can be used for friendship recommendation in
social networks [28], or suggesting potential interactions between
proteins in bioinformatics research. A recent work [29] proposed
to use latent feature kernels to support link prediction on sparse
graphs. All above methods consider a large scale network with
thousands (or millions) of integer-connected nodes in the net-
work. In contrast, we consider small graph classification problem,
in which each graph has a label indicating the property of the
graph, and the graph normally contains tens or several hundreds
of nodes. The purpose is to predict the label of the graph by using
node and structure information inside the graphs, for purposes

such as chemical compound activity prediction [1] and gender
classification using magnetic resonance connectome (i.e. brain-

graph) [2].
2.2. Graph classification

Existing methods for graph classification [18,10,9,11-17,23,
30,31] can be roughly categorized into two groups: similarity-
based methods and vector representation-based methods.

2.2.1. Similarity-based methods

These approaches aim to directly learn global similarities
between graphs by using graph kernels [9,32-34] or graph
embedding [35]. Global similarities are then fed to similarity-
based classifiers, such as KNN or SVM, for learning. One clear
drawback of global similarity-based approaches is that the simi-
larity is calculated based on global graph structures, such as
random walks or embedding space. Therefore, it is not clear which
substructures are more important for classifying graphs into
different classes.

2.2.2. Vector representation-based methods

Another branch of methods transfer graphs into vector repre-
sentations in structure space or in Euclidean space. In structure
space [7,8], geometrical and analytical concepts such as the angle
between structures and the derivatives of functions on structures
can be obtained, so that the structural pattern recognition pro-
blems can be formulated as optimization problems with certain
cost functions. In Euclidean space, the goal is to transfer graphs
into vector representations in Euclidean space so existing analy-
tical techniques can be applied for data analysis. Methods in this
category are mainly filter-based approaches, including two-step
filter methods (TFMSs) or direct filter methods (DFMSs).

TFMs are straightforward approaches for graph classification
which simply decompose frequent subgraph generation and
selection as two separated steps. An early work [9] has shown
that learning an SVM classifier based on the discovered frequent
subgraphs can achieve reasonably good accuracy for graph classi-
fication. On the other hand, research [16,15] also indicates that
TFM methods may result in a bottleneck for the subsequent
feature selection module. Specifically, the number of frequent
subgraphs will grow exponentially if the minimum support
threshold is low, which imposes a great challenge for the sub-
sequent feature selection task. This challenge has motivated many
direct filter methods (DFMs), which seek to integrate subgraph
discovery and feature selection into one step.

For DFMs (a review on this category can be found in [18]), a key
issue is to define a proper measurement to assess the utility of
each subgraph. Yan et al. [ 17] proposed a LEAP algorithm to exploit
the correlation between structural similarity and significance
similarity, so that a branch-and-bound rule can be derived to
prune out unpromising searching space efficiently. Ranu and Singh
[16] proposed a scalable GraphSig algorithm, which is able to mine
significant subgraphs with low frequencies. Thoma et al. [15]
propose a CORK algorithm to find subgraph features. Recently,
researchers have extended DFM to other graph applications, and
have proposed effective algorithms such as gSemi [11] for the
semi-supervised setting, gCGVFL [36] for multi-view learning,
gHSIC [12] for multi-label classification, and our recent multi-
graph classification for classifying graph bags, each containing
multiple graphs [37,38].

Although filter methods for graph classification have been
extensively studied, they all suffer from two major disadvantages:
(1) the feature selection is not linked to the model learning
process. As a result, the selected subgraph features may not best
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fit the underlying learning algorithms; and (2) the optimal number
of subgraphs K for graph classification is difficult to decide and
often varies from dataset to dataset, and inappropriately specified
K value often results in significantly reduced classification accu-
racy. This is the common drawback for filter-based methods [19].

Embedded Methods: Our algorithm belongs to the embedded
approach which integrates the subgraph selection into the model
training process. In this subcategory, Saigo et al. [23] proposed a
gBoost (its variants for imbalanced graph classification [39,40] and
cost-sensitive learning [41] are proposed recently) algorithm
which formulates the graph classification as a linear program. As
will be elaborated in Section 4.6, our algorithm is more general in
the sense that it can adopt any differentiable loss function and use
more robust regularization to produce better performance. In fact,
gBoost [23] can be considered as a special case of our loss
minimization problem.

3. Problem Definition

Definition 1. Connected Graph: A graph is denoted by
G=W,E,L={L1,L;}, A={A1, Ay}), where V is the vertex set,
E<V x Vis the edge set, A= {A;, A4y} with A; and A, being the
set of labels for vertices and edges, respectively; and L= {L;,L,},
Ly : V— Ay, Ly : E— A, are labeling functions that assigns labels to
a node or an edge, respectively. A connected graph is a graph such
that there is a path between any pair of vertices.

In this paper, we focus on connected graphs and assume that each
graph G has a class label y, ye Y ={—1, +1}. We only focus on
binary-class classification tasks, but our methods can be easily
extended to multi-class tasks.

Definition 2. Subgraph: Given two graphs G=.,E,L=
{L1,La}, A={A1, A2}) and g, = (V. E L' = (L}, Ly}, A' = (A}, AY)), g
is a subgraph of G (i.e., g, = G) if there is an injective function f:
V'V, such that v(a, b) e E', we have (f(a.fb)) €E, Li(a)= Li(f (a)),
Ly(b) = Li(f (b)), Ly(a,b)=Ly(f(a),f(b)). If g is a subgraph of G
(g, =G), G is a supergraph of g (G2 g).

Subgraph-based Graph Classification: Given a set of labeled graphs
T ={(G1,¥1)s .-, (Gn,y,)}, subgraph-based graph classification aims
to select an optimal set of discriminative subgraphs F; from 7,
and learn a classification model from the reduced subgraph space
F1 to predict previously unseen test graphs with a maximum
accuracy. Set 74 is optimal if the classifier learned from F; has the
highest classification accuracy, compared to classifiers trained
from any subset of 7. A major feature of our method is that it
can automatically determine the best set of subgraph features to
represent each graph datasets without requiring users to specify
the number of subgraph features. This essentially advances the
existing subgraph feature-based graph classification methods from
finding the most discriminative subgraph features to finding the
best subgraph set for maximum accuracy gain.

4. Regularized loss minimization for graph classification

To support graph classification, state-of-the-art algorithms
[23,10] use a set of subgraphs discovered from the training graphs
as features, where each subgraph g, can be used to represent a
graph G; as follows:

hg, (Gp) =21(gy = G —1. 2

Here I(a) =1 if a holds, and 0 otherwise. This rule simply maps a
graph G; into +1 if g, = G;, or —1 otherwise.

Let 7 ={gy,....,&n) be the full set of subgraphs for the training
graphs. We can use F as features to represent each graph G; into a
vector space as X; = {fg,(G)), ..., hg, (G;)}, with xll‘:hgk(G,-). In the
following subsection, G; and x; are used interchangeably as they
both refer to the same graph. Given the full subgraph features 7,
the prediction function for the graph x; is a linear classifier:

f@)=x-w+b= > wihg (G)+b )
greF

where w =[wy, ..., wp] is the weight vector for all features F, and

b is the bias of the model. The predicted class of x; is + 1 if f(x;) > 0

or —1 otherwise. Note that in practice, subgraph space F is

implicit and exponentially large, i.e., the number of subgraphs

grows exponentially with respect to the number of nodes.

4.1. Regularized loss minimization formulation

In this paper, we propose to learn a K-dimensional feature
space from the implicit and large subgraph space F to achieve the
lowest regularized empirical risks for the graph dataset, with K
being automatically determined. Eq. (1) can be reformulated as the
following objective function:

. L1
min J(w,b)=min_>  L(y;,Xi - w+b) +r1 1wl +7r2Iwi3 4
s 1‘:‘1 \_W_’R

c

The first term C measures the loss on the training graphs, where
L(y;,f(x;)) can be any loss function measuring the misclassification
penalty of a graph G;. The second part R consists of regularization
terms to enforce sparse and robust solutions. Parameters y; and
are used to trade-off these parts (y; > 0,7, > 0). For the regulariza-
tion, our objective is to obtain a sparse and stable solution on w, i.
e., low dimensional subgraph features for final graph classification.
Here, we combine both #; and #, norm, which is known as elastic
net in machine learning [21]. The motivation of our regularization
is as follows: The #;-norm regularizer (3 ,|wy|) can produce
solutions with many coefficients being 0, which is known as lasso
[20] and has been widely applied for variable selections.

Although #; regularization can produce a sparse solution, it
suffers from two major disadvantages: (1) the number of selected
variables is limited by the number of observations; and (2) the
lasso penalized model can only select one variable from a group
of correlated variables and does not care which one is selected
[21]. In contrast, #, regularization, which is widely used in SVM
formulation (lw]l3 = 3¢, [w|?), can produce more stable and
robust classification results. However, #, formulation cannot
produce a sparse solution. By combining #; and #, norm, known
as elastic net [21], we can overcome these issues and enjoy the
sparse and stable properties.

4.2. Sparse subgraph learning: challenges and solution overview

Challenges: For explicit vector data with moderate feature size,
the problem defined in (4) can be effectively solved in traditional
supervised learning. However, for graph data the challenges are
evident: (1) the feature set F is unavailable (implicit) unless we
enumerate all subgraphs from the training graphs, which is NP-
complete; and (2) the whole subgraph set is exponentially large,
and only a small subset of subgraphs are useful for classifiers to
achieve maximum graph classification accuracy.

Solution Overview: To solve the aforementioned challenges, we
propose a regularized loss minimization-driven (RLMD) subgraph
selection method for graph classification. Driven by our formula-
tion in (4), our principle is to iteratively mine the best subgraph
feature to reduce the empirical loss on the training graphs. To this
end, we resort to the subgradient method in the functional space
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to define the utility of each subgraph, and embed the feature
selection/ranking into the subgraph mining/enumeration process.
To handle the exponentially large subgraph space, we derive an
effective branch-and-bound pruning scheme to reduce the search
space. After a new subgraph is selected, we include and re-solve
the new restricted objective function of Eq. (4) by using currently
selected subgraphs. To find optimal K value, we derive a stopping
criterion for our feature selection procedure based on the sub-
gradient in the functional space, so that K can be automatically
obtained once the algorithm converges.

Logistic Loss Function: A Running Example. Our method is based
on the gradient/subgradient on the functional space of the
objective function (4). In this paper, we use the logistic loss
function as an example to illustrate how subgraph selection is
performed by subgradient methods, and the logistic loss function
is given as follows:

L(y;.f(x) = log (1+exp{ —yf(x;)}) ()

Note that our algorithm is a general method in the sense that any
other differentiable loss function, such as least square loss
L(y.f)=1/2(y—f,)? or exponential loss £(y.f,) = exp{—yf,}, can
be directly used in our algorithm. As discussed latter in Section 4.6,
our method is also applicable to convex locally Lipschitz but non-
differentiable loss functions such as the hinge loss used by the
(margin) perceptron and linear SVM.

The partial derivative of the loss term C in (4) on the subgraph
feature g, is defined as aC/ow. For logistic loss function,

0£(y,,f (%)) of (%;)

5W/< n,, Cof(x) (Xz) Wy
I
== Z ]+eny(Xw) Zylalx< (6)
Here, o; = —1/n(1+¢"/®)) can be regarded as a weight asso-

ciated with graph G; for the subgraph mining process.
4.3. RLMD subgraph selection for graph classification

Because we aim to learn a sparse solution of subgraph features
(K-dimensional feature space) from graph data, some subgraphs/
features g, with zero weights, i.e.,, w, =0 will not be used for
learning the classification model. Thus it makes sense to partition
the subgraph features F into two disjoint subsets 7 and Fj. F
stores active features which are used to learn the classification
model and this set is frequently updated as desired, and 7>
includes unselected graphs with 0 weights (ie, for
g€ F2,w,=0). Then we can iteratively select the best feature
from F, to F, and solve the following restricted subproblem:

. L
Minge(w, b)=min= >~ £(y;,2(6) - w-+b) +71 Wl +7 Wi
b —_—

R

)

= J(w(t),b(t)) (7)
where x;(t) is the feature representations for graph G; based on the
active set F; in the tth iteration, and (w(t), b(t)) is the solution of
Eq. (7). Note that 7.(w,b) is used here to denote the restricted
subproblem Eq. (7) while 7 (w, b) is referred to original problem in
(4).

The optimal number of subgraphs K can be automatically
determined by setting K= |F;| once the algorithm converges.
Note that given a solution (w(t), b(t)), the loss term C" in (7) equals
to C in (4) because the prediction of graph mainly depends on the
active set Fq, ie., ¢'=C. In the following, we will derive the
stopping condition of our algorithm, and prove its convergence.

Stopping Condition for Optimal K value: Our objective function
(4) is convex and non-smooth, i.e., it may be non-differentiable at

a point w. When it is non-differentiable at w, we can compute its
generalized gradient (i.e., subgradient) instead. According to the
optimization conditions, when reaching the optimum, we will
have

aC
0 Gm"‘h O+ 27, Wy 3

where o, is the subgradient with respect to wy

{ sign(wy) :wi#0
oxe

ZWkZO

where sign(a) =1 if a > 0 otherwise — 1. According to Egs. (8) and
(9), we can now state the optimal condition for our sparse
subgraph learning problem.

Proposition 1. Optimal Solution: Let W = [W, ..., Wn]. Suppose that
(W, b) is the optimal solution of our objective function (4), then Egs.
(10) and (11) hold.

aC . N

v, =0 if w,#0 (10)
aoC . N

|M| <y; if wy=0 (11)

Eq. (11) holds because for w, =0, the third term of Eq. (8)

disappears. Combining (8) and (9) will result in (11).

To reduce the objective value 7, in (7), we propose to select a
subgraph in F, whose weight violates Eq. (11), and update the
selected active set F; with the newly selected feature and re-
optimize the restricted subproblem Eq. (7) with current features.
This process will repeat until no candidate violates Eq. (11). In
other words, Eq. (11) is a stopping condition and determines the
number of subgraphs being selected for RLMD's subgraph selec-
tion process.

Utility of Subgraphs: Eq. (11) can be used naturally to induce a
criterion for quantifying the utility value of a subgraph. The larger
|aC/owy| is, the more informative it will be for reducing the
objective function. Accordingly, we formally define the informative
score as follows:

Definition 3. Informative Score: For a subgraph pattern g, its
informative score for graph classification is defined as follows:

n

080 = oy | = 131 = 3 v (12)

where o; = fm.

Note that the informative score directly depends on the weight of
each graph «;, which is calculated based on the active set Fj.
Intuitively, the best subgraph of F, is the one with the maximum
informative score, because it is more likely to violate the stopping
condition (11).

RLMD Algorithm: Algorithm 1 illustrates the detailed steps of
RLMD for graph classification. Initially, the weights for all training
graphs are equally set as 1/n, and the active set F is initialized to
be empty.

In the next step, the algorithm mines an optimal subgraph g*
from F, which has the highest informative scores defined by Eq.
(12). This step involves a subgraph mining procedure, which will
be addressed in the next subsection. On steps 4-5, if current
optimal subgraph no longer violates the optimal condition (11),
the algorithm terminates. Here, we have relaxed the convergence
condition to ¢ tolerance; this is because in the last few iterations,
the maximum score will only change subtly (we set ¢ =0.005 in
our experiments).
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Algorithm 1. Regularized loss minimization-driven subgraph
selection (RLMD) for graph classification

REQUIRE
{(G1,¥1), .--»(Gn,y,)} : Training Graphs;
Smax: Maximum number of iterations;
ENSURE
w, b: Parameters for classifier model
liaj=1/n; F1<@; t<0;
2:WHILE ¢ < Spqx do
3: Mine an optimal subgraph features g* with maximum
informative score defined by (12) ;//Algorithm 2;
4:IF ©(g*) <y, +¢ then
5:break;
6:end if
7. F1<F1lUg";
8:Solve (7) based on F; to get the new solution (w(t), b(t));
9: Update the graph weights on each training graph

- 1
U= T o))

10: tt+1;
11:end while
12: K=|F1l;
return

w, b;

On step 7, we add the newly selected subgraph g* to the
existing subgraph set F;, and re-solve the following restricted
subproblem Eq. (7). To solve this restricted objective function, we
use the MALSAR toolbox? in our experiments. It is worth noting
that because this step only involves a very small number of
features, it is very efficient in practice.

Subsequently, the algorithm updates the weight «; for each
graph G;. This will help compute the derivative of oC/ow, for
subgraph mining in next round. After the algorithm terminates,
the optimal number of subgraphs K can be easily obtained as
K=|F1| =t on step 12.

Note that our algorithm 1 generalizes the column generation
technique in gBoost [23] by iteratively selecting the most violated
subgraph in each iteration until convergence. Our algorithm
1 relies on ¢ and y;, which serve as a stopping condition to
determine K. In practice, ¢ is a subtle value insensitive to the
algorithm performance. Meanwhile, y; is much easier to set than
asking users to specify K values because y; is chosen in a much
smaller range, as we will demonstrate in Section 5.2.4.

4.4. Theoretical study

Theorem 1. (Convergence Property) Algorithm 1 guarantees that the
restricted objective function (7) will monotonically decrease.

Proof 1. Suppose in the tth iteration, the optimal objective value
based on current t features (i.e., |Fi|=t) is obtained with
(w(b), b(t)), i.e.,

-1 n
TW(©).bO) == > L(y;.Xi(0) - WO +b(D)_
i=1

+71 WOl + 7 IlW)113 = (C+TR)|wity.by

R=TR

then in the t+ 1th iterations, the optimal objective value for Eq. (7)
is

ming e, 1 (W, b) = Min(C+R) < (C+R)j o) = T (WD), b(©)

2 http://www.MALSAR.org

Here [w(t), 0] means that the weights for subgraphs selected in the
tth iteration remain unchanged while the weight for newly
selected subgraph in the (t+ 1)th iteration is 0.

Thus the objective value of the restricted problem Eq. (7) based
on the currently selected features F; always monotonously
decreases in two successive iterations. Because the objective
function value is non-negative (bounded), we can ensure that it
will finally converge as iteration continues. The proof is complete.

Suppose the algorithm converges in the Kth iteration with a
solution (w(K),b(K)), and the objective value for Eq. (7) is
Jxw(K),b(K)). By adding m—K zeros for subgraphs in F, to
w(K), ie., w(K) = [w(K),0--], we obtain a solution (W(K),b(K)) for
Eq. (4).

Corollary 1. Optimal Solution Guarantees: If Algorithm 1 converges
with solution (w(K), b(K)) for Eq. (7), then (W(K), b(K)) is an optimal
solution for Eq. (4).

Proof 2. According to our Proposition 1, (W(K), b(K)) is an optimal
solution of Eq. (4), because Yw, =0 (g, € F2), we have 6(gy) <71
based on our stopping condition. Thus we will have

TxW(K), b(K)) = T (W(K), b(K)) = min7(w, b)

where [ (w(K),b(K)) and J(W(K),b(K)) refer to the objective
values of the restricted subproblem Egs. (7) and (4), respectively.

We have proved that objective value for Eq. (7) is monoto-
nously decreasing (Theorem 1) and its recovered solution
(W(K),b(K)) is an optimal solution to Eq. (4) (Corollary 1).

4.5. Optimal subgraph mining

In order to mine optimal subgraph g* on step 3 of Algorithm 1,
we need to perform the subgraph enumeration procedure. In
RLMD, we employ the frequent subgraph mining-based algorithm
gSpan [42]. The key idea of gSpan is that each subgraph has a
unique DFS Code, which is defined by a lexicographic order of the
discovery time during the search process. By employing a depth
first search strategy on the DFS Code tree (where each node is a
subgraph), gSpan can enumerate all frequent subgraphs efficiently.

During the subgraph mining process, the search space is
exponentially large, which requires an effective pruning scheme
to reduce the search space. In this subsection, we will derive the
upper-bound of the informative score for each subgraph, which
helps prune the search space and speed up the subgraph mining.

Theorem 2. Upper-bound Score: Let g and g be two subgraph
patterns, and g = g', for the subgraph g, we define

A@=2 Y o«

{ilyi= +18€eGi)
Axg) =2 > a
{ilyi=-18€eGi)

n

A= ay;

t=1

é(g):{max{|Al(g)—A3,|A2(g)|} A3 >0

max {|A2(g)+As], |A1(@]}: A3<0

then 6(g') < &(g), where 6(g') is defined in (12).
Proof 3. We start with the definition of @(g’):
n
@) =1 yjaix
i=1

=1y [21g =G)—1]|

i=1
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n

=12 yiai— Y ayl

g2 <G i=1
=|A1(g)—Ax(g)—As3|

max{|A1(g)—Asl,|A2g)|}: A3=0
| max{|Ax(g)+As], |A1(g)]}: A3<O

max{|A1(g)—Asl, [ A2@1}: A3=0
— | max{|Ax(g)+As],[A1(@)]}: A3<O

=0(g)

The first inequality holds because for «; <0, A1(g’) <0 and
Ay(g’) <0, so the upper-bound depends on As. If A3 >0, A(g)
and As will have different signs, then the upper-bound is the
maximum between {|A1(g’)—As]|,|A2(g’)|}. The case is similar for
As < 0. The second inequality holds because |A{(g')| < |A1(g)| and
[A2(g)] < |Ax(g)| forgsg'.

Theorem 2 states that for any super graph of a subgraph g, its
informative score is upper-bounded by &(g). This rule can prune
unpromising candidates effectively.

Algorithm 2. Optimal subgraph mining.

REQUIRE:
{(G1,¥1), ---»(Gn,yp)} : Training graphs;
a; . Weight for each graph example;
F1: Already selected subgraph set;

ENSURE:
g*:The optimal subgraph;
1: n=0;
2: WHILE Recursively visit the DFS Code Tree in gSpan do
3: g, current visited subgraph in DFS Code Tree;
4: IFg, has been examined then
5: continue;
6: endiF
7: Compute scores 6(g,) for subgraph g, according (12);
8: iF g,¢ 71&0(g,) > n then
9= @(gp);
10: g% g3
11: end IF

12: IF 6(g,) >  then

13: Depth-first search the subtree rooted from node g;
14: end if

15: end WHILE

16: return g*;

Optimal Subgraph Exploration Algorithm: Our optimal subgraph
mining algorithm is listed in Algorithm 2. The minimum value 7 in
the optimal set is initialized in step 1. Duplicated subgraph
features are pruned in steps 4-5, and the informative score 6(gy,)
for g, is calculated in step 7. If g, is not selected before (g,¢F1)
and 6(g,) is larger than », we replace the optimal subgraph g* with
the current g, and update the optimal score 5 (steps 8-11).

A branch-and-bound pruning rule, according to Theorem 2, is
subsequently used to prune the search space on step 12. Lastly, the
optimal subgraph g* is returned in step 16.

The above pruning process is a key feature of our algorithm,
because we do not require a support threshold value for subgr-
aph mining (whereas all filter subgraph mining methods will
require users to predefine a threshold value in order to discover
subgraphs).

4.6. Relation to gBoost

Our RLMD subgraph selection algorithm advances the existing
column generation style techniques employed in gBoost [23] for
graph classification. The learning objective function for gBoost is

l n
max p—1 3¢

PW,E vn -1

m
SLY; Y g (G)Wi+& = p;
k=1

Z:lzlwkzl;

Wi >0,¢>0; (13)

From [43], we know that this formula is equivalent to the
following linear programming:

m n
min /Z we+C Y &

k=1 i=1

m
sty Y hg Gowe+&=1;
k=1
W >0,8>0; (14)

Eq. (14) is actually a #; SVM formulation, and can also be
formulated as the regularized loss minimization formulation
problem:

n
min [wly+C Y Ly(;.f&:) (15)
i=1
Here, £y(y;,f(%;)) = max(1 —y;f(x;), 0), which is known as hinge loss
in machine learning.

Compared to our objective function in (4), we can find that
gBoost Eq. (15) is a special case of Eq. (4), with the #, regulariza-
tion term being 0. Although the hinge loss function is non-
differentiable, our subgradient method still applies, as long as
daC/owy in (6) is properly defined. This observation shows the
following advantages of our algorithm: (1) gBoost employs a hinge
loss function which is similar to SVM and requires the problem to
be formulated as a linear programming. Our algorithm generalizes
and advances gBoost by removing the linear programming con-
straint and can employ any differentiable loss function, in addition
to the logistic loss function considered in our paper. This general-
ization has great attractiveness in many applications, especially
when the probability estimation for classification is required (the
logistic function can provide some probabilistic information com-
pared to the hinge loss function); (2) while gBoost employs ¢,
norm regularization to obtain a sparse solution, our algorithm
considers an additional norm #,. This combined norm (known as
elastic net) enables a sparse and more stable solution.

5. Experiment
5.1. Experimental settings

Benchmark Data: We validate the performance of the proposed
algorithm on two types of graph classification datasets.

Anti-cancer activity prediction (NCI): The NCI graph collection® is
a benchmark for predicting the biological activity of small mole-
cules for different types of cancers. Each NCI dataset belongs to a
bioassay task for anticancer activity prediction, such as Breast
cancer or Leukemia cancer. Each molecule is represented as a
graph, with atoms representing nodes and bonds denoting edges.
A molecule is positive if it is active against a certain type of cancer,

3 http://pubchem.ncbi.nlm.nih.gov
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Table 1
Datasets used in experiments

ID #Pos #Total Learning tasks

1 1793 37,349 Non-small cell lung
33 1467 37,022 Melanoma

41 1350 25,336 Prostate

47 1735 37,298 Central nerv sys

81 2081 37,549 Colon

83 1959 25,550 Breast

109 1773 37,518 Ovarian

123 2715 36,903 Leukemia

145 1641 37,043 Renal

or negative otherwise. Table 1 summarizes nine NCI graph
classification tasks used in our experiments, where columns 2-4
denote the number of positive molecules, the total number of
graphs, and the type of cancer of each dataset. In our experiments,
we randomly select 1000 graphs from each dataset with balanced
class distributions for graph classification.

Predictive Toxicology Challenge Dataset (PTC): The PTC challenge
includes a number of carcinogenicity classifications for the tox-
icology prediction of chemical compounds.” The dataset we
selected contains 417 compounds with four types of test animals:
MM (male mouse), FM (female mouse), MR (male rat), and FR
(female rat). Each compound has labels selected from {CE, SE, P, E,
EE, IS, NE, N}. Similar to [44], we set {CE, SE, P} as positive labels,
and {NE,N} as negative labels.

Baseline Methods: In our experiments, we consider three types
of baseline methods, namely the two-step filter methods (TFMs),
direct filter methods (DFMs), and embedded methods, as follows:

® |G+SVM is a TFM method that simply mines a set of frequent
subgraphs, and then performs feature selection by using
Information Gain. A SVM classifier is trained by using selected
subgraph features for graph classification.

® TOP+SVM is similar to IG+SVM except that it selects the top K
subgraphs based on their frequency rather than their informa-
tion gain values.

® gSemi+SVM [11] is a DFM method, which integrates the feature
selection into the subgraph mining process. The measurement
for feature selection mainly considers the must-link and cannot
link constraints between graph samples within the same or
between different classes.

® gHSIC+SVM [12] is another DFM method which exploits the
correlations between features and labels.

® gBoost [23] is a state-of-the-art embedded method which
formulates the feature selection as a linear problem and selects
subgraph features which best fit the objective function.

® RLMD is our proposed method which employ a logistic loss
function together with an elastic net for regularization, and
automatically determines optimal number of subgraphs K.

We conduct 10-fold cross-validation on all graph datasets and
report the average results and standard errors of 10 folds in the
final result. The parameters for y; are selected from {0.005,0.
01,0.03,0.05}, and y, is selected from {0.01,0.03,0.05}. We will
further analyze the impact of y; and y, in wider ranges in
Section 5.2.4. For the filter methods (IG+SVM, TOP+SVM, gSe-
mi+SVM, and gHSIC+SVM), the minimum support for frequent
subgraph mining is set to 10% on NCI graph datasets and 1% on
PTC classification tasks, and an SVM classifier is trained with C
parameter from the range {0.1,1,10,100, 1000,10000}. For the

4 http://www.predictive-toxicology.org/ptc/

gBoost algorithm, the parameter v is selected from {0.1, 0.2, 0.3,
0.4}. Following [23], we select the best average results of 10-fold
cross-validation for each baseline algorithm by varying these
parameters, which represents the best performance each baseline
can achieve.

For fairness of comparison, we increase the number of features
to be selected for the filter methods (IG+SVM, TOP+SVM,
gSemi+SVM, and gHSIC+SVM), and increase the iterations for
the embedded methods (gBoost and RLMD), then collect and
compare the performance of all algorithms under the same
number of features. We set Spax =200, which defines the max-
imum number of features used to learn the classifier models. Note
that for RLMD, the algorithm may stop before reaching the
maximum iterations/subgraphs we set, i.e., the optimal K is
obtained. When RLMD stops, the optimal number of subgraph
features has been discovered and RMLD will not add additional
subgraphs to the feature set. We also compare RLMD under the
optimal subgraph value to other baselines with the same number
of K features (the purpose is to show that the optimal subgraph
features discovered by RLMD are indeed optimal for graph
classification).

5.2. Experimental results

5.2.1. Results on NCI graph dataset

For the NCI graph datasets, we vary the number of selected
subgraph features from 20 to 200 for filter methods, and the
number of iterations for gBoost and RLMD from 1 to 200. The
accuracies and AUC values are shown in Fig. 3.

Comparison with Filter methods: The results in Fig. 3 show that
with the increase in the number of features/iterations, the filter
methods (TOP+SVM, IG+SVM, gSemi+SVM, and gHSIC+SVM)
are inferior to RLMD. This is because filter methods separate the
feature selection module from the model learning process. The
subgraph features selected from filter methods may not fit the
underlying learning model very well (we use SVM in our experi-
ments). This is actually an observed common drawback of filter
methods [19]. The performance among these filter-based methods
varies from one graph dataset to another, and none of them
significantly outperforms others. For instance, gSemi+SVM out-
performs TOP+SVM, IG+SVM, and gHSIC+SVM on NCI-1 (Fig. 3
(A)) when the number of selected graphs is considerably large
(> 160), but is worse than gHSIC on NCI-109 (Fig. 3(G)). This may
be attributed to the inherent differences underneath the graph
datasets.

How many subgraphs to select: Another drawback of filter
methods, shown in our experiments, is that the performance of
filter methods varies significantly w.r.t. different numbers of
selected features (K). Indeed, all these filter methods only select
subgraph features with maximum discriminative score regardless
of the redundancy among the features. Adding redundant features
may decrease the performance of an algorithm. Further analysis of
subgraph features is presented with a case study in the next
subsection.

In contrast, for embedded methods, the above drawbacks can
be handled effectively. Our algorithm RLMD unifies the feature
selection and model learning into a whole framework, so that the
feature selection process is driven by the well-defined objective
function, and the selected features can further enhance the
learning models. At the same time, RLMD is guaranteed to be
convergent given an appropriate y; value, which means that we do
not need to specify the total number of selected graphs K. For
instance, in Fig. 3(A), RLMD reaches convergence with 180
features.

RLMD vs. gBoost: It is evident that RLMD outperforms gBoost
for most datasets. This is mainly because gBoost only uses #;-norm
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Fig. 3. The classification accuracy and standard error on NCI dataset w.r.t. the number of selected graphs. The optimal number of subgraphs selected by RLMD (once it
converges for all 10 folds experiments) is marked by a star s at x-axis. Sub figures A-I: NCI 1, 33, 41, 47, 81, 83, 109, 123, and 145.
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Table 2
Averaged accuracies and standard errors on NCI graphs with optimal K.

ID RLMD

TOP+SVM IG+SVM gHSIC+SVM gSemi+SVM gBoost
1 0.759 , 0014 0.686 - 0.019 0.687 1 0.018 0.677 1 0018 0.700 4+ 0,015 0.724 . 0,009
33 0.769 ., .00s 0.701 4 0.011 0.687 1 0.019 0.703 ; 0.012 0.697 ; 0.015 0.739 . 0.008
41 0.755 . 0,009 0.677 +. 0.017 0.649 . 0015 0.672 ; 0015 0.670 . 0.009 0.740 ., o008
47 0.738 ., 0.009 0.683 ; 0.013 0.652 ; 0.015 0.665 . 0.012 0.690 4 0,012 0.714 1 0.014
81 0.740 . o010 0.679 40012 0.660 4 0,014 0.659 . 0.015 0.658 ., 0.009 0.725 4 0013
83 0.726 . 9012 0.644 1 0012 0.632 4 0012 0.658 . 0011 0.639 . 0.020 0.708 . 0.016
109 0.742 , o010 0.657 4 0.016 0.683 . 0.009 0.677 4 0.012 0.661 . 0.017 0.721 1 0015
123 0.707 .. 0.010 0.609 - 0.019 0.647 1 0,012 0.648 . 0.012 0.635 ; 0012 0.663 . 0.013
145 0.764 . 0015 0.704 4+ 0.013 0.695 4 0.012 0.676 1 0.013 0.697 . 0.020 0.734 . 0018
= \ \'\\\ [ N 1
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Fig. 4. Case study: comparison of discriminative subgraph features discovered by different algorithms. Subgraph features with high similarities are grouped and highlighted
in the dashed rectangles. Subgraphs mined by filter methods are similar to each other and share high redundancy.

Table 3
Accuracies and standard errors on PTC graphs with optimal K for 10-fold cross-validation.

ID RLMD

TOP+SVM IG+SVM gHSIC+SVM gSemi+SVM gBoost
MR 0.655 . 0,013 0.606 . 0.024 0.607 . 0.025 0.596 . 0.019 0.601 . 0,020 0.608 . 0.027
MM 0.664 . 0019 0.060 - 0.025 0.599 . 0.023 0.613 + 0,021 0.603 . 9.019 0.622 . 9018
FR 0.704 . o015 0.607 - 0.029 0.584 . 0.029 0.635 . 0.026 0.619 + 0.023 0.678 .. 0.008
FM 0.615 . o018 0.592 . 031 0.594 . 0.026 0.581 . 9,021 0.575 4 0.018 0.603 . 9,017
Table 4
AUC values and standard errors on PTC graphs with optimal K for 10-fold cross-validation.
ID RLMD TOP+SVM IG+SVM gHSIC+SVM gSemi+SVM gBoost
MR 0.681 . 0.021 0.597 . 0.025 0.596 - 0.025 0.560 - 0,021 0.580 - 0,021 0.649 + 0.033
MM 0.680 .. o020 0.593 ; 0.025 0.590 . 025 0.583 . 0024 0.600 . 022 0.600 . 034
FR 0.673 . 0.022 0.600 . 0.029 0.575 . 0.029 0.618 . 0.021 0.623 . 0,021 0.640 . 0.026
FM 0.614 . o013 0.585 1 0032 0.587 1 0.024 0.582 1 0021 0.580 1 0017 0.583 1 9017

regularization to produce a sparse solution. As pointed out in [21], be included/excluded. As a result, RLMD results in a similar sparsity

the lasso (#;-norm) has several drawbacks: (1) when the number of
features (m, which is exponentially huge) is much bigger than the
number of observations (n), the #; norm selects at most n variables
before it saturates; and (2) when the pairwise correlations in a group
of variables are very high, lasso tends to select only one variable from
the group and does not discriminate which one it selects. In contrast,
RLMD uses an elastic net (combination of #; and #, norm), which
encourages a grouping effect, where strongly correlated features will

of representation to gBoost, but often outperforms gBoost.

Overall Performance with Optimal K: In Table 2, we summarize
the performance of our algorithm under optimal K value with
other methods, where filter methods use the same number of
subgraphs (K) for graph classification, and gBoost runs until
convergence. The result in Table 2 clearly demonstrates that RLMD
outperforms two-step filter methods (TOP+SVM and IG+SVM),
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direct filter methods (gHSIC+SVM and gSemi+SVM), and gBoost
algorithm in NCI datasets.

5.2.2. Case study: subgraph feature comparison

In this subsection, we use NCI-1 dataset as a case study to
investigate subgraphs discovered by different algorithms. In our
experiments, the top-10 subgraph features are discovered and
illustrated in Fig. 4.

It is evident that the features for all filter methods (TOP, gSemi,
and gHSIC) share high correlations. For the gSemi algorithm, for
instance, the top-10 subgraphs form 3 groups. In each group, the
subgraph features are very similar to each other. This is because
the subgraph mining algorithm follows the depth-first-search
(DFS) scheme, and subgraphs from the same sub-tree are very
close to each other in terms of their geometrical structure. Because
these methods consider each subgraph independently, the sele-
cted subgraphs may have high redundancy, which imposes a great
challenge in determining the optimal K subgraphs for graph
classification and also causes fluctuating results when the K values
are varied.

In contrast, the subgraph correlations for gBoost and RLMD are
much smaller. The subgraphs discovered by gBoost and RLMD are
highly overlapping (the first 5 subgraphs are identical). As pointed
out by [21], #; regularization tends to select only one subgraph
from a group of features and is not selective about which one is
included, thus the redundancy among the features in gBoost is
minimal. By using elastic norm, RLMD retains several group effects
(some discriminative features may be included and excluded
simultaneously), and usually achieves better results. This result is
consistent with observations reported in [21] for vector data.

5.2.3. Results on PTC tasks

We also conducted extensive experiments on the PTC datasets.
The accuracies and AUC values (i.e., the area under ROC curves) are
reported in Tables 3 and 4, where the results are obtained after
RLMD converges, and K=200 for all filter methods.

The results in Tables 3 and 4 show that RLMD achieves
considerable performance gains over all filter methods (TFM and
DFM) and gBoost algorithm for all PTC datasets. Note that for PTC
classifications, AUC values are more important because they are all
imbalanced classification tasks.

Table 5
Impact of different y; values on NCI-1 dataset with y, = 0.03, Spax = 200.

n 0 0.01 0.03 0.05 0.15
#Selected subgraphs 200 180 130 65 0
Accuracy 0.775 0.759 0.711 0.679 0.5
AUC 0.831 0.811 0.795 0.713 0.5

Accuracy
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5.2.4. Parameter analysis

In this subsection, we study the impact of parameters y; and y,
on algorithm performance. Both y; and y, values are selected from
{0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.15, 0.2}, and the results under
10-fold cross-validation on NCI-1 and NCI-33 are shown in Fig. 5.

Impact of y; values: The experimental results in Fig. 5 show that
y1 plays a more important role for the final classification model.
With the increase of y; from 0 to 0.2, the classification perfor-
mance drops rapidly in terms of accuracy.

To better understand the impact of y;, we also summarize the
number of subgraphs selected with different y; values in Table 5.
The results show that increasing y; values will result in fewer
subgraphs being selected for the final classifier model, because a
larger #; norm regularizes more elements as 0. For y; =0, there is
no sparse solution. In other words, every subgraph should be used
for graph classification. In this case, RLMD will only terminate
when all subgraphs are incorporated for learning the model, or the
maximum number of iterations S, is reached. As the subgraph
space is exponentially large, it is impractical to use all subgraph
features to learn the model. The algorithm relies on Sy.x to
terminate (200 is set in our experiment). The result shows that
y1=0 even achieves better classification result, which is attributed
to the fact that although #; regularization introduces a sparse
solution, it may be biased in some applications [45], so the
accuracy may drop. For other cases with y; being considerably
large (y; =0.5), the regularization term dominates the objective
function (4) with no subgraph being used for classification, which
results in poor classification accuracy.

Note that the convergence property of our algorithm is depen-
dent on y;. In our experiments, we notice that y; is very easy to set
(in a small range [0.01,0.03]) for obtaining satisfactory results. This
is much easier than requiring users to specify the number of
subgraph features K needed for each graph dataset, because users
may not have any prior knowledge about the selection of K values
for different datasets, and different K values often result in
significant changes in the algorithm performance.

Interplay between y, and subgraph selection: We further com-
pare the common subgraphs selected by different y; values, and
report the results in Fig. 6. The results show that the subgraphs
selected by using a smaller y; values contain many subgraphs
which are selected by using a larger y; value. This observation is
further evident in Fig. 6(E) and (F). The reason is that a smaller y,
value will result in more subgraph features to be selected, which
increases the possibility of covering a small subgraph set selected
by using a larger y; value. In other words, a slightly smaller 4
value will result in more subgraph feature candidates to be
explored and be beneficial for the classification task.

Impact of y, values: We also vary y, from 0 to 0.2, and report the
results in Table 6. The results show that a small regularization
value y, =0.03 outperforms the case of y, =0, where the ¢,

Accuracy

Fig. 5. The accuracies with different y; and y, values (A) NCI 1, and (B) NCI 33.
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The overlapping of subgraphs with different y, values
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Fig. 6. The overlapping of subgraphs (common subgraphs vs. different subgraphs) for different y; values on NCI-1 dataset with a 70-30% splitting on the NCI-1 dataset, i.e.,
70% graphs are randomly selected as training graphs, and 30% are used as test graphs. y, = 0.03 and Sy = 200. (A) y1=0 v.s. y1=0.01, (B) y1=0 v.s. y1=0.03, (C) y1=0 v.s.
v1=0.05, (D) y1=0.01 v.s. y1=0.03, (E) y1=0.01 v.s. y1=0.05, and (F) y1=0.03 v.s. y1=0.05.

Table 6
Impact of different y» values on NCI-1 dataset with y; =0.01.

72 0 0.03 0.07 0.15 0.2
Accuracy 0.748 0.759 0.74 0.741 0.72
AUC 0.810 0.811 0.806 0.811 0.78
Table 7
Impacts of different ¢ values on NCI-1 dataset.
€ 0.01 0.005 0.001 0.0001
Accuracy 0.748 0.759 0.761 0.760
AUC 0.803 0.811 0.814 0.812

regularization effect disappears (only ¢; is used). This result is
consistent with observations from a previous study [21]. This may
be because #; ignores the correlated subgraphs in a group of
features. When y, keeps increasing, the classification performance
drops because the larger ¢, regularization dominates the objective
function and the loss minimization term has less effect.

Impact of e values: We vary the ¢ values from 0.01 to 0.0001 to
study the final classification performance of our algorithm, and
report the final classification results in Table 7. The results show
that as long as e is subtle (from 0.001 to 0.0001), our classification
can achieve similar classification results, i.e., an e-tolerance accu-
racy result to the optimal solution.

6. Conclusion

In this paper, we proposed a regularized loss minimization-
driven (RLMD) graph classification method. We argued that exist-
ing filter-based subgraph selection methods simply focus on
finding most discriminative subgraph features, and suffer severe

disadvantages in determining the optimal number of subgraphs
for graph classification and separating feature selection from the
model learning phase. As a result, they might be able to find most
discriminative subgraph features, but cannot form high accuracy
classifiers because they cannot determine how many discrimina-
tive features are needed to train classifiers with the best perfor-
mance gain. By integrating subgraph mining, discriminative
subgraph selection, and model learning into one unified frame-
work, RMLD is able to automatically determine the optimal
number of discriminative subgraphs for best graph classification
results. Our algorithm generalizes the state-of-the-art gBoost
algorithm in the sense that it can employ any differentiable loss
function and achieve better classification accuracy by using an
elastic net regularization. Experimental results on real-world
graph datasets show a clear performance gain over existing two-
step filter methods (TFMs), direct filter methods (DFMs), and
embedding methods.
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