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Abstract. Credit assessment for Small and Medium-sized Enterprises
(SMEs) is of great interest to financial institutions such as commercial
banks and Peer-to-Peer lending platforms. Effective credit rating model-
ing can help them make loan-granted decisions while limiting their risk
exposure. Despite a substantial amount of research being conducted in
this domain, there are three existing issues. Firstly, many of them are
mainly developed based on financial statements, which usually are not
publicly-accessible for SMEs. Secondly, they always neglect the rich rela-
tional information embodied in financial networks. Finally, existing graph-
neural-network-based (GNN) approaches for credit assessment are only
applicable to homogeneous networks. To address these issues, we pro-
pose a heterogeneous-attention-network-based model (HAT) to facilitate
SMEs bankruptcy prediction using publicly-accessible data. Specifically,
our model has two major components: a heterogeneous neighborhood
encoding layer and a triple attention output layer. While the first layer
can encapsulate target nodes’ heterogeneous neighborhood information to
address the graph heterogeneity, the latter can generate the prediction by
considering the importance of different metapath-based neighbors, metap-
aths, and networks. Extensive experiments in a real-world dataset demon-
strate the effectiveness of our model compared with baselines.

Keywords: Bankruptcy prediction · Financial network ·
Heterogeneous graph · Graph neural networks · Graph attention
networks

1 Introduction

Representing about 90% of the business entities and 50% of employment world-
wide, small and medium-sized enterprises (SMEs) play an essential role in the
economy [1]. However, many of them face huge financing obstacles, especially
when applying for loans from commercial banks, due to their financial status’s
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opacity. One of the reasons is that SMEs are usually not listed, and thus, they
do not have the accountability to publish their financial reports and statements
regularly. Therefore, there is a dearth of public SMEs’ financial data, and it poses
a challenge on credit risk assessment tasks for them. The other reason is that
even though financial professionals in banks can get access to SMEs’ financial
statements, in practice, SMEs may intentionally beautify their statements and
commit accounting fraud to meet the issuer’s criteria. As a result, credit issuers
bear the significant risk of uncertainty in lending to SMEs and thus are reluctant
to accept their financing applications.

Most existing credit risk assessing methods are based on traditional machine
learning algorithms using structured financial statement data [5,11]. However, it
is difficult to obtain SMEs’ financial statements, which poses a significant chal-
lenge for SMEs’ credit risk assessment. Also, these traditional machine learning
approaches cannot learn the rich relational information embodied in financial
graphs. Financial graphs provide rich relational information, which is valuable
in inferring a firm’s credit condition since its financial status can be affected by
its connections, such as its shareholders and executives. In recent years, some
studies are attempting to apply GNN-based models to exploiting financial net-
works. However, these methods are developed on homogeneous financial networks
such as company-to-company guarantee networks [4,13]. This kind of network
has only one type of node. There are no GNN-based approaches tailored for
heterogeneous financial networks which contain multiple node types and edge
types. Though there are some general heterogeneous information network (HIN)
embedding methods, such as HAN, HetGNN, and MAGNN [6,17,19], which
can learn node embeddings on heterogeneous graphs, these methods cannot be
directly applied for credit risk assessment tasks. First, these models can only
handle node information from a single source or graph, whereas for credit risk
assessing a node’s information may need to be retrieved and processed from mul-
tiple heterogeneous financial graphs. Second, these methods cannot effectively
capture the information in target nodes’ heterogeneous neighborhoods. This is
because they only use a transformation matrix to project the features of differ-
ent types of nodes into the same vector space to address nodes’ heterogeneity
instead of sufficiently learning the heterogeneous neighborhood for each node.

We propose a new heterogeneous graph attention network-based approach
(HAT) for SMEs’ practical risk assessment by using publicly accessible data to
address the issues mentioned above. This model can adequately utilize the fea-
tures of different types of nodes and relations from multiple heterogeneous data
sources to predict companies’ bankruptcy. Specifically, we first use a random walk
with a restart mechanism (RWR) to find a fixed-size of strongly correlated type-
specific neighbors for each heterogeneous neighbor type for target nodes. Then,
we use the attention mechanism to aggregate heterogeneous type-specific neigh-
bor’s features and concatenate the output with target nodes’ features to obtain
target nodes’ heterogeneous neighborhood-level embeddings. In this way, infor-
mation from all heterogeneous neighbors can be embedded with target nodes’
representation. Following, with target nodes’ heterogeneous neighborhood-level
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embeddings, we use the triple attention output layer to train an end-to-end
SMEs’ bankruptcy predictor. Using triple-level attention, our model can con-
sider the importance of different metapath-based neighbors, metapaths, and
graph data sources. To evaluate our proposed model’s performance, we build
a real-world dataset by collecting SMEs’ public data from multiple open data
sources. Then, we use this data to construct two heterogeneous financial graphs:
a shareholder network and a board member and executive network. The effec-
tiveness of our proposed model has been verified through extensive experiments.
In a nutshell, the main contributions of this paper can be summarized as follows:

1. To the best of our knowledge, this is the first attempt to approach bankruptcy
prediction using heterogeneous graph neural network techniques. Our work
opens a way to develop the company’s credit risk evaluation solutions con-
sidering rich information embodied in HINs.

2. We propose HAT, a heterogeneous attention network, which can effectively
encode information of multiple types of node features and relations from
multiple graph data sources to evaluate SMEs’ credit risk.

3. We have conducted extensive experiments on a self-collected real-world
dataset. The result demonstrates and verifies the effectiveness of our method.

2 Related Work

Bankruptcy Prediction. Recently, researchers have developed machine
learning-based bankruptcy prediction models using financial ratio data or
privately-owned data provided by financial institutions. For example, Mai et al.
[11] collect accounting data for 11827 US-listed firms to train a deep learning
model with an average embedding layer to forecast bankruptcy. Chen et al. [3]
exploited the ensemble proportion learning model with SVM based on four pub-
lic bankruptcy datasets on the UCI repository. However, these methods relied
heavily on financial ratios, which can be distorted with accounting beautifying
techniques such as “window dressing”. Also, this data is usually not publicly
accessible for SMEs. Though some studies conducted their research on public
bankruptcy datasets, their number is very limited and always out-of-date. Fur-
thermore, these studies have not exploited financial graphs, whose rich relational
information can provide valuable clues when inferring firms’ credit status.

Graph Neural Networks. Exploiting graph-structured data with deep learn-
ing, graph neural networks (GNN), can effectively generate a low-dimensional
vector representation for each network node [16,18,20]. These latent representa-
tions can then be used for various downstream tasks, such as node classification
and link prediction [9]. Extending the graph convolutional networks (GCNs)
with masked self-attention layers, Velickovic et al. [15] proposed Graph atten-
tion networks (GAT) to consider neighbor nodes’ weights, rather than treating
neighbors’ nodes equally important. In recent years, some pioneering studies
are implementing GNN-based approaches in financial networks. For instance,
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Cheng et al. [4] proposed a high-order graph attention representation method
to infer the systematic credit risk based on company-to-company guarantee net-
works. Shumovskaia et al. [13] developed a recursive-neural-network-based GNN
model to explore bank-client transactional networks. However, there is no study
applying the GNN-based approach in financial HINs. This paper introduces a
novel model, HAT, to learn node embeddings in financial HINs effectively.

3 Problem Formulation

Financial Heterogeneous Graph. This paper considers two financial net-
works, including shareholder networks, representing firms’ shareholding struc-
ture and board member networks, showing firms’ board members and executives
as heterogeneous graphs. Figure 1 and Fig. 2 show examples for these two finan-
cial graphs. For a heterogeneous graph G = (V,E), V and E represent nodes
and edges in the graph, respectively. Here, node V includes two types of nodes:
companies C and individuals I. The edges consist of company-individual edges
Eci and company-company edges Ecc.

Problem Statement. Given a set of heterogeneous financial graphs {g1, g2...,
gn}, in which each graph is defined as G = (V, E), we aim to predict whether
a firm will go bankrupt by learning a global node embedding hc for each firm
node c and mapping it to a probability distribution.

Fig. 1. An example of board member
and executives’ networks

Fig. 2. An example of shareholder net-
works

4 Methodology of Our Proposed Model

In this section, we describe HAT for heterogeneous graph embedding learning in
financial networks. As shown in Fig. 3, HAT consists of two main components: a
heterogeneous neighborhood encoding layer and a triple attention output layer.
While the heterogeneous neighborhood encoding layer can sufficiently exploit the
heterogeneous neighborhood for target nodes, the triple attention and output
layer can generate the final embedding and prediction results with three levels
of attention: node-level, metapath-level, and network-level.
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Fig. 3. The architecture of HAT for bankruptcy prediction

4.1 Heterogeneous Neighborhood Encoding Layer

A heterogeneous neighborhood encoding layer can address the heterogeneity
of a heterogeneous graph. This layer first uses the RWR method to find each
heterogeneous type top K type-specific neighbors for target nodes and aggregates
them to get type-specific neighborhood embeddings. Then, it concatenates these
type-specific neighborhood embeddings with target nodes’ own features to obtain
the all-type neighborhood embeddings.

It is challenging to solve heterogeneous graphs’ heterogeneity since different
types of nodes can have their features lie in different feature spaces. To solve
this issue, there are two existing solutions. One is to concatenate features of
different types of nodes to build a new large feature space, in which irrelevant
dimensions for other types of nodes are assigned 0. The other solution uses a
linear transformation matrix to project each kind of node’s feature vectors into
the same feature space [8,10]. However, these solutions may suffer from reduced
performance because they include more noisy information or cannot sufficiently
encode a node’s heterogeneous neighborhood. Our solution first applies RWR to
explore a fixed-size K of strongly correlated type-specific neighbors for target
nodes. Here K is a tunable parameter. As shown in Fig. 3(A), given a node v
and its s ∈ S type neighbors, the two steps of this process are presented below:

1. Step-1: Sampling a fixed-length sequence based on RWR for the node v: We
start a random walk from a node v. According to a probability p, the walk
decides whether it will move to one of the current node’s neighbors or restart
from node v iteratively until it has collected a sequence with a preset fixed
number of nodes, defined as RWR (v).

2. Step-2: Finding top K neighbors for v: Based on s type neighbors occurrence
frequency on RWR (v), we select top K s type neighbors for v.

We can then aggregate these top K collected nodes’ features to encode v’s s
type neighborhoods. If a target node has multiple heterogeneous neighbor types,
we can repeat the two-step process for each neighbor type to generate each type
neighborhood representation. Since each type-specific neighbor may contribute
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differently to a target node, it is necessary to consider their weight in the aggre-
gation process. Therefore, we use an attention layer in heterogeneous neighbor
nodes’ aggregation. Given a fixed number K and a heterogeneous neighbor node
type s ∈ S, for a target node, it has a set of type-specific neighbors features
hs
1, hs

2, . . .hs
K . With these features, we can use an attention layer to learn the

weight of each type-specific neighbor αs
1, αs

2, . . . αs
K and this process can be for-

mulated as follows:

{αs
1, αs

2, . . . αs
K} = attheterneigh{hs

1, hs
2, . . .hs

K}. (1)
In this equation, attheterneigh means the self-attention-based [14] deep neural

network for type-based neighbors’ aggregation. Specifically, we first use a one-
layer MLP to transform these features into a heterogeneous type-specific node-
level attention vector. Then, we can get the importance of each heterogeneous
type-based neighbor, denoted as esk, where {k|k ∈ Z, 0 ≤ k ≤ K}:

esk = qTH · tanh(WH · hs
k + bH), (2)

where qH is the parameterized attention vector, WH is the weight matrix, and
bH is the bias vector. All of these parameters are learnable. Then, by using a
softmax layer, we can normalize esk to get the coefficient αs

k:

αs
k = softmax(esk) =

exp(esk)
∑K

k=1 exp(esk)
, (3)

here αs
k represents the relative importance of a type-specific neighbor. With αs

k,
we can now polymerize the features of top K type-based neighbors for target
nodes to obtain the learned embedding of node i’s type s neighborhood. This
process is presented as follows:

Zs
i =

K∑

k=1

αs
k · hs

k, (4)

where Zs
i is the representation of node i’s type s neighborhood. Finally, to

obtain the embedding of node i’s all type neighborhood, including node i’s self-
generated features, we need to aggregate the learning embedding of all Zs

i with
node i’s own feature as follows:

ZS
i = (‖s∈S Zs

i ) ‖ hi, (5)

where ‖ means concatenation, ZS
i represents the all type neighborhood embed-

ding for the node i, and hi means the target node i’s own feature. To better
understand this aggregating and concatenation process, we present a graphical
illustration in Fig. 4. From this figure, we can see node c1 has two types of het-
erogeneous neighbors: nn and ii. Through neighbor sampling, we can get the nn
type and ii type top K neighbors for the node c1. Here {αs1

1 , αs1
2 , .., αs1

4 } and
{αs2

1 , αs2
2 , .., αs2

4 } are two sets of computed attention coefficient for c1’s ii type
neighbors and nn type neighbors respectively. After aggregation, node c1 gets
its ii type neighborhood representation Zs1

c1 , and nn Zs2
c1 . Finally, by aggregat-

ing these two representations with c1’s own feature hc1. Node c1 get its all type
neighborhood embedding ZS

c1.
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Fig. 4. Graphical illustration for the heterogeneous neighborhood encoding layer

4.2 Triple Attention and Output Layer

With the all-type neighborhood embeddings, the triple attention and output
layer can generate the final embeddings for target nodes using triple-level atten-
tion: metapath-based node level, metapath level, and network level. The archi-
tecture of the triple-level attention layer is presented in Fig. 3(B).

Metapath-Based Node-Level Attention. For the metapath-based node-
level attention, we adopt the multi-head graph attention operation [15], which
is an attention mechanism for homogeneous graph representation learning. This
operation is applicable here since, within a metapath, a target node is within a
homogeneous graph with its same type neighbors. By using this operation, the
model can learn the weight of different metapath-based neighbors.

A heterogeneous network has several metapaths denoted as m ∈ M based on
a target node type. Given a specific node i with type s, the node-level attention
learns the weights of its metapath-based neighbor j ∈ Nm

i , where Nm
i represents

a set of nodes including both node i’s metapath-based neighbors and node i
itself. Then, we compute the node-level attention value αm

ij by using the all-type
neighborhood embeddings ZS

i and ZS
j . With the normalized importance value

αm
ij , we can weight sum all the nodes in the set Nm

i to get the metapath-level
embedding for node i. This process is formulated as follows:

αm
ij =

exp(σ(qTm · [ZS
i ‖ ZS

j ]))
∑

o∈Nm
i

exp(σ(qTm · [ZS
i ‖ ZS

o ]))
, (6)

Zm
i = σ(

∑

j∈Nm
i

αm
ij · ZS

j ), (7)

where Zm
i denotes the m metapath-based embedding for node i. To stabilize this

learning process, multi-head attention can be used to improve the representation
ability. Specifically, we can repeat the node-level attention L times to get L
embeddings for node i. Then, the metapath-specific embedding can be generated
by concatenating these embeddings:
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Zm
i =‖Ll=1 σ(

∑

j∈Nm
i

αm
ij · ZS

j ). (8)

After learning the embedding for each metapath m, we can get a set of Zm
i for

the node i. This set of embedding will be aggregated through the metapath-level
attention to get the network-level embedding for i.

Metapath-Level Attention. We introduce a self-attention-based metapath-
level attention [14] to compute the weights for different metapaths. Given a
specific node i with type s, it has several metapath-specific embeddings Zm

i for
several meta paths m ∈ M . With this set of semantic-specific embeddings, we
can calculate the normalized metapath level attention αP

m. Please note that,
here αP

m is shared by all nodes, since there is some similar connection between a
metapath and a type of nodes. Then, we fuse metapath-specific embeddings of
i by weighted summing all Zm

i with αP
m, to create the network-level embedding:

αP
m =

exp( 1
|Vs|

∑
i∈Vs

qTOtanh(WO · Zm
i + bO))

∑
m∈M exp( 1

|Vs|
∑

i∈Vs
qTOtanh(WO · Zm

i + bO))
, (9)

Zg
i =

∑

m∈M

αP
m · Zm

i , (10)

here Zg
i is the network-specific embedding for the node i, qO is a parameterized

vector, WO is a weight matrix, and bO is a bias vector. With all Zg
i , we can

polymerize them to get node i’s final embedding via network-level attention.

Network-Level Attention. Network-level attention can address the hetero-
geneity of different networks and determine their importance. Firstly, we project
network-level embeddings to the same vector space with a linear transformation
layer. Given a node i with type s, and g ∈ G, where G is the set of graphs input,
the process of projection is shown below:

Zg′
i = θs · Zg

i , (11)

where Zg′
i is the projected network-level embeddings, Zg

i is the original network-
level embeddings, and θs is the transformation matrix for the node type s. Like
metapath-level attention, network-level attention applies the attention mecha-
nism to distill the network semantic information from multiple graphs. Given a
node i with type s, and a network g ∈ G, we can use the transformed embedding
Zg′
i to compute the normalized network-level attention αg. Then, by weighted

sum all Zg′
i , we can get the final embedding for node i. This process is formulated

as below:

αn =
exp( 1

|Vs|
∑

i∈Vs
qTR · tanh(WR · Zg′

i + bR))
∑

g∈G exp( 1
|Vs|

∑
i∈Vs

qTR · tanh(WR · Zg′
i + bR))

, (12)
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Zi =
∑

g∈G

αg · Zg′
i , (13)

here Zi is the final embedding for node i, qR is a parameterized vector, WR is
a weight matrix, and bR is a bias vector. Zi can be transformed to the desired
output dimension for further tasks.

4.3 Training

We consider bankruptcy prediction as a binary classification task. The output
layer predicts the labels of companies based on its final embedding Zi. To obtain
the output, we feed the embedding to a softmax layer for classification as follows:

Zi = softmax(Zi) (14)

Then, we can optimize the model parameters by minimizing the cross-entropy
loss over training data with the L2-norm:

L = −
∑

i∈Vs

Yilog(C · Zi) + η ‖ θ ‖2 (15)

where C is the parameter of the classifier, i ∈ Vs represents a node with the
type s, Yi is the ground truth label for node i, Zi is i’s node embedding, θ is the
model parameters, and η represents the regularization factor. With node labels’
guidance, we adopt the gradient descent method to process the backpropagation
and learn the node embeddings for target nodes.

5 Experiment

Datasets. We collect data from multiple Chinese government open data sources
and build a real-world dataset containing a board member network and a share-
holder network for 13489 companies. In the dataset, 3566 companies are labeled
as bankrupt. The experiment source code and collected dataset are available in
our Github repository1.

Experiment Methods. We select five baselines to verify the effectiveness of
our proposed method.

– Logistic Regression (LR). LR is a statistical model powered by a shallow
neural network. It is widely adopted in bankruptcy prediction tasks [7].

– Support Vector Machine (SVM). SVM is a machine learning technique,
which builds hyperplanes in a high dimensional space for classification and
regression tasks. It is widely adopted in bankruptcy prediction tasks [2].

1 https://github.com/hetergraphforbankruptcypredict/HAT.

https://github.com/hetergraphforbankruptcypredict/HAT
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Table 1. Experiment result

Method Accuracy Macro-F1 Recall Precision

LR 76.03 62.83 61.63 68.51

SVM 75.89 62.45 61.31 68.25

DeepWalk 60.30 50.97 51.22 51.09

GAT 76.50 62.10 60.98 69.95

HAN 77.06 63.07 61.75 71.22

HAT 78.31 64.32 62.72 74.86

Table 2. Variants result

Method Accuracy Macro-F1 Recall Precision

HATmean 78.08 63.41 61.99 74.80

HATmax 77.61 64.42 62.82 72.23

HATmin 78.22 64.51 62.89 74.30

HATdual 78.26 66.18 64.40 73.18

HAT 78.31 64.32 62.72 74.86

Fig. 5. Comparison of baselines and variants of HAT.

– DeepWalk (DW). DW is a random-walk-based graph embedding method
for homogeneous graphs. In the experiment, we ignore the heterogeneous
graph’s heterogeneity and process the DW through the whole graph [12].

– GAT. GAT is a semi-supervised attention-based GNN approach for homo-
geneous graphs. Here we only consider the best metapath [15].

– HAN. HAN is a state-of-the-art heterogeneous graph neural network with
dual-level attention. It is a general heterogeneous GNN method [17].

Evaluation Metrics. We have selected four metrics: Micro-F1, Macro-F1,
Recall, and Precision to evaluate the performance of our model.

Implementation Details. In the experiment, we consider the data split based
on the bankruptcy date of company nodes. While the training set includes all
nodes that went bankrupt before 2019, the validation and test set include nodes
that went bankrupt after 2019. This is reasonable because the model’s goal is to
predict companies’ bankruptcy. For active company nodes, we distribute them
according to the ratio 68:16:16 for training, validation, and test set, respectively.
This is because the training set contains 68% of all bankruptcy nodes in our
dataset, while the remaining bankruptcy nodes are distributed equally for the
other two sets. Thus, with this ratio, the data distribution in all three sets would
be similar.
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Results and Analysis. The performance of HAT and baseline methods is pre-
sented in Table 1 and Fig. 5. From this table, we have the following observations:

– Surprisingly, GNN-based method GAT only obtain similar results to LR and
SVM, the reason may be that GAT only uses one metapath-based homoge-
neous graph as input, which cannot provide sufficient graph structural and
relational information to advance the model training.

– HAN outperforms the other four baselines, which is reasonable because HAN
can learn additional useful signals provided in HINs.

– HAT achieves the best performance in all evaluation metrics. This result
shows the superiority of our approach to traditional machine learning and
state-of-the-art GNN-based approaches in exploring heterogeneous financial
networks. This improvement could be attributed to heterogeneous neighbor-
hood learning and the triple-level attention in neighbor aggregation.

Ablation Study. We have conducted experiments for four HAT variants as
comparisons, and the results are shown in Table 2.

– HATmean: Compared with HAN, HATmean has the heterogeneous neighbor-
hood encoding layer and use mean pooling in neighbors aggregation. Also, it
applies the triple-level attention instead of the dual-level attention.

– HATmax: Compared with HATmean, HATmax applys max pooling in the
heterogeneous neighborhood encoding layer.

– HATmin: Compared with HATmean, HATmin adopts min pooling in the
heterogeneous neighborhood encoding layer.

– HATdual: Compared with HAT, HATdual has no network-level attention.
– HAT: HAT employs an attention mechanism in the heterogeneous neighbor-

hood encoding layer.

From Table 2 and Fig. 5, we can see that all HAT variants outperform HAN in
all evaluation metrics. This result demonstrates the heterogeneous neighborhood
encoding layer’s effectiveness, which can encapsulate the heterogeneous neighbor-
hood information to boost the model performance. Also, while HATdual achieves
the best performance for accuracy and precision, HAT obtains the highest results
for Macro-F1 and Recall. It is hard to tell which one is better between HATdual

and HAT in the scenario in which heterogeneous graph inputs have the same set
of node types. However, suppose graph inputs have a different set of node types.
In that case, only HAT can address the heterogeneity of different networks since
it has additional network-level attention to project network-level embeddings.
Therefore, HAT is preferable due to its comprehensiveness in handling graph
inputs.

6 Conclusion

This paper develops a novel heterogeneous GNN-based method HAT for SMEs’
bankruptcy prediction using public data from multiple sources. Our model can
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effectively learn the heterogeneous neighborhood for target nodes and generate
node embeddings considering the weights of metapath-based neighbors, metap-
aths, and networks, with a triple attention output layer. The results of extensive
experiments have shown that our model outperforms five baselines in exploring
financial HINs. For future works, we plan to apply our method to other scenarios,
e.g., social and e-commerce networks.
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