Noname manuscript No.
(will be inserted by the editor)

OpenWGL: Open-World Graph Learning for Unseen
Class Node Classification

Man Wu - Shirui Pan - Xingquan Zhu

Received: 21 Jan 2021 / Revised: 07 May 2021 / Accepted: 19 Jun 2021

Abstract Graph learning, such as node classification, is typically carried out
in a closed-world setting. A number of nodes are labeled, and the learning goal
is to correctly classify remaining (unlabeled) nodes into classes, represented
by the labeled nodes. In reality, due to limited labeling capability or dynamic
evolving nature of networks, some nodes in the networks may not belong to
any existing/seen classes, and therefore cannot be correctly classified by closed-
world learning algorithms. In this paper, we propose a new open-world graph
learning paradigm, where the learning goal is to correctly classy nodes be-
longing to labeled classes into correct categories, and also classify nodes not
belonging to labeled classes to an unseen class. Open-world graph learning
has three major challenges: (1) graphs do not have features to represent nodes
for learning; (2) unseen class nodes do not have labels, and may exist in an
arbitrary form different from labeled classes; and (3) graph learning should dif-
ferentiate whether a node belong to an existing/seen class or an unseen class.
To tackle the challenges, we propose an uncertain node representation learning
principle to use multiple versions of node feature representation to test a clas-
sifier’s response on a node, through which we can differentiate whether a node
belongs to the unseen class. Technical wise, we propose constrained variational
graph autoencoder, using label loss and class uncertainty loss constraints, to

M. Wu

Dept. of Computer & Electrical Engineering and Computer Science, Florida Atlantic Uni-
versity, Boca Raton, FL. 33431, USA

E-mail: mwu2019Qfau.edu

S. Pan (X))

Department of Data Science and Al Faculty of IT, Monash University, Clayton, Melbourne,
VIC 3800 Australia

E-mail: shirui.pan@monash.edu

X. Zhu (X))

Dept. of Computer & Electrical Engineering and Computer Science, Florida Atlantic Uni-
versity, Boca Raton, FL. 33431, USA

E-mail: xzhu3@fau.edu

2 Wu, Pan, Zhu

ensure that node representation learning is sensitive to the unseen class. As a
result, node embedding features are denoted by distributions, instead of de-
terministic feature vectors. In order to test the certainty of a node belonging
to seen classes, a sampling process is proposed to generate multiple versions of
feature vectors to represent each node, using automatic thresholding to reject
nodes not belonging to seen classes as unseen class nodes. Experiments, using
graph convolutional networks and graph attention networks on four real-world
networks, demonstrate the algorithm performance. Case studies and ablation
analysis also show the advantage of the uncertain representation learning and
automatic threshold selection for open-world graph learning.

Keywords Graph neural network, uncertain node representation learning,
open-world learning, node classification

1 Introduction

Networks/Graphs are convenient tools to model interactions and interdepen-
dencies between large-scale data. Graph learning, such as node classification?,
attempts to categorize nodes of graphs into several groups. Such learning tasks
are fundamental, but challenging, and have received continuous attention in
the research field. Many research efforts have been made to develop reliable
and efficient algorithms for different types of node classification tasks. How-
ever, existing methods mainly carry out the learning in a “closed-world” set-
ting, where classes in the test set must be consistent to the classes used in
the training set. In other words, nodes in the test data must belong to classes
already seen in the training set. As a result, when a new/unseen class node
appears in the test set, classifiers cannot detect the new/unseen class and will
erroneously classify the node to seen/learned classes in the training data.

In reality, data collection and labeling may be continuously evolving. New
trends emerge constantly and a model that cannot detect these new/unseen
trends can hardly work well in a dynamic environment. This problem/phenomenon
is referred to as the open-world classification or open classification problem [1].
The new “open-world” learning (OWL) [2—4] paradigm is to not only recognize
objects belonging to the classes already seen/learned before, but also detect
new class samples which are previously unseen.

Several approaches, such as one-class SVM [5], can be adjusted to address
open-world learning by treating all seen classes as the positive class, but they
cannot differentiate instances in seen classes and often have poor performance
to find unseen class, because no negative data is used. Alternatively, a similar
problem called covariate shift [6] has also been studied in social media text
classification, where covariate shift means that training data are not fully rep-
resentative of the test data. To address the problem, a Center-Based Similarity
(CBS) space learning method [6] firstly computes a center for each class and

I Note that node classification in this article refers to single-label classification.

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 3

Graph Structure Graph Structure

Open-World
Graph Learning
O Classt © Class3 O dlass1 O Class3
@->Class2 @ >Classa @->cClass2 @->Classa

(O->Unlabeled nodes @- > Unseen nodes

Fig. 1: An example of open-world learning for network node classification.
Nodes are either labeled or unlabeled. Given a graph with some labeled nodes
and unlabeled nodes (left panel), open-world graph learning aims to learn a
classifier to classify unlabeled nodes belonging to seen classes into its own
class, and also detects unlabeled nodes not belonging to any seen class as
unseen class nodes (denoted by green colored nodes in the right panel).

converts a document to a vector of similarities to the center. The transformed
data is then used to build a binary classifier for each class.

To date, open-world learning has already attracted many interests from
Natural Language Processing (NLP) [1] [2] and computer vision fields [7] [8] [9].
In NLP, Shu et al. [1] proposed the solution to open-world learning by setting
thresholds before the sigmoid function to reject data from the unseen class. In
computer vision, Scheirer et al. [7] studied the problem of recognizing unseen
images that are not in the training data by reducing the half-space of a binary
SVM classifier with a positive region. However, to the best of our knowledge,
the open-world classification problem has not been previously investigated in
graph structure data and graph learning tasks.

Given a graph consisting of seen class and unseen class nodes, the objective
of open-world graph learning is to build a classifier to classify nodes belonging
to seen classes into correct categories, and also detect nodes not belonging to
any seen class as unseen class. An example of open-world learning for graph
node classification is illustrated in Fig. 1.

Currently, existing solutions to open-world learning are mainly focused
on documents or images, and cannot be directly applied to graph structured
data and graph learning tasks because they cannot model graph structural
information, which is the core of node classification.

The challenge of graph learning is that graphs have node content and struc-
ture information where nodes are connected with edges representing their re-
lations. Furthermore, existing solutions to node classification task are built
on the closed-world assumption, in which the classes appeared in the testing
data must have appeared in training. For example, the basic idea of graph
convolutional networks (GCNs) is to develop a convolutional layer to exploit

4 Wu, Pan, Zhu

Probability
o
o

Probability
o
EY

05 k3
.

" e seenclass . . e Seenclass
Unseen class. Unseen class

6 100 200 300 400 500 600 (I) 100 200 300 400 500 600

Fig. 2: A visualization of classification probability on seen (blue) and unseen
(orange) class test instances for Cora dataset. The z—axis denotes the index
of test instances (first 500 instances belong to seen classes and the last 100 in-
stances belong to unseen class). The y—axis denotes the maximum probability
output of each instance through the softmax classifier. (a) denotes the classi-
fication probabilities using only label loss, and (b) denotes the classification
probabilities combining both label loss and class uncertainty loss.

the graph structure information and use a classification loss function to guide
the classification task. However, they directly use softmax as the final out-
put layer, which does not have the rejection capability to unseen class nodes
because the prediction probability of each class is normalized across all train-
ing/seen classes. In addition, in representation learning level, most existing
graph learning methods employ feature engineering or deep learning to ex-
tract feature vectors. However, these models can only generate deterministic
mappings to capture latent features of nodes. A major limitation of them is
their inability to represent uncertainty caused by incomplete or finite available
data.

In this paper, we propose to study open-world learning for graph data.
Considering the complicated graph data structure and the node classification
task, we summarize the main challenges as follows,

— Challenge 1: How to design an end to end framework for open-world graph
learning in graphs where the unseen class has no labeled samples, and may
exist in an arbitrary form different from seen classes. Existing graph neural
networks (GNNs) are typical built based on closed-world assumption and
cannot detect unseen class.

— Challenge 2: How can we model the uncertainty of node representations
and promote robustness in graphs. Many existing GNN-based approaches
only generate deterministic mappings to capture latent features of nodes.

To overcome the above challenges, we propose a novel open-world graph
leaning paradigm (OpenWGL) for the node classification task. For Challenge
1, we employ two loss constraints (a label loss and a class uncertainty loss) to

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 5

ensure that the node representation learning is sensitive to unseen class and
assist in our model to differentiate whether a node belongs to an existing/seen
class or the unseen class. We visualize a testing dataset in our experiment in
Fig. 2, which can illustrate the effectiveness of our method. In Fig. 2(a), we
only use the label loss (the cross-entropy loss), which has a good performance
on existing/seen class nodes, but unseen class nodes cannot be differentiated
and will be classified to seen classes randomly. In Fig. 2(b), we introduce a class
uncertainty loss constraint, which can reduce the probability of unseen class
nodes being classified as the seen class, and therefore help detect unseen class
nodes without reducing the classification performance for nodes in seen classes.
For Challenge 2, instead of learning a deterministic node feature vector, we
utilize a graph variational autoencoder module to learn a latent distribution to
represent each node. During the classification phase, a novel sampling process
is used to generate multiple versions of feature vectors to test the certainty of
a node belonging to seen classes, and automatically determine a threshold to
reject nodes not belonging to seen classes as unseen class nodes.
Our contributions can be summarized as follows:

— We formulate a new open-world learning problem for graph data, and
present a novel deep learning model OpenWGL as a solution.

— We propose an uncertain node representation learning approach, by using
label loss and class uncertainty loss to constrain variational graph autoen-
coder to learn node representation sensitive to unseen class.

— We propose to use sampling process to test the certainty of a node be-
longing to seen classes, and automatically determine a threshold to reject
nodes not belonging to seen classes as unseen class nodes.

— Experiments on benchmark graph datasets demonstrate that our approach
outperforms the baseline methods.

2 Related work

This work is closely related to open-world learning, emerging class and outlier
detection, and graph neural networks, which are briefly reviewed below.

2.1 Open-World Learning

Open-World Learning aims to recognize the classes the learner has seen/learned
before and also detect a new class it has never seen before. There are some
early explorations of open-world learning. Scholkopf et al. [5] employ the one-
class SVM as the classifier, which shows poor performance since no negative
data is used. Fei and Liu [6] propose a Center-Based Similarity (CBS) space
learning method, which first computes a center for each class and converts
each document to a vector of similarities to the center. The transformed data
is then used to build a binary classifier for each class. Fei et al. [3] then extend

6 Wu, Pan, Zhu

their work by adding the capability of incrementally or cumulatively learning
new classes.

Recently, open-world learning has been studied in Natural Language Pro-
cessing [1] [2] and Computer Vision (where it is called open-set recognition) [7]
[8] [9]. In NLP, Shu et al. [1] propose the deep learning solution to open-world
learning by setting thresholds before the sigmoid function to reject unseen
classes. Xu et al. [2] propose a new open-world learning model based on meta-
learning, which allows new classes to be added or deleted with no need for
model re-training. In computer vision, Scheirer et al. [7] study the problem
of recognizing unseen images that are not in the training data by reducing
the half-space of a binary SVM classifier with a positive region. In [8] and [9],
Scheirer et al. utilize the probability threshold to detect new classes, while
their models are weak because of lacking prior knowledge.

Most existing open-world learning approaches are primarily focused on
NLP and CV domains, and cannot model graph structural data. In our re-
search [10], we proposed to advance the open-world learning principle to graph
data, and designed a graph learning framework to classify network nodes in
an open-world setting.

2.2 Emerging Class and Outlier Detection

Our research is also related to emerging/new class detection in supervised
learning, such as stream data mining [11,12] and multi-instance learning [13],
and outlier detection [14].

In supervised learning, instances are assumed to belong to at least one
of the predefined classes, and a classifier is trained to learn discriminative
patterns to separate samples into known classes. In reality, all data patterns
may not be known when the data is collected, or new classes may emerge
over time. When a class is unknown or unavailable at the time of training a
classifier, in the test stage, an ideal classifier is expected to be able to detect the
emerging/new class [15]. A common solution of detecting new class samples
is to use a decision threshold to give a confidence score [16-18], including
multilayer neural network [19] to increase the threshold, and samples with low
confidence below threshold are recognized as the new class. Unfortunately, as
we have shown in Fig. 2, simply increasing the threshold will make existing
class samples being misclassified.

Outlier detection, on the other hand, aims to detect data instances which
abnormally deviate from the underlying data [20]. Akoglu et al. [21] provide
a comprehensive overview of graph-based techniques for anomaly, event, and
fraud detection, as well as their use for post-analysis and sense-making in
explaining the detected abnormalities. Some distance-based outlier detection
methods such as One-class SVM have been proposed, in which the normal data
domain is obtained by finding a hyper-sphere enclosing the normal data sam-
ples [5] [22]. For all methods, there is a trade-off between the number of true
outliers and false outliers (samples being detected as outliers but come from

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 7

the same distribution as the training data) [15]. A recent proposed method
called StrOUD utilizes transduction and statistical tests to measure the fit-
ness of cluster structures [23]. A recent method [14] proposes to detect outliers
from data stream, but new class detection by outliers is not addressed.

In summary, our research not only advances the emerging (new) class detec-
tion to networked data settings, but also proposes a new way of automatically
determine threshold for open-world learning.

2.3 Graph Neural Networks

Graph neural networks (GNNs), introduced in [24] and [25] as a generaliza-
tion of recursive neural networks to directly deal with a more general class of
graphs, e.g. cyclic, directed and undirected graphs, are a powerful tool for ma-
chine learning on graphs. GNNs have attracted attention all around the world,
which are designed to use deep learning architectures on graph-structured
data [26] [27] [28]. Many solutions are proposed to generalize well-established
neural network models that work on regular grid structure to deal with graphs
with arbitrary structures [29] [30] [31].

Among these methods, the most classic model is graph convolutional net-
work (GCN), which is a deep convolutional learning paradigm for graph-
structured data integrating local node features and graph topology structure in
convolutional layers [32]. GraphSAGE [33] is a variant of GCN which designs
different aggregation methods for feature extraction. GAT [34] improves GCN
by leveraging attention mechanism to aggregate features from the neighbors
of a node with discrimination. Although GCNs have shown great performance
in graph-structured data for semi-supervised learning tasks such as node clas-
sification, the variational graph autoencoder (VGAE) [35] extends it to un-
supervised scenarios. Specifically, VGAE integrates GCN into the variational
encoder framework [36] by using a graph convolutional encoder and a simple
inner product decoder.

For existing GCN-based graph learning models, they are built on the
closed-world assumption, in which the classes appeared in the test data must
have shown in training. In this paper, We employ two loss constrains to ensure
that the node representation learning is sensitive to unseen class and assist in
our model differentiating whether a node may belong to an existing/seen class
or an unseen class.

To the best of our knowledge, the open-world learning problem has not
been previously investigated in graph structure data and graph learning tasks.
We are the first to study the open-world graph learning and propose an novel
uncertain node representation learning approach, based on a variant of GCN
(i.e., variational graph autoencoder networks) to differentiate whether a node
belongs to an existing (seen) class or an unseen class.

oo

Wu, Pan, Zhu

labeled Nodes

bzpufwod 7
; mm -2 xdos®) {}@%
¢ pathosslososg 0366 o5

Z~q(Z)

6686 § 5 |
PP L]
Q0~00 % H Unlabeled Nodes ™,
00-00] | 1384

FFH }_{ m}@%

0.624
OO"OO

Q0-00

T [co-c0
[06=60

Fig. 3: The overall architecture of the proposed Open-World Graph Learning
(OpenWGL) model for unseen class node classification. The input consists of a
graph with labeled and unlabeled nodes. The learning objective of OpenWGL,
defined by Eq. (12), is constrained by (1) label loss (£,) defined by Eq. (13),
(2) class uncertainty loss (L¢) defined by Eq. (14), and (3) the KL divergence
loss and network reconstruction loss (Lg) defined by Eq. (11). As a result,
OpenWGL can learn uncertain node representation sensitive to the class la-
bels and unseen class. More specifically, OpenWGL first uses uncertain node
representation learning to generate a latent distribution of each node, which
consists of a graph encoder model and a graph decoder model. After that, a
sampling process is employed to the latent distribution to learn solutions to an
objective function which combines the three loss constraints (structure loss,
label loss, and class uncertainty loss). More details are given in Section 4.

3 Problem Definition and Overall Framework

This section defines the problem to be addressed in our paper and then presents
our overall framework for the problem.

3.1 Problem Statement

Node Classification on Graphs: In this paper, we focus on node classi-
fication on graphs. A graph is represented as G = (V, E, X,Y), where V =
{Ui}¢:1,.»- v Is a vertex set representing nodes in a graph, and e; ; = (vi,v5) €
E is an edge indicating the relationship between two nodes. The topological
structure of a graph G can be represented by an adjacency matrix A, where
A; i =1if (v5,v;) € E; otherwise A; ; = 0. 2; € X indicates content features
associated with each node v;. Y € RV*C is a label matrix of G, where N is
the number of nodes in G and C' is the number of node categories (classes)
already known/seen. If a node v; € V is associated with label [| Y(lz) =1

otherwise, Y} = 0.

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 9

Open-World Graph Learning: Given a graph G = (V,E, X)Y), X =
Kirain U Xtest, where Xyqi denotes training data (labeled nodes) and Xieq:
denotes testing nodes (unlabeled nodes). Assume X;.o; = S|JU, where S are
the set of nodes belonging to seen classes already appeared in Xyp.q:, and U
are the set of nodes not belonging to any seen class (i.e. unseen class nodes).
Open-World Learning on Graphs aims to learn a (C'+1)-class classifier model,
f(Xtest) —» Y, (Y €{1,---,C,rejection}) to classify each test node S to one
of the training/seen classes in Y and reject U to indicate that it does not
belong to any training/seen class (i.e., it belongs to the unseen class).

3.2 Overall Framework

In order to learn a classifier for open-world graph learning, we propose an un-
certain node representation learning approach called Constrained Variational
Graph Autoencoder network to classify each seen node to its accurate category
and reject the unseen nodes. Our framework for open-world graph learning, as
shown in Fig. 3, mainly consists of following two components:

— Node Uncertainty Representation Learning. Most GCN models gen-
erate deterministic mappings to capture latent features of nodes. A major
limitation of these models is their inability to represent uncertainty caused
by incomplete or finite available data. In order to learn a better represen-
tation of each node, we employ a Variational Graph Autoencoder Network
to obtain a latent distribution of each node, which enables to represent
uncertainty and promote robustness.

— Open-World Classifier Learning. In order to classify seen class nodes
to their own groups and detect unseen class nodes, we introduce two con-
straints, label loss and class uncertainty loss, to differentiate whether a
node belongs to an existing class or an unseen class.

Open-World Classification & Rejection. To perform inference during the
testing phase (i.e., perform classification or rejection of an example), we pro-
pose a novel sampling process to generate multiple versions of feature vectors
to test the certainty of a node belonging to seen classes and automatically
determine a threshold to reject nodes not belonging to seen classes as unseen
nodes. Our inference framework is given in Fig. 4 with detailed discussion
given in Section IV. C.

4 Methodology
4.1 Node Uncertainty Representation Learning
In order to encode latent feature information of each node and obtain an effec-

tive representation of uncertainty, we employ Variational Graph Autoencoder
network (VGAE) to generate a latent distribution based on extracted node

10 Wu, Pan, Zhu

Testing sample_1

Reject, if ¢; <t
Testing sample_2 . Linear RMXC RixC
g sample .) OpenWGL | Sampling ayer |™P|Softmax| mssss) Average mmsh Max wesh C;
: Class;, otherwise

Testing sample_n

Testing sample_x,— OpenWGL —|

22 @ oo Average o
080 010 002 0.08 Reject, if 0.63 < ¢
|22 4.'{'"“ Softmax|—| 60 020 010 0101 1o 63 0.15 0.08 0.14]-[0.63]
A% 2 ayer 050 015 010 025
Class,, otherwise
- 5, € RME
oM

z

N (e 0)

Fig. 4: The classification and rejection process (assuming seen class set has 4
classes). For nodes in the testing set, node uncertainty representation learning
generates M different versions of feature vectors for each node by a sampling
process. The M different representations are fed into a softmax layer to obtain
M probability outputs S;. The probabilities of each class are averaged to obtain
a vector s; 4, and the largest average is denoted by maz(s; o). Finally, Eq.(15)
is used to decide whether a node belongs to the seen or unseen classes.

features. This allows our method to leverage uncertainty for robust represen-
tation learning.

Graph Encoder Model: Given a graph G = (X, A), in order to represent
both node content X and graph structure A in a unified framework, our ap-
proach firstly utilizes a two-layer GNNs to map the feature matrix. Several
classical GNNs, such as GCN [32] and GAT [34], are tested as the backbone of
the two-layer GNNs. Given the input feature matrix X and adjacency matrix
A, the first GCN layer generates a lower-dimensional feature matrix, which is
defined as follows:

ZM = GNN(X, A) (1)

For the second layer GNN model, instead of generating a deterministic
representation, we assume that the output Z is continuous and follows a mul-
tivariate Gaussian distribution. Hence, we follow an inference model proposed
by [35]:

N
i=1
q(zi|X, A) = N(zi|p;, diag(c?)) (3)

Here, p = GNN, (X, A) is the matrix of mean vectors f;; o is the standard
variance matrix of the distribution, logo = GNN, (X, A). Then we can calcu-

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 11

late Z using a parameterization trick:
Z=p+o-(~N(0OI) (4)

where 0 is a vector of zeros and I is the identity matrix. By making use of the
latent variable Z, our model is able to capture complex noisy patterns in the
data.

For each layer of GNNs, the calculation process is as follows:
1) Graph Convolutional Networks. The Ith GCN layer inputs a fea-
ture matrix Z' € R*% and outputs a higher-order feature matrix Z't1 e
Re*da+1) | which can be written as a non-linear function:

7’ =X,

5
7+ = (D 2AD 2 Z'W)) (5)
where the degree matrix D;; = Zj A;j is a diagonal matrix, W! e Réw *da+)
is the transformation matrix for the lth layer and o(+) is a non-linear activation
function, which is acted by ReLU in our experiments.

2) Graph Attention Networks. The /th GAT layer with single head in-
puts a feature matrix Z' € R°*40 and apply a shared linear transformation,
parametrized by a weight matrix W! € Rea+n*dw | to each node. Then a
shared attention mechanism is leveraged to compute attention coefficients of
the pairs of connected nodes:

e}, = d(W'zZ,, W'Z}) ©)
= LeakyRelu(a'[W'Z!||W'Z]T)
where a'(-,-) : Rie+) x R¥+1) — R is a single-layer feed forward neural net-
work which is parametrized by a weight vector a! € R??t+1) | and applying the
LeakyRelu nonlinearity (with negative input slope o = 0.2). Then attention
coeflicients are normalized across all choices of j using the softmax function:

czp(ef;)

l
o = softmax;(e;;) =
1 TV Eken explely)

i (7)
where N is the set containing node i and neighbors of node i. Once obtained,
the normalized attention coefficients are used to compute a linear combination
of the features corresponding to them, to serve as the final output features for

each node:
70 =X,
41 1 xarlogl
Z = o(Y ol ;W'Z)) (8)
JEN;
where o(-) is a non-linear activation function, which is acted by exponential
linear unit (ELU) [37] in our experiments. In particular, GAT applies the multi-

head attention mechanism, which learns the embedding via Eq.(8) multiple
times and concatenates the embedding into a new representation.

12 Wu, Pan, Zhu

Graph Decoder Model: After we get the latent variable Z, we use a decoder
model to reconstruct the graph structure A to better learn the relationship
between two nodes. Here, the graph decoder model is defined by a generative
model [35]:

N N
p(A|Z) = H Hp(Ai,j\Zi,zj)’ 9)
p(Aij = 1|zi,2;) = 0(2] 25), (10)

where A;; are the elements of A and o(-) denotes the logistic sigmoid function.
Optimization: To better learn class discriminative node representations, we
optimize the variational graph autoencoder module via two losses as follows:

Ls = Eq(zx,4)[logp(A|Z)] = KL[q(Z]X, A)|[p(Z)] (11)

where the first term is the reconstruction loss between the input adjacent ma-
trix and the reconstructed adjacent matrix. The second term K L[q(Z| X, A)||p(Z)]
is the Kullback-Leibler divergence between ¢(Z|X, A) and p(Z), here p(Z) =
N(0,1).

4.2 Open-World Classifier Learning

After the variational graph autoencoder network, we obtain the uncertainty
embeddings for each node through Eq. (4), which consists of two parts: uncer-
tainty embeddings for labeled/training nodes Zj,peieq and uncertainty embed-
dings for unlabeled /test nodes Zyniapeied- To better learn an accurate classifier
for classifying both seen and unseen nodes in testing data, our proposed model
consists of a cooperative module, a label loss as well as a class uncertainty loss
working together to differentiate whether a node belongs to an existing class
or an unseen class. The overall objective function is as follows:

Lopenwar =Ly +7v2Lc + Ls (12)

The 71, 72 are the balance parameters. The Lg is the loss function of
the variational graph autoencoder network mentioned above. The £, and L¢&
represent the label loss and the class uncertainty loss, respectively. The details
are introduced as follows.

Label Loss: The label loss £, is to minimize the cross-entropy loss for the
labeled data:

Li(f(Ziaverea),Y) = =55 DY Yiclog(dic) (13)

In the above equation, f(-) denotes a full-connected layer with softmax ac-
tivation function, where the full-connected layer is a linear transformation,
transforming Z,,1qapeieq into probabilities that sum to one. N is the number
of labeled nodes. C denotes the number of seen classes, and ¥; . denotes the

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 13

groundtruth of the i-th node in the labeled data, 9; . is the classification pre-
diction score for the i-th labeled node v; in the ¢ class, respectively.

Class Uncertainty Loss: Since we do not have the class information in
the test data and there exists a considerable number of unseen nodes, we
need to find a way to differentiate the seen class and unseen class. Unlike the
label loss Lj,, which can utilize the abundant training data and have a good
performance on the seen class by the cross-entropy loss, the class uncertainty
loss is proposed to balance the classification output for each node and have
superior effects on the unseen nodes. In our paper, an entropy loss is placed
as the class uncertainty loss and our goal is to maximize this entropy loss to
make the normalized output of each node balanced. The formula is as follows:

1 N, C
LC(fs(Zunlabeled)) = F Z Z gi,clog(gi,c) (14)

i=1 c=1

where N, is the number of unlabeled nodes. §; . is the classification prediction
score for the i-th unlabeled node v; in the ¢ class. Note that we do not put a
negative sign in front of the formula as usual because we need to maximize the
entropy loss. In addition, we will not use all the unlabeled data to maximize
the entropy loss. We first sort all the unlabeled data output probability values
(choosing the maximum probability for each node) after the softmax layer, and
then discard the largest 10% (nodes with large probability values are easily
classified into seen classes since their output is discriminative) and the smallest
10% nodes (nodes with small probability values means that the node’s output
is balanced over each seen class which can be easily detected as the unseen
class). Finally the remaining nodes are utilized to maximize their entropy.

The training for label loss and class uncertainty loss acts like an adversarial
process. On one hand, we want the label loss to influence the classifier to make
the output of each node to be more discriminative and classify each seen node
into correct classes via minimizing Eq. (13). On the other hand, we would like
that the class uncertainty loss can make the output of each node to be more
balanced to assist the detection of unseen class through the maximization of
the entropy loss.

Ly, Lo and Lg are jointly optimized via objective function defined in Eq.
(12), and all parameters are optimized using the standard backpropagation
algorithms.

4.3 Open-World Classification & Rejection

After performing the node uncertainty representation learning, we obtain a
distribution (i.e., the Gaussian distribution) of the node embeddings. There-
fore, M different versions of feature vectors (z},---,zM) are generated for
each node v; from this distribution via Eq. (4), where this process is called a
reparametrization trick. Then the M different representations are fed into the
softmax layer to turn them into probabilities over C' classes respectively (each

2™ can obtain an output vector s € R1*¢).

14 Wu, Pan, Zhu

Avg_seen

Threshold

Probability

o

o
Probability
o o

S

w

Threshold

o <
o

o
kS

.
Avg_E_unseen (3 o Wt

0.3

@ Seenclass
® Unseen class

0.2- ¢ sSeenclass
0 50 100 150 200 250 0 100 200 300 400 500 600
sample sample

(a) In the validation set. (b) In the testing set.

Fig. 5: A visualization of determining the threshold using a validation set (only
contains seen class instances). (a) determining the threshold using validation
set. (b) applying determined threshold to the test set (contain both seen class
and unseen class instances).

After this process, the M outputs are concatenated to obtain a sampling
matrix S; € RM*C In S;, each column denotes M different probabilities of
a specific class and we average these probabilities for each class to obtain a
vector s; , € R*C For the vector s, with C different probabilities, we choose
the largest one max(s;). To recognize whether each node v; is the seen or
unseen classes for testing data, we have:

arg max.cc p(c|z;), otherwise. (15)

§= { Rejection, if max.co p(cz;) <t
where p(c|z;) is obtained from the softmax layer output of fs(-). If none of
existing seen classes probability p(c|x;) value is above the threshold ¢, we reject
x; as a sample from the unseen class; otherwise, its predicted class is the one
with the highest probability. The prediction process of each testing sample is
illustrated in Fig. 4.

4.8.1 Automatic Rejection Threshold Selection

In open-world graph learning, a key problem is how to determine of the thresh-
old ¢ in Eq. (15) which can be used to reject a node from seen classes. In our
paper, we propose a selection approach to automatically determine a thresh-
old to reject nodes not belonging to seen classes. Specifically, we use a valida-
tion set X4, . which is separated from the training set Xy.qin for threshold
selection. For nodes in the validation set, we perform the node uncertainty
representation learning, and conduct the same sampling process and choose
the largest posterior probability. Then we average these chosen largest prob-
abilities of all the nodes and obtain avg_seen. Because unseen class instances
are assumed not appearing in the training set (including the validation set),
we choose 10% nodes with the largest class distribution entropy, defined in

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 15

Eq. (16), as the “expected unseen class nodes” (AX7.), and their average
posterior probability is denoted by avg_E_unseen.

H(z;) ==Y plc|x;) log plcl;) (16)

ceC
The final threshold is calculated by averaging the probabilities as follows,

avg_seen + avg-E_unseen

t:
2

(17)

Fig. 5(a) shows an example of the determining process in the validation
set. We use this determined threshold to classify seen and unseen nodes in
the test set in Fig. 5(b), and the result shows that the threshold is a good
distinction between seen and unseen classes.

As a result of the above design, the node embedding features are denoted
by distributions, instead of deterministic feature vectors. By using a sampling
process to generate multiple versions of feature vectors, we are able to test the
confidence of a node belonging to seen classes, and automatically determine a
threshold to reject nodes not belonging to seen classes as unseen class nodes.

4.4 Algorithm Description

Our algorithm is illustrated in Algorithm 1. Given a graph G = (V, E, X,Y),
our goal is to obtain the node representations and classify the seen nodes and
detect the unseen nodes, respectively. Firstly, we employ a variational graph
autoencoder network to model the uncertainty of each node (Step 2-10). Here,
the output Z is a distribution and we optimize the network through the KL loss
and the reconstruction loss (Step 12). Then we propose two loss constraints
Ly, and L& to make our model capable of classifying seen and unseen classes
(Step 13-14). Finally, by jointly considering the label loss, class uncertainty
loss and the VGAE loss (the KL divergence loss and network reconstruction
loss), our model can better differentiate whether a node belongs to a seen class
or an unseen class and capture the uncertainty representations for open-world
graph learning.

4.5 Time Complexity Analysis

Given a graph G = (V, E, X,Y) with N nodes (vertices), the proposed Open-
World Graph Learning (OpenWGL) consists of two parts: graph encoder
model and graph decoder model.

For GCN and GAT, the time complexity is asymptotically bounded by the
number of edges of the network [29], i.e. O(|E|). This is mainly because that
both methods rely on message passing between each node and its neighbors
to learn node representation. E; denotes edges incident to node wv;, for all
nodes in the network, the total number of message passing is Zf\il |E;| =

16 Wu, Pan, Zhu

Algorithm 1: OpenWGL: Open-World Graph Learning

Date: G = (V,E, X,Y): a Graph with links and features; X = X¢rqin U Xtest,
Xiest = SUU: S are the seen classes appeared in Xy,qin, and U are the unseen classes;
C': the number of seen classes.

Result: f(Xtest) —» Y, Y €{1,---,C,rejection}.

1: while not convergence do

// Graph Encoder Model

3 For the first layer:

4: Z() « GNN(X, A)

5: For the second layer:

6.

7

8

w4+ GNN,(Z(D) A)
logo + GNN,(Z(1), A)
. Z+p+o-(C~N(0I)
9: // Graph Decoder Model
10: p(Asj = 124, 25) « o(2Fz;)
11: // Compute Loss
12: Lg <+ Obtain the variational graph autoencoder loss using Eq. (11)
13: L + Obtain the label loss using Eq.(13)
14: L < Obtain the class uncertainty loss using Eq.(14)
15: Back-propagate loss gradient using Eq.(12)
16: WO W W f(-)]« Update weights
17: if early stopping condition satisfied then
18: Terminate
19: For each test node x € X¢est:
20: f(z) + classify = using Eq.(15).
21: return f(Xtest)

2 x |E| = O(|E|). Because OpenWGL replies on graph encoder module, the
time complexity of the graph encoder model is O(|E|). The time complexity
of the process of reconstructing the original graph is O(dN?), where d is the
dimension of the latent space of matrix Z.

In order to test whether a node belongs to unseen class or not, OpenWGL
needs to sample uncertain node embedding M times. Suppose the graph de-
coder model is sampled M times, the time complexity of the graph decoder
model is O(dM N?). As a result, the time complexity of OpenWGL is asymp-
totically bounded by O(|E| + dM N?).

For sparse networks, the number of edges m is far less than the number
of node pairs N2, then the complex of OpenWGL is quadratic to the number
of nodes O(|E| + dMN?) = O(dMN?) = O(N?). For generic networks, the
number of edges is less than the square of the number of nodes (the complete
graph), i.e.,|E| < N2 so we have O(|E| + dMN?) = O(N? + dMN?) =
O((dM+1)N?) = O(N?). In summary, the complexity of OpenWGL is O(N?),
which is mainly attributed to the graph encoder and decoder steps.

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 17

Table 1: Statistics of the benchmark datasets.

Dataset ‘ # of Nodes # of Edges ## of Features # of Labels

Cora 2,708 5,429 1,433 7
Citeseer 3,312 4,732 3,703 6
DBLP 60,744 52,890 1,587 4
Pubmed 19,717 44,338 500 3

Table 2: Statistics of the number of nodes and number of classes of the bench-
mark data.

Dataset Class

Class 0 | Class 1 | Class 2 | Class 3 | Class 4 | Class 5 | Class 6
Cora 351 217 418 818 426 298 180
Citeseer | 596 668 701 249 508 590
DBLP 13586 23770 18292 5096

Pubmed | 4103 7739 7875

5 Experiments
5.1 Experimental Setup

Benchmark Datasets We employ four widely used citation network datasets
(Cora, Citeseer, DBLP, Pubmed) for node classification [38] [39]. The details
of the experimental datasets are reported in Table 1.

Test Settings and Evaluation Metrics For each dataset, we hold out some
classes as the unseen class for testing and the remaining classes as the seen
classes. In Table 2, we report the statistics of the benchmark data, with respect
to the number of nodes and number of classes. In the experiments, when the
number of unseen classes are set as |[U| = 1, |U| = 2, and |U| = 3, for Cora,
Citeseer, and DBLP dataset, we select the last class, the last two classes, and
the last three classes as the unseen class and the remaining classes as the seen
classes of each dataset, respectively. For Pubmed dataset (with one unseen
class |U| = 1), we select the first class as the unseen class and the remaining
classes as the seen classes. We randomly sample 70% of nodes for training,
10% for validation and 20% for testing. Note that, the nodes of unseen class
only appear in the testing set. We use the validation set to determine the
threshold for rejecting the unseen class. Like the traditional semi-supervised
node classification, for each dataset, we feed the whole graph into our model.
We vary the number of unseen classes to verify the performance of our model
at different unseen class proportion. We use the Macro F1 score and Accuracy
for evaluation [1].

Baselines We employ following methods as baselines.

18 Wu, Pan, Zhu

— GCN [32]: GCN is a deep convolutional network for graph-structured data.
GCN employs a convolution layer to exploit the graph structure informa-
tion and uses a classification loss function to guide the classification task.
In GCN;, it directly uses softmax as the final output layer. GCN does not
have the rejection capability to the unseen class.

— GCN_Sigmod: In GCN_Sigmod, we use multiple 1-vs-rest of sigmoids rather
than softmax as the final output layer of the GCN model, which also does
not have the rejection capability to the unseen class.

— GCN_Sigmod_Thre: Based on GCN_Sigmod, we use the default probability
threshold of t; = 0.5 for classification of each class i, which means if all
predicted probabilities are less than the threshold 0.5, we will reject it as
the unseen class. Otherwise, its predicted class is the one with the highest
probability.

— MLP_DOC: DOC [1] is the state-of-the-art open-world classification method
for text classification. We use a two-layer perceptron to obtain the node
representation.

— GCN_DOC: We utilize the rich node relationships and combine the GCN
with DOC to compare with our model. In DOC, it uses multiple 1-vs-rest
of sigmoids rather than softmax as the final output layer and defines an
automatic threshold setting mechanism.

Proposed method: In order to validate the performance of the proposed
OpenWGL learning algorithm, we implement OpenWGL using two types of
graph neural networks, including Graph Convolutional Network (GCN) and
Graph Attention Network (GAT).

e OpenWGL_GCN: OpenWGL_GCN employs a two-layer GCN as the
graph encoder model to aggregate node features.

e OpenWGL_GAT: Open WGL_GAT employs a two-layer GAT as the graph
encoder model to aggregate node features.

All deep learning algorithms are implemented using Tensorflow [40,41] and
are trained with Adam optimizer. We follow the evaluation protocol in open-
world learning [1] [2] and evaluate all approaches through grid search on the
hyperparameter space and report the best results of each approach. We feed
the whole graph into our model when training. For all baseline methods, we use
the same set of parameter configurations unless otherwise specified. For each
deep approach, we use a fixed learning rate le~3. For each method, the GCNs
contain two hidden layers (L = 2) with structure as 32 — 16. The balance
parameters 71, 72 are set to 1, 0.8, respectively. The dropout rate for each
GCN layer is set to 0.3. M is set to 100. In addition, we choose 2 layers for
OpenWGL_GAT, where the first GAT layer contains 32 hidden units, and the
second layer contains 16 hidden units.

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 19

Table 3: Experimental results on Cora with different number of unseen classes
U1

Ul=1 Ul=3

Methods Accuracly l[Macro F1 Accuracly [Macro F1
GCN 0.726 0.683 0.345 0.463
GCN_Sigmod 0.728 0.681 0.338 0.463
GCN_Sigmod_Thre 0.782 0.786 0.593 0.664
MLP_DOC 0.455 0.452 0.670 0.493
GCN_DOC 0.753 0.769 0.729 0.735
OpenWGL_GCN 0.833 0.835 0.775 0.752
OpenWGL_GAT 0.843 0.845 0.818 0.786

Table 4: Experimental results on Citeseer with different number of unseen
classes |U].

Ul=1 Ul=3

Methods Accuracly l[Macro F1 Accuracly |[Macro F1
GCN 0.445 0.477 0.263 0.320
GCN_Sigmod 0.443 0.472 0.258 0.318
GCN_Sigmod_Thre 0.670 0.609 0.683 0.621
MLP_DOC 0.455 0.433 0.745 0.564
GCN_DOC 0.687 0.613 0.758 0.679
OpenWGL_GCN 0.700 0.654 0.766 0.698
OpenWGL_GAT 0.702 0.658 0.767 0.700

Table 5: Experimental results on DBLP with different number of unseen classes

U

Ul=1 Ul=2

Methods Accuracly l[Macro F1 Accuracly |[Macro F1
GCN 0.662 0.562 0.285 0.323
GCN_Sigmod 0.662 0.562 0.290 0.323
GCN_Sigmod_Thre 0.657 0.650 0.282 0.326
MLP_DOC 0.643 0.630 0.480 0.477
GCN_DOC 0.657 0.658 0.503 0.506
OpenWGL_GCN 0.688 0.689 0.653 0.642
OpenWGL_GAT 0.689 0.690 0.657 0.645

5.2 Open-world Graph Learning Classification Results

Table 3, Table 4, Table 5 and Table 6 list the Macro F1 score and Accuracy
of different methods on open-world node classification task. From the results,
we have following observations:

(1) The GCN and GCN_Sigmoid obtain the worst performance among these
baselines in all datasets since they do not have the rejection capability
to the unseen class. Therefore, all the unseen nodes will be misclassified

20

Wu, Pan, Zhu

Table 6: Experimental results on Pubmed with different number of unseen
classes |U|. Note that, we only consider 1 class as unseen class since the
Pubmed has 3 classes.

Ul=1

Methods Accuracy | Macro F1
GCN 0.480 0.429
GCN _Sigmod 0.483 0.427
GCN_Sigmod_Thre 0.513 0.498
MLP_DOC 0.586 0.595
GCN_DOC 0.631 0.640
OpenWGL_GCN 0.753 0.757
OpenWGL_GAT | 0.780 0.781

Table 7: The Macro F1 score and Accuracy on three datatsets for closed-world
settings (without unseen classes).

Dataset (|U| = 0) GCN | OpenWGL_GCN | OpenWGL_GAT
Cora Accuracy | 0.863 0.854 0.854
Macro F1 | 0.848 0.829 0.837
Citescer Accuracy | 0.774 0.779 0.765
Macro F1 | 0.752 0.745 0.742
Accuracy | 0.806 0.809 0.812
DBLP Macro F1 | 0.754 0.751 0.753
Accuracy | 0.867 0.863 0.869
Pubmed —m e F T T 0.861 0.856 0.861

and their performance become worse with the number of unseen nodes
increases.

GCN_Sigmoid_Thre and GCN_DOC have better performances than GCN
and GCN_Sigmoid, which shows that the threshold can improve the per-
formance of detecting the unseen nodes. In addition, with the number of
unseen nodes increases, GCN_Sigmoid_Thre and GCN_DOC become more
competitive.

GCN_DOC has better performance than GCN_Sigmoid_Thre in most cases,
confirming that the threshold is not a fixed value and it varies with different
datasets and the ratio of unseen class. DOC’s automatic threshold setting
mechanism can effectively improve the classification results of unseen class.
The proposed Open-World Graph Learning model (OpenWGL_GCN and
OpenWGL_GAT) consistently outperforms all baselines on three datasets
with different numbers of unseen classes. It demonstrates that the pro-
posed constrained graph variational encoder network can better differenti-
ate whether a node belongs to a seen class or an unseen class and capture
the uncertainty representation of each node by jointly considering the label
loss, class uncertainty loss and the node uncertainty representation learning
as a unified learning framework. In addition, the proposed OpenWGL_GAT
outperforms OpenWGL_GCN which shows that assigning different weights

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 21

to nodes of a same neighborhood can be more beneficial for node represen-
tation learning.

(5) We also report closed-world learning setting results (without unseen class)
in Table 7. The results show that when networks do not have unseen class,
OpenWGL (OpenWGL_GCN and OpenWGL_GAT) has comparable per-
formance as GCN, confirming its effectiveness and generalization for node
classification. Overall, as the number of unseen classes increase, the per-
formance of all methods, including our proposed methods, will decrease
on Cora, DBLP, and Pubmed but increase on the Citeseer dataset. This
is mainly because that as more nodes are being assigned as unseen class
nodes, the network will have less label information, resulting in deterio-
ration in performance. On the other hand, as more classes being treated
as unseen class (e.g. from |U|=1 to |U|=3), the whole network will have
less number of classes, resulting in a slightly higher random prediction ac-
curacy (e.g. random prediction accuracy on a binary classification task is
50%, which is higher than 33.3%, the random prediction accuracy on a
three class classification task). This possibly leads to the performance in-
crease on the Citeseer dataset. Meanwhile, as the number of unseen classes
increase, using thresholds to detect unseen class nodes has a clear benefits.
However, in the absence of unseen classes, the performance of our method
may be lower than rival methods, as shown in Table 7.

5.3 Ablation Analysis of Open WGL Components

Because OpenWGL contains two key constraints, in this subsection, we com-
pare variants of OpenWGL with respect to the following aspects to demon-
strate: (1) the effect of the class uncertainty loss, and (2) the impact of the
VGAE module (KL loss and reconstruction loss). Note that, we adopt GCN-
based module in OpenWGL.

The following OpenWGL variants are designed for comparison.

— OpenWGL—¢: A variant of OpenWGL with only the class uncertainty loss
being removed.

— OpenWGL~—y: A variant of OpenWGL with the KL loss and reconstruction
loss being removed.

Tables 8, 9 & 10 report the ablation study results.

5.3.1 The effect of the class uncertainty loss

In order to show the superiority of the class uncertainty loss, we design a
variant model OpenWGL—¢. As mentioned before, the class uncertainty loss
is a constraint on the unlabeled nodes. The ablation study results show that
the performances of the node classification task on both datasets are improved
when the class uncertainty loss is used, indicating its effectiveness of detecting
unseen nodes.

22 Wu, Pan, Zhu

Table 8: The Macro F1 score and Accuracy between OpenWGL variants on
Cora.

\ Ul=1 \ Ul=3
Methods | Accuracy | Macro F1 | Accuracy | Macro F1
OpenWGL—¢ 0.782 0.787 0.700 0.665
OpenWGL—y 0.824 0.829 0.785 0.705
OpenWGL 0.833 0.835 0.775 0.752

Table 9: The Macro F1 score and Accuracy between OpenWGL variants on
Citeseer.

\ U|=1 \ U =3
Methods | Accuracy | Macro F1 | Accuracy | Macro F1
OpenWGL—-¢ 0.676 0.645 0.759 0.692
OpenWGL—y, 0.691 0.648 0.760 0.683
OpenWGL 0.700 0.654 0.766 0.698

Table 10: The Macro F1 score and Accuracy between OpenWGL variants on
DBLP.

| Ul =1 | U] =2
Methods | Accuracy | Macro F1 | Accuracy | Macro F1
OpenWGL—-¢ 0.675 0.672 0.650 0.631
OpenWGL—y, 0.687 0.671 0.651 0.635
OpenWGL 0.688 0.689 0.653 0.642

5.3.2 The impact of the VGAE module (KL loss and reconstruction loss)

In order to verify the impact of the VGAE module which can model the uncer-
tainty node representations, we compare Open WGL model and OpenWGL—y,.
From the results, we can easily observe the OpenWGL model performs sig-
nificantly better than OpenWGL—y,. This confirms that the usage of KL loss
can model the uncertainty to better capture the latent representation of each
node, and reconstruction loss can preserve node relationships which will assist
in the node representation.

5.4 Parameter Analysis

Impact of the feature dimensions of node output embeddings Z: As
mentioned in the method section, the output of node embeddings is represented
as Z. OpenWGL uses 2-layer GCNs with structure as 32 — 16, and feature
dimensions d of node output embeddings is 16. We vary d from 4 to 64 and
report the results on three datasets, respectively in Fig. 6. On Citeseer and
DBLP datasets, as d increases from 4 to 64, the performance grows gradually

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 23

—¥—Cora —v—Cora
0.951 —o— Citeseer| 0.951 —4— Citeseer|
—=—DBLP —&—-DBLP
0.9r 3 0.9r 3
>0.85¢ 1 —085 1
S — v
5 08 1 9 osf 1
o Q
Q (o]
< 0.75F 1 =075
L) G & ﬁ/d 0.7F i
;e = I
0.651 1 0.655 B
4 8 16 . 32 64 4 32 64
Number of Feature Dimension

8 16
Number of Feature Dimension

(a) Accuracy (b) Macro F1

Fig. 6: Impact of feature dimensions of node output embeddings for the accu-
racy and Macro F1 score on three datasets.

to reach a plateau. The performance of Cora dataset is stable with d increasing
from 4 to 32 and has a slight decrease at 64. When d further increases to 128,
the accuracy of target domain is improved on both tasks. After that, both
the Macro_F1 score and Accuracy remain steady and no obvious difference is
observed with different d. Therefore, only slight differences can be observed
with different d values. The increase of d, from 4 to 64, does not necessarily
result in performance improvements. The results show that with sufficient
feature dimensions (d > 16), OpenWGL is stable with the increasing number
of feature dimensions.

5.5 Case Study
5.5.1 Visualization of the Open WGL sampling results

In order to verify the effectiveness of the sampling process of our model, we ran-
domly choose two testing nodes from Cora dataset for seen and unseen classes
(we choose one class as unseen, i.e. |[U| = 1), respectively. After performing
the node uncertainty representation learning, we obtain a distribution of the
node embeddings. Then we generate 100 different versions of feature vectors
for each node from this distribution and feed them into the softmax layer to
turn them into probabilities over 6 classes, respectively. Therefore, after this
process, for each node we obtain a 6 x 100 sampling matrix. In the sampling
matrix, each column denotes 100 different probabilities of a specific class. We
visualize the sampling matrices of these four nodes through histogram charts
with seen and unseen classes in Figs. 7(a) and (b). In Fig. 7, each row rep-
resents one node and in each row, there are six subfigures indicating the 100
different probabilities of each class, respectively. From Fig. 7, we can observe
that the sampling process have superior performance in differentiating the
seen classes and the unseen class, and it is very helpful for determining the
threshold. For example, as shown in the first row in Fig. 7(a), only in class
2, most of the 100 different probabilities are distributed on far right side of

24 Wu, Pan, Zhu

0 false 1 False 2 True 3 false 4 false 5 false

-) 3 3 2)

c c c c c c

v v v v v v

510 3 3 3 3))

g] g g g §

£, £ r & £l £

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probability Probability Probability Probability Probability Probability
= 0 False 1 false 2 False 3 false 4 True 5 False

>«W bl Pl bl b bl

4 2 2 2 2 2

€ c c c c c

Wm v v v v v

e g F 3\] %\‘

: 0 : — £ —— £ ——— : — /\ : ———

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probability Probability Probability Probability Probability Probability
(a) The visualization of two randomly selected nodes from seen classes.

0 False 1 False 2 false 3 False 4 false 5 False

=

Frequency
Frequency

Frequency

Frequency
Frequency
Frequency

Ty R U T R Y — T T gy
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Probability Probability Probability Probability Probability Probability

i 0 False 1 False 2 false 3 False 4 False 5 False

b > > > by b

9 3 0 9 9 3

c c c c c c

'010 v v. v v v

3 3) ¥ 3 3

H g H H g g

t T T T T t/w\ﬁ T I‘: T T T T ! /\—v\\ T T ! T T T T t T T T T

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10

Probability Probability Probability Probability Probability Probability

(b) The visualization of of two randomly selected nodes from unseen class.

Fig. 7: A case study of the OpenWGL sampling results with two randomly
selected nodes from seen classes and unseen class on Cora, respectively. Each
row denotes one node, “True” denotes the class to which the node genuinely
belongs, and “False” means that the node does not belong to this class. (a)
two nodes randomly selected from seen classes, and (b) two nodes randomly
selected from unseen class. The x—axis denotes the probability output of each
node through the softmax classifier, and the y—axis denotes the frequency
appearing in each class.

the histogram (i.e.,large probability), while all the other classes (0,1,3,4,5) are
distributed on the far left side (i.e.,small probability). Thus, through the soft-
max layer, we can classify this node to class 2 and the ground truth is also
class 2. However, if we just use a deterministic feature vector instead of this
sampling method, this node may not be classified to the class 2, since class 2
also has cases with small probability values. Similarly, for the unseen nodes
as shown in Fig. 7(b), in each seen class, most of the probability values are
concentrated on the left side of the histogram (i.e., small probability), so we
can easily detect them and classify them into unseen class. However, If we
only obtain one probability output and do not have the sampling process, the
unseen node might be misclassified randomly.

In order to show the average results of all nodes, Fig. 8 reports the sampling
results using statistics of all nodes in each of the seen classes and unseen class
on Cora, respectively. The difference between Fig. 7 and Fig. 8 is that the latter

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 25

0_True 1 False 2 False 3 False 4 False 5 False
n ‘ \
Class0 210
z & 7 7 & 7
H
w L
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probabilty Probabilty Probability Probabilty Probabilty Probabilty
0_False 1 True 2 False 3 False 4 False 5 False
3 3 9 3 3 3
H H ¢ 4 H H
e 20 : g %\\ g |
ass1 3107\)) 7 7 7
g 1 H H g 1
£ ¢ _L g Lk g
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probabilty Probabilty Probabilty Probabilty probabilty Probabilty
0_False 1 False 2_True 3 False 4 False 5_False
3 3 9 3 3 I
§ § § § § §
Chss2 210 gL ES 2 2 ES
H H H H H H
4 g g ¢ g g
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probabilty Probabilty Probability Probabilty Probabilty Probabilty
0_False 1 False 2 False 3 True 4 False 5_False
32 3 3 3 3 3
H H ¢ ¢ H ¢
S1 5 H F H H
Chss3 g § ¢ § g ¢
e fre [& e [
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probabilty Probabilty Probability Probabilty Probabilty Probabilty
0_False 1 False 2 False 3 False 4 True 5_False
9 I I
H H H
S1 5 H
Class 4 g g o 7f\ H 7
e frs fre
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probabilty Probabilty Probabilty Probabilty Probabilty Probabilty
0_False 1 False 2_False 3 False 4 False 5_True
o 3 3
5.\ § §
Class 5 %10 % 2 o\ 5 2
e frs fre

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probability Probability Probabilty Probability Probability Probability

(a) The visualization of statistics of all nodes in each of the classes (each row denotes a seen
class).

0_False 1 False 2 False 3 False 4 False 5 False
30 3 3 3 3 3
4 4 ¢ 4 4 ¢
Unseen Class 310 E 3 3 E :
¢ . he N :
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Probability Probability Probability Probability Probability Probability

(b) The visualization of statistics of all nodes of unseen class.

Fig. 8: A case study of the OpenWGL sampling results using statistics of all
nodes of each seen classes and the unseen class on Cora, respectively. Each row
denotes all nodes of each seen class, “True” denotes the class to which the the
node belongs, and “False” means that the node does not belong to this class.
(a) statistics of all nodes of each seen class, and (b) statistics of all nodes of
unseen class. The x—axis denotes the probability output of each node through
the softmax classifier, and the y—axis denotes the frequency of all nodes of
per class appearing in different classes.

is obtained using the average of all nodes, whereas Fig. 7 is based on results
from two randomly selected nodes. The results show that seen class nodes and
unseen class nodes share different patterns. For seen class nodes, its average
probability with respect to its genuine class is flat, with high probability values
towards the 1.0 side, and its average probability with respect to other classes
have high probabilities towards the 0.0 side. For unseen class nodes, it average
probability values to all classes have high probabilities towards the 0.0 side,
perfectly explain that the node does not belong to these classes.

26 Wu, Pan, Zhu

- -JR:YA 0.07 0 0 0.01 0 0.05
0.8

©- 0.14 oy 0.02 0.02 0.01 0 0.04

— - 0.14 0.07 movEm 0.02 0.02 0 0 0.6

~ - 0.05 0 0 0.92 N 0 0.01

-0.4
m- 012 0.04 0.02 0 (Ovi-l 0.03 0.01

< - 0.09 0.04 0 0 0.02 QX:ZE 0.01 -0.2
n - 0.09 0.02 0 0 0 0.02 [NeR:¥g
' ' | ' ' ' -0.0
-1 0 1 2 3 4 5

Fig. 9: The confusion matrix of OpenWGL on Cora. “-1” denotes the unseen
class and “0,1,2,3,4,5” are seen classes. The (4, ;) value of the matrix shows
that the percentage value of the i-th class is classified to the j-th category.

5.5.2 The Confusion Matrix

In order to verify the effectiveness of OpenWGL in differentiating seen class
nodes vs. unseen class nodes, Fig. 9 reports the confusion matrix of OpenWGL
on Cora network, where “-1” denotes unseen class. The results show that
OpenWGL correctly identifies 87% of unseen class nodes and also remains a
high accuracy in classifying seen class nodes.

6 Discussion

Graph learning in an open-world setting is a significant challenge, because it
involves feature learning, prediction loss, and classification confidence. In the
proposed design, we combine multiple loss terms as objective function to learn
embedding features to represent node for classification. This novel learning
task has many interesting topics for future study.

In order to decide whether a node belongs to the unseen class, we use a
thresholding approach, in Eq. (15), to reject a node from seen classes, if its
posterior probability p(c|z;) is less than a threshold ¢. Although the threshold
value ¢ is automatically determined by Eq. (17), it is solely based on the
posterior probability values p(c|x;),c € C. Alternatively, because rejecting z;
as seen class or not is a binary decision, one can design a binary classification
task, by using features to learn whether instance x; belongs to seen classes or
not [2].

In this paper, we address the open-world graph learning in a static net-
work setting, where nodes and edges do not change. In many applications,
networks are continuously evolving with new nodes/edges [42], and node con-
tent many also change. Carrying out open-world graph learning in a dynamic
network setting is another significant challenge. This is mainly because changes

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 27

in node/edge distributions may impact on the unseen class detection, and some
seen class nodes may also be misclassified as unseen class if they are undergo-
ing an evolving or concept drifting [43]. Finding good representation for nodes
in dynamic networks, with capability to differentiate nodes in seen vs. unseen
classes, is another topic for future study.

Currently, our method aims to attribute all unknown classes to an unseen
classes (a single class), and it can not distinguish each unknown class. In the
future, we will study to better distinguish different unknown classes through
post-processing and other unsupervised methods, such as clustering.

In addition, we use two GNN variants (i.e., GAT and GCN) as Graph
Encoder Model, and compares them empirically. Admittedly, there are other
alternatives instead of GCN and GAT. However, in this paper, our goal is
not to propose a novel graph representation learning model, but rather to fo-
cus on a new open-world graph learning paradigm, where the learning goal is
to not only classify nodes belonging to seen classes into correct groups, but
also classify nodes not belonging to existing classes to an unseen class. We
also observe that OpenWGL_GAT outperforms Open WGL_GCN which shows
that new variant GNN method can be more beneficial for node representa-
tion learning, and can improve the performance of the model. We will try to
apply some new GNN model, such as GIN [44], GIL [45], APPNP [46], and
FiLMConv [47], for the open-world graph learning task in the future.

7 Conclusions

Traditional graph learning tasks are based on the closed-world setting, where
unlabeled nodes (i.e. test set) should have the same class space as the labeled
nodes (i.e. training set). The learning goal is to classify nodes into classes
already known. In the paper, we advocated an open-world graph learning
paradigm which not only classifies nodes belonging to seen classes into cor-
rect groups, but also classifies nodes not belonging to existing classes to an
unseen class. To achieve the goal, we proposed an open-world graph learning
(OpenWGL) framework with two major components: (1) node uncertainty rep-
resentation learning, and (2) open-world classifier learning. The former uses
label loss and class uncertainty loss to guide graph variational autoencoder to
learn node embedding as distributions, and the latter automatically learns a
threshold to detect unseen class nodes. The former learns a distribution for
each node embedding via a graph variational autoencoder to capture the un-
certainty, and the latter minimizes the label loss and class uncertainty loss
simultaneously to distinguish seen and unseen class nodes, using automati-
cally determined threshold. The threshold to reject the unseen class is further
automatically determined in our framework. Experiments showed that when
unseen class presents in test data, OpenWGL significantly outperforms base-
lines in classifying both seen and unseen class nodes. When networks do not
have unseen class nodes (only contain nodes from seen classes), OpenWGL
has a comparable performance to the baseline.

28

Wu, Pan, Zhu

Acknowledgment

This research is supported by the U.S. National Science Foundation (NSF)
through Grant Nos. I1S-1763452, CNS-1828181, and IIS-2027339.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L. Shu, H. Xu, and B. Liu, “Doc: Deep open classification of text documents,” arXiv
preprint arXiv:1709.08716, 2017.

H. Xu, B. Liu, L. Shu, and P. Yu, “Open-world learning and application to product
classification,” in Proc. of WWW Conf., 2019, pp. 3413-3419.

G. Fei, S. Wang, and B. Liu, “Learning cumulatively to become more knowledgeable,”
in Proc. of KDD, 2016, pp. 1565-1574.

Z. Chen and B. Liu, “Lifelong machine learning,” Synthesis Lectures on Artificial Intel.
and Machine Learning, vol. 12, no. 3, pp. 1-207, 2018.

B. Scholkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Esti-
mating the support of a high-dimensional distribution,” Neural computation, vol. 13,
no. 7, pp. 1443-1471, 2001.

. G. Fei and B. Liu, “Social media text classification under negative covariate shift,” in

Proc. of EMNLP, 2015, pp. 2347-2356.

W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult, “Toward open set
recognition,” IEEFE Trans. on pattern analysis and machine intelligence, vol. 35, no. 7,
pp. 1757-1772, 2012.

W. J. Scheirer, L. P. Jain, and T. E. Boult, “Probability models for open set recogni-
tion,” IEEE Trans. on pattern analysis and machine intelligence, vol. 36, no. 11, pp.
2317-2324, 2014.

L. P. Jain, W. J. Scheirer, and T. E. Boult, “Multi-class open set recognition using
probability of inclusion,” in ECCV. Springer, 2014, pp. 393—409.

M. Wu, S. Pan, and X. Zhu, “Openwgl: Open-world graph learning,” in Proc. of IEEE
ICDM Conf., 2020.

Y. Gao, S. Chandra, Y. Li, L. Kan, and B. Thuraisingham, “Saccos: A semi-supervised
framework for emerging class detection and concept drift adaption over data streams,”
IEEE Trans. Knwl. € Data Eng., 2020.

X.-Q. C. Cai, P. Zhao, K.-M. Ting, X. Mu, and Y. Jiang, “Nearest neighbor ensembles:
An effective method for difficult problems in streaming classification with emerging new
classes,” in ICDM, 2019.

X.-S. Wei, H.-J. Y. Ye, X. Wu, J. Wu, C. Shen, and Z.-H. Zhou, “Multiple instance
learning with emerging novel class,” IEEE transactions knowledge and data engineering,
2019.

G. Na, D. K. Kim, and H. Yu, “Dilof: Effective and memory efficient local outlier
detection in data streams,” in Proc. of KDD, 2019.

C. H. Park and H. Shim, “On detecting an emerging class,” in IEEE Intl. Conf. on
Granular Computing (GRC 2007). IEEE, 2007, pp. 265-265.

B. Zadrozny and C. Elkan, “Transforming classifier scores into accurate multiclass prob-
ability estimates,” in Proc. of SIGKDD, 2002.

M. Li and I. K. Sethi, “Confidence-based classifier design,” Pattern Recognition, vol. 39,
no. 7, pp. 1230-1240, 2006.

K. Proedrou, I. Nouretdinov, V. Vovk, and A. Gammerman, “Transductive confi-
dence machines for pattern recognition,” in European Conference on Machine Learning.
Springer, 2002, pp. 381-390.

W. Soares-Filho, J. Seixas, and L. P. Caloba, “Enlarging neural class detection capacity
in passive sonar systems,” in 2002 IEEE International Symposium on Clircuits and
Systems. Proceedings (Cat. No. 02CH37353), vol. 3. 1EEE, 2002, pp. III-III.

E. M. Knorr and R. T. Ng, “Finding intensional knowledge of distance-based outliers,”
in VIdb, vol. 99, 1999, pp. 211-222.

OpenWGL: Open-World Graph Learning for Unseen Class Node Classification 29

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and description:
a survey,” Data mining and knowledge discovery, vol. 29, no. 3, pp. 626688, 2015.

E. J. Spinosa and A. Carvalho, “Support vector machines for novel class detection in
bioinformatics,” Genet Mol Res, vol. 4:3, pp. 608—15, 2005.

D. Barbara, C. Domeniconi, and J. P. Rogers, “Detecting outliers using transduction
and statistical testing,” in Proc. of KDD, 2006, pp. 55-64.

M. Gori, G. Monfardini, and F. Scarselli, “A new model for learning in graph domains,”
in IJCNN, vol. 2. IEEE, 2005, pp. 729-734.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph
neural network model,” IEEE Trans. on Neural Networks, vol. 20, no. 1, pp. 61-80,
2008.

M. Wu, S. Pan, C. Zhou, X. Chang, and X. Zhu, “Unsupervised domain adaptive graph
convolutional networks,” in WWW ’20: The Web Conference, April 20-24, 2020, 2020,
pp. 1457-1467.

M. Wu, S. Pan, X. Zhu, C. Zhou, and L. Pan, “Domain-adversarial graph neural
networks for text classification,” in IEEE International Conference on Data Mining,
ICDM, 2019, pp. 648-657.

S. Zhu, L. Zhou, S. Pan, C. Zhou, G. Yan, and B. Wang, “GSSNN: Graph smoothing
splines neural networks,” in AAAI 2020, pp. 7007-7014.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on
graph neural networks,” TNNLS, 2020.

S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning graph embedding
with adversarial training methods,” IEEE Transactions on Cybernetics, 2019.

M. Wu, S. Pan, L. Du, I. W. Tsang, X. Zhu, and B. Du, “Long-short distance aggregation
networks for positive unlabeled graph learning,” in Proceedings of CIKM, 2019, pp.
2157-2160.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems, 2017, pp. 1024-1034.
P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint
arXiv:1611.07308, 2016.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiw:1312.6114, 2013.

D. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning
by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.

C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network representation learning
with rich text information.” in Proc. of IJCAI, 2015, pp. 2111-2117.

S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network representation,”
in Proc. of IJCAI, 2016, pp. 1895-1901.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

J. Hu, S. Qian, Q. Fang, Y. Wang, Q. Zhao, H. Zhang, and C. Xu, “Efficient graph deep
learning in tensorflow with tf_geometric,” CoRR, vol. abs/2101.11552, 2021.

L. Chi, B. Li, X. Zhu, S. Pan, and L. Chen, “Hashing for adaptive real-time graph
stream classification with concept drifts,” IEEE transactions on cybernetics, vol. 48:5,
pp. 1591-1604, 2018.

P. Zhang, B. J. Gao, X. Zhu, and L. Guo, “Enabling fast lazy learning for data streams,”
in Proc. of IEEE ICDM Conference, 2011, pp. 932-941.

30

Wu, Pan, Zhu

44.

45.

46.

47.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”
in 7th International Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019, 2019.

S. Zhu, S. Pan, C. Zhou, J. Wu, Y. Cao, and B. Wang, “Graph geometry interaction
learning,” Advances in Neural Information Processing Systems, vol. 33, 2020.

J. Klicpera, A. Bojchevski, and S. Giinnemann, “Predict then propagate: Graph neural
networks meet personalized pagerank,” in 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

M. Brockschmidt, “Gnn-film: Graph neural networks with feature-wise linear modula-
tion,” in Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, ser. Proceedings of Machine Learning Research,
vol. 119, 2020, pp. 1144-1152.

