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Abstract— Non-Euclidean property of graph structures has faced
interesting challenges when deep learning methods are applied. Graph
convolutional networks (GCNs) can be regarded as one of the successful
approaches to classification tasks on graph data, although the structure of
this approach limits its performance. In this work, a novel representation
learning approach is introduced based on spectral convolutions on graph-
structured data in a semisupervised learning setting. Our proposed
method, COnvOlving cLiques (COOL), is constructed as a neighborhood
aggregation approach for learning node representations using established
GCN architectures. This approach relies on aggregating local information
by finding maximal cliques. Unlike the existing graph neural networks
which follow a traditional neighborhood averaging scheme, COOL allows
for aggregation of densely connected neighboring nodes of potentially
differing locality. This leads to substantial improvements on multiple
transductive node classification tasks.

Index Terms— Deep learning (DL), graph convolutional
networks (GCNs), graph neural networks (GNNs), graph
representation learning, network embedding.

I. INTRODUCTION

Many interesting phenomena such as social, biological, financial,
and brain connectomes involve data that can be readily represented in
the graph-based structures with acquiring dependencies between the
elements under the study [1]. One of the main challenges to graph-
structured data is the extraction of structural graph information to
embed in machine learning models named representation learning.
The primary aim is to optimize the embedding process to preserve
the original graph structure in the learned space [2]. Motivated by
the success of deep learning (DL), several attempts have been made
to apply DL as a mature learning technology on graph-structured
data from social, biological, and financial domains. Graph neural
networks (GNNs) have emerged as a promising approach for rep-
resentation learning on relational data [3]–[6]. They were introduced
as a generalization of the convolutional operator from regular grids
to graph-structured data [7]. GNNs have shown remarkable success
for relational reasoning over graph-structured representations [8], [9].

Representation learning on graphs typically requires the aggre-
gation of useful neighborhood information to succeed. Better
representation learning provides more generalization power on graph-
structured inputs. To learn meaningful representations, semisuper-
vised learning is one of the most promising methods [10]. Depending
on the availability of the label information and the aim of the
underlying task, there are supervised [11], [12], semisupervised [13]
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and unsupervised [14] approaches [15]. Graph-level classification is
comprised of high-level node representation in convolutional layers,
graph pooling layers to perform downsampling and readout layers to
provide the final graph representation for the aim of label prediction
on a graph structure [16], [17]. Unsupervised learning of graph
embedding is commonly performed by exploiting the edge-level
structures via the autoencoder framework [18].

Semisupervised GNN approaches involve constructing an end-to-
end procedure by applying a bunch of graph convolutional layers
aligned with a softmax layer. Due to the challenges of labeling large
datasets, most real networks consist of only limited labeled nodes
while others are mostly being unlabeled. Therefore, semisupervised
learning is categorized among the most practical methods to deal with
real networks [19]. Several approaches have been proposed for semi-
supervised representation learning with graph-structured data. Exam-
ples include graph convolutional network (GCN) [19], Planetoid [20],
Chebyshev [21] and personalized propagation of neural predictions
(APPNP) [22]. These approaches rely on message passing-based
objectives that over-emphasize proximity information at the expense
of limiting the representational capacity of the model [23]. Since
the neighborhood is a local concept defined by some notion of
proximity in the network, approaches that encode nodes using a
generalized notion of their neighborhood, enforce an inductive bias
that neighboring nodes have similar representations.

In this brief, we propose an alternative unsupervised graph learning
approach that is based upon mutual information. Our approach relies
on aggregating neighborhood representations from the potentially
differing locality. The idea is to compute the hidden representations
of each node in the graph by attending over its highly connected
neighbors. Our approach allows focusing on the most relevant parts
of the input, and can thus be a strong predictor for node classification
tasks. We demonstrate that the representation learned by COnvOlving
cLiques (COOL) is competitive on six standard benchmark datasets
and outperforms state of the art baselines in our experiments on both
clean and noisy data. Contributions of our study are as follows.

1) We propose COOL, a new neighborhood aggregation method
for learning node representations.

2) We propose a novel clique-based edge-weight computation that
is general and architecturally simple.

3) The proposed approach learns meaningful representations of
graph structures by obtaining maximal cliques from neighbors
at various distances.

4) We establish two scenarios to showcase the strong denoising
capabilities of our model in a range of node classification tasks.

Our brief shows significant leaps in performance compared to
previous methods in a range of node classification tasks.

II. RELATED WORKS

Of particular interest to this work are methods that employ neigh-
borhood aggregation, GCN and node representation learning.

A. Neighborhood Aggregation

Some works have been considered neighborhood aggregation for
representation learning on graphs, including [24], [25]. A flexible
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approach in [24] was proposed by leveraging different neighborhood
ranges for each node to enable better structure-aware representation.
In [25], a new embedding for a node was considered by attending
to all previous embeddings of its neighbors. Graph attention network
(GAT) [1] leveraged masked self-attentional layers to address the
shortcomings of prior methods using graph convolutions. COOL
combines maximal cliques across different neighborhood branches.
Our integrated approach learns node representations in an efficient
way to contrast the features of immediate neighbors from those
further away.

B. Graph Convolutional Network

Motivated by the success of convolutional neural network
(CNN) [26], Spectral GCN [27] defined the convolution operation
in the Fourier domain by computing the eigendecomposition of the
graph Laplacian, resulting in potentially intense computations and
nonspatially localized filters. Chebyshev [21] reduces computation
complexity by approximating the filters by means of a Chebyshev
expansion of the graph Laplacian. GCN [19] simplified the Cheby-
shev method by restricting the filters to operate in a one-hop neigh-
borhood around each node. SGC [28] simplified GCN by erasing
all the nonlinearities and collapsing the learning parameters into a
single matrix. Deep graph infomax (DGI) [29] relies on maximizing
mutual information between a high-level global representation and
local parts of the input in an unsupervised manner.

C. Node Representation Learning

The goal of node representation learning is to learn distributed
representations of nodes in graphs so that nodes with similar local
connectivity tend to have similar representations [30]. Some represen-
tative methods include DeepWalk [31], large-scale information net-
work embedding (LINE) [32], node2vec [33], and GraphSAGE [34].
Despite their effectiveness in a variety of applications, these methods
rely on random walk-based objectives. It is not that clear whether they
provide any useful signal, as these encoders already enforce an induc-
tive bias that neighboring nodes have similar representations [29].
Here, we focus on GCNs which generate node representations by
repeated aggregation over local node neighborhoods.

D. Message Passing

Some works extended GCNs to send and aggregate information
through higher-order paths [19]. APPNP [22] proposed sampling
nodes in the lower layers conditioned on their top layer. Actional-
structural GCN (AS-GCN) [35] developed a framework to accelerate
the training of GCN through developing a sampling method by
constructing the network layer by layer.

III. PRELIMINARIES

Definition 1: Given a graph G = (V, E) with a collection of two
finite sets of V nodes and E edges, a clique is a subset of nodes
such that each node in the set is adjacent to all other nodes in the set.
In other words, a subset C ∈ V is a clique if and only if (v, v �) ∈ E
for all nodes v and v � ∈ C .

Cliques often unveil the tangible properties of the graph. Assuming
that nodes in the graph represent people and edges friendship rela-
tionships, then a clique is a set of more than two people if they are
all mutual friends of one another [36]. Given the notion of cliques,
one can define maximal and maximum cliques as follows.

Definition 2: A maximal clique in a graph is a clique that cannot be
extended by including one more adjacent node without compromising
the connectivity property of the clique. In other words, a maximal

clique is not a subset of a larger clique. Similarly, the maximum
clique is the maximal clique with the highest number of nodes.

While cliques capture local representations of the graph, the max-
imum clique represents the global information content of the entire
graph.

IV. PROPOSED METHOD

A. Motivation

Our aim is to perform node classification of graph-structured data
by introducing a clique-based architecture. The idea is to specify
different weights to different nodes in a neighborhood in which nodes
are able to attend over their neighborhood’s features through edge-
weight strategy. The proposed architecture is efficient since it is
parallelizable across node-neighbor pairs and it can be applied to
graph nodes having different degrees by specifying arbitrary weights
to the neighbors [1]. We validate the proposed approach by achieving
state-of-the-art results that highlight the potential of clique-based
models when dealing with arbitrarily structured graphs.

B. Notation

We use standard graph representations in semisupervised node
classification tasks. Graph G with N nodes is represented as a pair
(X, A), where X ∈ R

N×F denotes the node feature matrix with F
features per node, and A ∈ R

N×N is the adjacency matrix. The
objective is to classify each node into one of the target classes.
Furthermore, our method assumes unweighted and directed graphs,
i.e., Aij = 1 if there is an edge from i to j and Aij = 0 otherwise.

C. COOL

Our approach for learning meaningful representations is to obtain
maximal cliques from neighbors at various distances. We employ
an attention function, T : R

N×N → R
N×N, to find all maximal

cliques from the original graph using Bron–Kerbosch algorithm [37]
with modifications to improve performance on large real-world
graphs [38]. The algorithm has three disjoint sets of nodes R, P, and
X , where R is a clique being constructed, P is a set of candidates to
add to clique R, and nodes in X must be excluded from the clique.
The algorithm chooses a candidate node v in P to add to the clique R
and v is moved to X when the recursive call returns. When P and X
are empty, R is returned as a maximal clique. After finding maximal
cliques, we construct a weighted adjacency matrix by sampling one-
hop neighboring nodes such that A�i j = c represents nodes i and j are
in a (c + 1)-clique as shown in Fig. 1. In extremely sparse settings,
we find the two-hop neighboring nodes in addition to the one-hop
neighborhood.

Our adjacency matrix, Ã = α × A + β × A�, is a combination
of unweighted and weighted adjacency matrices balanced by hyper-
parameters {α, β} ∈ {0, 1}. To incorporate high-order proximities,
we normalize this adjacency matrix using Algorithm 1 which takes
as an input the adjacency matrix, Ã, the order, T � 1, which
determines the order of proximities, and the threshold, ν > 0, that
helps to remove links with small probabilities to enhance sparsity.
Our proposed method with this normalization procedure denoted as
COOL-norm.

To generate high-level node representations, �hi , we pass node
features, X , and the normalized adjacency matrix, Ã, through the
encoder function, E : RN×N × R

N×F → R
N×F

�
, such that E(X, Ã) =

{ �h1, �h2, . . . , �hN } represents high-level representations �hi ∈ R
F
�

for
each node i . Our E function is a two-layer GCN model [19] with the
following layer-wise propagation rule:

H (l+1) = σ
(

D̂
−1
2 Â D̂

−1
2 H (l)W (l)

)
(1)
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Fig. 1. High-level overview of COOL-norm method with semisupervised loss function: 1) find all maximal cliques; 2) normalize the adjacency matrix;
3) obtain high-level representations for normalized graph; and 4) update parameters.

where Â = Ã+ IN is the normalized adjacency matrix with inserted
self-loops by an N×N identity matrix, IN , and D̂ is its corresponding
degree matrix; i.e., D̂ii = ∑

j Âi j . For the nonlinearity, σ , we have
applied rectified linear unit (ReLU) function. H (l) ∈ R

N×F is the
matrix of activations in the lth layer with H (0) = X and W (l) ∈ R

F×F
�

is a layer-wise trainable linear transformation applied to every node,
with F � = 16 features being computed.

The standard following cross-entropy loss function is used as our
objective criterion over all labeled examples:

L = −
∑
l∈YL

F∑
f=1

yl f log ŷl f (2)

where YL is the set of node indices that have labels, F is node
features and y and ŷ are true labels and our predictions, respectively.
A summary of the main steps of COOL is as follows.

1) Find all maximal cliques from the original graph by passing it
through the attention function: A� = T (A).

2) Normalize the adjacency matrix, Ã = α × A + β × A�,
by combining the unweighted and weighted adjacency matrices
balanced by hyperparameters, {α,β} ∈ {0, 1}.

3) Obtain high-level representations, �hi , for the maximal cliques
of the input graph by passing it through the encoder function:
E(X, Ã) = { �h1, �h2, . . . , �hN }.

4) Update parameters of E by applying gradient descent to
minimize (2).

Algorithm 1 Normalize Adjacency Matrix to Capture High-Order
Proximities. One Is the Vector of All Ones, Diag() Means a
Diagonal Matrix With Respect to the Given Diagonal Entries,
T ≥ 2 Is the Order and v > 0 Is a Threshold

Input : Ã, T , ν

Output: Normalized Ã
1 Ã← diag−1( Ã�1) Ã
2 S, B ← Ã
3 for t ← 2 to T do
4 B ← B Ã
5 S← S + B
6 end for
7 Ã← 1

T S ◦ (1n∗n − I )

8 Ã← Ã ◦ (
Ã > ν

)
9 Ã← Ã + ÃT + 2 × I

10 Ã← diag−1/2
(

Ã�1
)

Ã diag−1/2
(

Ã�1
)

11 return Ã

D. COOL-DGI

The existing methods often use semisupervised learning with
GCNs [19], which is often not possible as most graph data in

the world is unlabeled. Thus, it is better to use an unsupervised
learning approach for learning node representations within graph-
structured data. DGI [29], is an unsupervised learning approach for
learning node representations within graph-structured data. DGI uses
graph convolutions [19] to build upon the deep mutual information
maximization principle [39]. Here, we use the mutual information
maximization principle and show that the learned embeddings can
encode valuable information for node classification tasks.

The unsupervised training setup is equivalent to the one in DGI.
After finding all maximal cliques using the attention function,
T : R

N×N → R
N×N, an encoder, E : R

N×N × R
N×F → R

N×F
�
,

computes high-level representation �hi for node i , using node features,
X , and the normalized adjacency matrix, Ã. The discriminator,
D : R

F×F → R, then receives pairs of ( �hi , �s) containing the node
representation and graph-level summary vector and outputs a score
corresponding to whether a given pair represents a positive or negative
sample by applying the following bilinear scoring function:

D
( �hi , �s

)
= σ

( �hi
T

W �s
)
. (3)

Here, W is a learnable scoring matrix and σ is the logistic sigmoid
nonlinearity. Graph-level summary vectors, �s, is obtained using a
readout function R : RN×F → R

F which is a simple averaging of all
the node’s features

R(H) = σ

(
1

N

N∑
i=1

�hi

)
. (4)

We refer to such a pair of node representation and graph-level
summary as a positive sample if both are drawn from the same
graph. A negative sample will consist of a node representation and
graph-level summary obtained from a corrupted version of the graph,
derived by randomly permuting the node features of the graph using
a corruption function C : RN×N × R

N×F → R
M×M × R

M×F. Both the
encoder and discriminator are jointly trained to distinguish between
positive and negative samples by maximizing the following standard
binary cross-entropy loss:

L = 1

N + M

(
N∑

i=1

E(X,Ã)

[
logD

( �hi , �s
)]

+
M∑

i=1

E(X̃,Ã)

[
log

(
1−D

( �̃h j , �̃s
))])

. (5)

The time complexity of finding cliques in sparse graphs is much
less than dense graphs and could be done in O(M + N), where M
and N denote the number of edges and nodes, respectively, [40].
The time complexity of our encoders in COOL and COOL-DGI is
O(N2); thus, the overall time complexity is O(N2) in the worst case.
The space complexity of the proposed approach is O(L N F + L F2)

where L , N , and F are the number of layers, nodes, and features,
respectively.
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Fig. 2. High-level overview of COOL-DGI method with unsupervised loss function: 1) find all maximal cliques; 2) normalize the adjacency matrix; 3) sample a
negative example; 4) obtain high-level representations for the positive graph; 5) obtain high-level representations for the negative graph; 6) summarize high-level
representations; and 7) update parameters.

Assuming the single-graph setup (i.e., (X , A) provided as input),
we now summarize the steps of the COOL-DGI procedure:

1) Find all maximal cliques from the original graph by passing it
through the attention function: A� = T (A).

2) Normalize the adjacency matrix, Ã = α × A + β × A�,
by combining the unweighted and weighted adjacency matrices
balanced by hyperparameters, {α,β} ∈ {0, 1}.

3) Sample a negative example by using the corruption
function: (X̃, Ã) ∼ C(X, Ã).

4) Obtain high-level representations, �hi , for the maximal
cliques of the input graph by passing it through
the encoder: H = E(X, Ã) = { �h1, �h2, . . . , �hN }.

5) Obtain high-level representations, �̃hi , for the maximal cliques of
the negative graph by passing it through the encoder:
H̃ = E(X̃, Ã) = { �̃h1,

�̃h2, . . . ,
�̃hN }.

6) Summarize high-level representations of the input graph by
passing it through the readout function: �s = R(H).

7) Update parameters of E , R, and D by applying gradient descent
to maximize (5).

This algorithm is fully summarized in Fig. 2.

V. EXPERIMENTS

A. Datasets

A number of transductive node classification tasks are applied
to examine COOL. The experiments are conducted on six standard
network datasets including Cora, Citeseer, and Pubmed [41] as well
as ogbn-arxiv [42], Coauthor CS, and Amazon Photo [43]. Dataset
statistics are summarized in Table I. We follow the experimental setup
described in [19] to classify research briefs into topics where nodes
correspond to documents and edges represent citations. Each node
has a label and a feature vector that corresponds to elements of a
bag-of-words representation of a document.

Since the existing evaluation strategies for GNN models have some
limitations [43], we used multiple data splits. For the Cora, CiteSeer,
and PubMed datasetsthe data are first split into a train and a test set.
For the train set, 1500 nodes were sampled and the test set contains
all the remaining nodes. We used three different label sets in each
experiment: A training set of 80 nodes per class, a validation set
of 500 nodes, and a test set. For the ogbn-arxiv dataset, we trained
on briefs published until 2017, validated on those published in 2018,
and tested on those published since 2019. For the Coauthor CS and

TABLE I

SUMMARY OF THE DATASETS USED IN OUR EXPERIMENTS

Amazon Photo datasets, we used 30 labeled nodes per class as the
training set, 30 nodes per class as the validation set, and the rest as
the test set. Each experiment is run with five random initializations
on each data split, leading to a total of 100 runs per experiment.

B. Baselines

We compare COOL against GCN [19], GAT [1], DGI [29],
SGC [28], AS-GCN [35], GraphSAGE [34], and APPNP [22].

C. Settings

Our model is initialized using Glorot initialization [44] and trained
for a maximum of 200 epochs using Adam stochastic gradient descent
(SGD) optimizer [45], with an initial learning rate of 0.01. Training is
terminated if validation accuracy does not improve for ten consecutive
steps; as a result, most runs finish in less than 200 steps. It is applied
a fixed dropout [46] rate of 0.5 to input and hidden layer and an L2

regularization of 0.0005 on the weights are added. COOL-DGI model
uses a one-layer GCN model as an encoder with the effective hidden
size of 512 (especially 256 on Pubmed due to memory limitation) and
the parametric ReLU (PReLU) [47] nonlinearity.1 For COOL-norm,
we follow intuitions from [48] to normalize the adjacency matrix.
Following experimental settings proposed in [48], we use T = 5,
ν = 10−4.

D. Results

Tables II and III demonstrate how our model performs on multiple
data splits and initializations. The best results are highlighted in bold.
We report the mean classification accuracy (with standard deviation)
on the test nodes after 100 runs of training, and reuse the metrics

1A reference COOL implementation can be found at
https://github.com/SoheilaMolaei/COOLnorm
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TABLE II

RESULTS OF NODE CLASSIFICATION ON THE CORA, CITESEER, AND PUBMED DATASETS. IN THE FIRST COLUMN, WE HIGHLIGHT THE
KIND OF DATA AVAILABLE TO EACH METHOD DURING TRAINING (X: FEATURES, A: ADJACENCY MATRIX, Y: LABELS)

Fig. 3. Accuracy for different training set sizes (number of labeled nodes per class) on Cora.

Fig. 4. Accuracy for different training set sizes (the number of labeled nodes per class) on CiteSeer.

Fig. 5. Accuracy for different training set sizes (number of labeled nodes per class) on PubMed.

already reported in [19] for the performance of GCN, as well as
GAT [1], DGI [29], SGC [28], AS-GCN [35], GraphSAGE [34], and
APPNP [22].

We achieve a test accuracy of 86.1% (85.4%), 74.1% (73.9%),
and 79% (82.9%) with COOL (COOL-DGI) on Cora, Citeseer,
and Pubmed datasets, respectively. The results obtained by COOL
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Fig. 6. Accuracy and loss during training of GCN, COOL, and COOL-norm averaged over 100 runs on the Cora dataset.

Fig. 7. Node classification accuracy of models in attribute noise case. (a) Cora. (b) Citeseer.

outperform all the competing baselines. We particularly note that the
COOL-DGI approach with unsupervised loss exceeding the results
reported for the GCN with the supervised loss on all datasets.
We assume that these benefits stem from the fact that the COOL-
DGI approach aggregates high-level localized information from the
most relevant parts of the graph and allows for every node to have
access to structural properties of the entire graph while the supervised
GCN is limited to only two-layer neighborhoods. Although COOL
and COOL-DGI demonstrate strong performance being achieved
across all three datasets, COOL-norm considerably outperforms all
the competing approaches with a test accuracy of 86.8%, 74.8%, and
86.3% on Cora, Citeseer, and Pubmed as well as 73.8%, 93.3%, and
89.3% on ogbn-arxiv, Coauthor CS, and Amazon Photo, verifying
the potential of normalizing the adjacency matrix in improving
generalization of the model.

Since the labeling rate is often very small for real-world datasets,
we analyzed the performance of the models with a small number
of training samples. Figs. 3–5 illustrate how the number of training
nodes per class impacts the accuracy on Cora, Citeseer, and Pubmed.
Our results demonstrate strong performance achieved in this sparsely
labeled setting across all six datasets, verifying the potential of the
proposed clique-based method in the transductive node classification
domain. Fig. 6 shows the learning curves on the Cora dataset. We can

TABLE III

RESULTS OF NODE CLASSIFICATION ACCURACIES ON THE OGBN-ARXIV,
COAUTHOR CS, AND AMAZON PHOTO DATASETS

observe that the proposed approach presents higher training and
testing scores during learning.

In order to demonstrate the effectiveness of our approach with
respect to graph signal denoising, we designed two types of noise
cases in terms of structural and attribute noises. Attribute noise adds
noise to node features while structural noise randomly removes or
adds a small portion of the edges in the original graph. In the attribute
noise case, we added Gaussian noise with noise levels of 0.001, 0.005,
and 0.01 to the node features. As Fig. 7 shows, COOL-norm outper-
forms other baselines on Cora and Citeseer datasets, demonstrating
robust performance across node classification benchmarks.

In a structural noise setting, we randomly add or remove a
small portion of the edges with noise ratios of 0.05, 0.1, and 0.2.
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Fig. 8. Node classification accuracy of models in structural noise case. (a) Cora. (b) Citeseer.

Fig. 9. (Left) t-SNE embeddings of the nodes in the Cora dataset from the raw features and (Right) features from a learned COOL model. The clusters of
the learned COOL model’s representations are clearly defined, with the weight of the graph clustering loss α = 0.4.

Fig. 8 illustrates robust COOL-norm performance against our strong
baselines, demonstrating our approach extracts highly useful features
that reduce the negative impact of the noise in structural information.

VI. QUALITATIVE ANALYSIS

To better understand thoroughly the effectiveness of COOL,
we provide a standard set of t-distributed stochastic neighbor embed-
ding (t-SNE) plots [49] of the representations learned by the COOL
algorithm on the Cora dataset. Our analysis is performed by using
GraphTSNE [50] with the weight of the graph clustering loss α = 0.4
as shown in Fig. 9. Colors denote document class. As expected given
the quantitative results, the learned representations exhibit discernible
clustering in the projected 2-D space (especially compared to the raw
features), which respects the seven topic classes of Cora.

VII. CONCLUSION

We introduced a new approach for learning semisupervised rep-
resentations on graph-structured data, leveraging maximal cliques.

Our model allows for (implicitly) assigning various importance
weights to different nodes within a neighborhood, enabling a leap in
model capacity. This enables state-of-the-art results across six well-
established node classification benchmarks.
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[1] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.
[Online]. Available: http://arxiv.org/abs/1710.10903

[2] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on
graphs: Methods and applications,” 2017, arXiv:1709.05584. [Online].
Available: http://arxiv.org/abs/1709.05584

[3] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. 34th Int.
Conf. Mach. Learn., vol. 70, 2017, pp. 1263–1272.

[4] R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel, “LanczosNet: Multi-scale
deep graph convolutional networks,” 2019, arXiv:1901.01484. [Online].
Available: http://arxiv.org/abs/1901.01484

Authorized licensed use limited to: Monash University. Downloaded on October 02,2021 at 23:53:29 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[5] K. Sun, Z. Lin, H. Guo, and Z. Zhu, “Virtual adversarial training on
graph convolutional networks in node classification,” in Proc. 2nd Chin.
Conf., PRCV. Xi’an, China: Springer, Nov. 2019, pp. 431–443.

[6] K. Sun, Z. Lin, and Z. Zhu, “Multi-stage self-supervised learning
for graph convolutional networks on graphs with few labels,” 2019,
arXiv:1902.11038. [Online]. Available: http://arxiv.org/abs/1902.11038

[7] S. Abu-El-Haija et al., “MixHop: Higher-order graph convolu-
tional architectures via sparsified neighborhood mixing,” 2019,
arXiv:1905.00067. [Online]. Available: http://arxiv.org/abs/1905.00067

[8] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond Euclidean data,” IEEE Signal
Process. Mag., vol. 34, no. 4, pp. 18–42, Jul. 2017.

[9] P. W. Battaglia et al., “Relational inductive biases, deep learning,
and graph networks,” 2018, arXiv:1806.01261. [Online]. Available:
http://arxiv.org/abs/1806.01261

[10] A. Wijesinghe and Q. Wang, “DFNets: Spectral CNNs for graphs with
feedback-looped filters,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 6007–6018.

[11] M. Huang et al., “Supervised representation learning for multi-
label classification,” Mach. Learn., vol. 108, no. 5, pp. 747–763,
May 2019.

[12] S. Molaei, H. Zare, and H. Veisi, “Deep learning approach on informa-
tion diffusion in heterogeneous networks,” Knowl.-Based Syst., vol. 189,
Feb. 2020, Art. no. 105153.

[13] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete
structures for graph neural networks,” 2019, arXiv:1903.11960. [Online].
Available: http://arxiv.org/abs/1903.11960

[14] D. Rao, F. Visin, A. A. Rusu, R. Pascanu, Y. W. Teh, and R. Hadsell,
“Continual unsupervised representation learning,” in Proc. Adv. Neural
Inf. Process. Syst., 2019, pp. 7645–7655.

[15] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” Jan. 2019, arXiv:1901.00596.
[Online]. Available: http://arxiv.org/abs/1901.00596

[16] S. Pan, J. Wu, X. Zhu, C. Zhang, and P. S. Yu, “Joint structure
feature exploration and regularization for multi-task graph classifica-
tion,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 3, pp. 715–728,
Mar. 2016.

[17] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in Proc. 32nd Int. Conf. Neural Inf. Process. Syst. (NIPS), Red Hook,
NY, USA: Curran Associates, 2018, pp. 4805–4815.

[18] S. Pan, R. Hu, G. Long, J. Jiang, L. Yao, and C. Zhang, “Adversarially
regularized graph autoencoder for graph embedding,” in Proc. 27th
Int. Joint Conf. Artif. Intell. (IJCAI), Stockholm, Sweden, Jul. 2018,
pp. 2609–2615, doi: 10.24963/ijcai.2018/362.

[19] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907. [Online]. Available:
http://arxiv.org/abs/1609.02907

[20] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-
supervised learning with graph embeddings,” 2016, arXiv:1603.08861.
[Online]. Available: http://arxiv.org/abs/1603.08861

[21] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[22] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then
propagate: Graph neural networks meet personalized pagerank,”
2018, arXiv:1810.05997. [Online]. Available: http://arxiv.org/abs/1810.
05997

[23] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, “struc2vec:
Learning node representations from structural identity,” in Proc. 23rd
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Aug. 2017,
pp. 385–394.

[24] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-I. Kawarabayashi, and
S. Jegelka, “Representation learning on graphs with jumping knowledge
networks,” 2018, arXiv:1806.03536. [Online]. Available: http://arxiv.
org/abs/1806.03536

[25] M. Fey, “Just jump: Dynamic neighborhood aggregation in graph
neural networks,” 2019, arXiv:1904.04849. [Online]. Available:
http://arxiv.org/abs/1904.04849

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[27] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” 2013, arXiv:1312.6203.
[Online]. Available: http://arxiv.org/abs/1312.6203

[28] F. Wu, T. Zhang, A. H. de Souza, Jr., C. Fifty, T. Yu, and
K. Q. Weinberger, “Simplifying graph convolutional networks,” 2019,
arXiv:1902.07153. [Online]. Available: http://arxiv.org/abs/1902.07153
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