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ABSTRACT
Multivariate relations are general in various types of networks, such

as biological networks, social networks, transportation networks,

and academic networks. Due to the principle of ternary closures

and the trend of group formation, the multivariate relationships in

social networks are complex and rich. Therefore, in graph learn-

ing tasks of social networks, the identification and utilization of

multivariate relationship information are more important. Existing

graph learning methods are based on the neighborhood informa-

tion diffusion mechanism, which often leads to partial omission or

even lack of multivariate relationship information, and ultimately

affects the accuracy and execution efficiency of the task. To address

these challenges, this paper proposes the multivariate relation-

ship aggregation learning (MORE) method, which can effectively

capture the multivariate relationship information in the network

environment. By aggregating node attribute features and structural

features, MORE achieves higher accuracy and faster convergence

speed. We conducted experiments on one citation network and five

social networks. The experimental results show that the MORE

model has higher accuracy than the GCN (Graph Convolutional

Network) model in node classification tasks, and can significantly

reduce time cost.

CCS CONCEPTS
• Mathematics of computing → Graph theory; • Comput-

ing methodologies → Machine learning approaches; • The-
ory of computation → Graph algorithms analysis.
KEYWORDS

Multivariate Relations, NetworkMotif, Graph Learning, Network

Science.
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1 INTRODUCTION
We are living in a world full of relations. It is of great significance

to explore existing social relationships as well as predict poten-

tial relationships. These abundant relations generally exist among

multiple entities; thus, these relations are also called multivariate

relations. Multivariate relations are the most fundamental rela-

tions, containing interpersonal relations, public relations, logical

relations, social relations, etc [3, 37]. Multivariate relations are of

more complicated structures comparing with binary relations. Such

higher-order structures contain more information to express inner

relations among multiple entities. Since multivariate relations can

maintain a larger volume of knowledge, multivariate relations are

widely applied in a variety of application scenarios, such as anomaly

detection, fraud detection, social and academic network analysis,

interaction extraction, digital library system, etc [22, 40, 41]. Indeed,

in social networks, multivariate relations are of more significance.

Scholars have gradually realized the importance of multivariate re-

lations in social networks. There are some previous works focus on

closures in social networks and some studies focus on teams, groups,

communities, etc [36, 42, 45]. All these related studies generally

focus on mining some certain patterns, formulating corresponding

models, or building some theoretical conclusions, etc.

In some specific scenarios, it seems that multivariate relations

can be precisely divided into multiple binary relations. For example,

Alice, Bob, Cindy, and David are in one same collaboration team

(Figure 1). It can be depicted by a binary relation with two col-

laborated members. However, binary relations can only represent

simple pairwise relationships, while in most cases, multivariate

relations cannot be divided in this way. If Cindy is the team leader,

Alice, Bob, as well as David never collaborate, then using binary

relations will leading to over-expression or wrong expression of

relations. Especially in social networks, multivariate relationships

are more common such as friendships, kinships, peer relationships,

Figure 1: The Binary and Multivariate Relationship in the
Collaboration Network.
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etc. [19] Such complicated relationships cannot only be represented

with binary relationships.

Graph neural network (GNN) has resoundingly taken neighbor-

hood information of nodes into consideration, which is also proved

to be more precise and effective [11, 25]. A certain node may have

multiple neighbors, in which some of these neighbors are in closer

relations because they are in multivariate relations. However, cur-

rent GNN methods ignore the relations among neighbors. Based

on the principle of ternary closure, there will be a large number

of low-order fully-connected structures in interpersonal social net-

works. This causes complex relationships to appear frequently in

social networks, such as network motifs [43].

In this work, we propose aMultivariate relatiOnship aggRegation
lEarning method calledMORE. In our proposed method, we em-

ploy network motifs to model multivariate relationships in net-

works, because such the network structure has been proved to be

effective in network embedding methods [26, 27].

MORE considers both node attribute features and structural fea-

tures to enhance the ability of multivariate relation aggregation. For

both features, MORE first respectively generates attribute feature

tensor and structural feature tensor. Then, by network represen-

tation learning, MORE can achieve two embedding tensors (i.e.,

attribute feature embedding tensor and structural feature tensor)

with the same dimension. After then, MORE aggregates two em-

bedding tensors into one aggregated embedding tensor with three

different aggregators, including Hadamard aggregator, Summation

aggregator, and connection aggregator. Finally, MORE employs

softmax to achieve the target vector. Comparing with the baseline

method, MORE outperforms with higher accuracy and efficiency

in 6 different networks including Cora, Email-Eucore, Facebook,

Ploblogs, Football, and TerrorAttack. We specifically analyze that in

social networks, our proposed MORE achieves higher accuracy and

consumes much less training time. Meanwhile, it is also found that

MORE also outperforms the baseline method in the Cora dataset.

Generally, we summarize our contributions as follows.

• MORE aggregates both nodes’ attribute features and struc-

tural features, which is proved to have the ability to better

representing multivariate relationships social networks.

• MORE consumes much less training time compared with

baseline methods. We find that MORE always iterates fewer

times than the baseline method and the training time can be

shortened to 19.5% times.

• By implementing MORE on 5 different social networks and

1 general dataset, MORE achieves better performance with

higher accuracy and efficiency.

In this paper, we first introduce the existing graph learning

methods and their advantages and disadvantages in Section 2. Then,

we introduce the design theory and framework of the MORE model

in Section 3. Next, in Section 4, the MORE model will complete the

node classification task in six datasets. And MORE will compare

with GCN (Graph Convolutional Network) in terms of accuracy

and efficiency. Finally, we will discuss the future improvement of

the MORE model in Section 5. Section 6 concludes the paper.

2 RELATEDWORK
2.1 Digital Library
The emergence of the Internet and the development of related tech-

nologies have not only increased information but also changed the

nature of traditional libraries and information services. The Digital

Library (DL) has become an important part of the modern digital

information system. In a narrow sense, the digital library refers to a

library that uses digital technology to process and store various doc-

uments; in a broad sense, it is a large-scale, knowledge-free knowl-

edge center that can implement multiple information search and

processing functions without time and space restrictions. Academic

data sets and online academic literature search platforms, such as

IEEE / IEE Electronic Library, Wiley Online Library, Springer LINK,

Google Academic Search, etc., can be regarded as representative

modern digital libraries.

The knowledge information of digital libraries often need to sort

and repair. Due to the large number of documents or the loss of

knowledge information, manual repair is often inefficient and inac-

curate. To this end, based on existing knowledge information, such

as the author of the document, keywords, citation data and other

information, efficient and automated realization of knowledge or

document classification and missing information prediction has

become one of the important topics in the field of digital library

research. In the process of solving this research topic, machine

learning technology play an important role. Wu et al. [38] have

developed CiteSeerX, a digital library search engine, over 5-6 years.

They combined traditional machine learning, metadata and other

technologies to achieve document classification and deduplication,

document and citation clustering, and automatic metadata extrac-

tion. Vorgia et al. [34] used many traditional machine learning

methods, including 14 classifiers such as Naive Bayes, SVM, Ran-

dom Forest, etc., to classify documents based on literature abstracts,

and achieved good classification results on their datasets. However,

the existing method requires a large number of training samples,

to obtain a better model through a long iterative learning pro-

cess. Meanwhile, because it is based on traditional scatter tables

or binary relations, it does not take into account the multivariate

relations between knowledge or literature, which limits the further

optimization of its task accuracy.

2.2 Graph Learning & Classification
Classification task is one of the most classic application scenarios

in the field of machine learning. Many researchers have studied

“how to classify data” and have created a variety of classification

algorithms. Among these algorithms, the logistic regression (LR)

algorithm and the support vector machine (SVM) algorithm [32]

are the most famous. These algorithms are usually based on mathe-

matical knowledge and optimization theory, and they are simple to

implement. By repeatedly performing gradient descent on a unit,

the algorithm can obtain very effective classification results [2, 17].

However, these algorithms have huge flaws: They only consider

the attributes of the nodes during the iteration process, and cannot

consider the dependencies between the data. In the network data

with rich relationships between data nodes, the classification accu-

racy of such algorithms is not high, and their training efficiency is

usually low.
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Over time, networks have become the focus of researchers’ atten-

tion. Machine learning in complex graphs or networks is becoming

the focus of research by artificial intelligence scientists. Because

traditional machine learning methods cannot effectively combine

the related information in the network environment, to improve the

efficiency and accuracy of tasks, graph learning algorithms have

been proposed to solve graph-related problems. Meanwhile, the

great success of the recurrent neural network (RNN) [6] and the

convolutional neural network (CNN) [15] in the field of natural lan-

guage [9, 16, 35] and computer vision [13, 39, 44] have provided new

ideas and reference objects for graph learning methods. As a result,

graph recurrent neural networks (GRNN) and graph convolutional

neural networks (GCNN) have become mainstream methods.

Graph Recurrent Neural Network (GRNN). The graph neu-

ral network algorithm suitable for graph structure is first proposed

by Gori et al. [10], aiming at improving the traditional neural net-

work (NN) algorithm. Gori et al. use the recursive method to contin-

uously propagate neighbor node information until the node state

is stable. This neighborhood information propagation mechanism

has become the basis for many subsequent graph learning algo-

rithms. Later, Scarselli et al. [30] ameliorated this method. The new

algorithm combines the ideas of RNN and applies to many types of

graph structures, including directed and undirected graphs, cyclic

graphs and acyclic graphs. Li et al. [18] combined it with the Gated

Recurrent Unit (GRU) theory [4]. The resulting Gated Graph Neu-

ral Network (GGNN) reduced the number of iterations required,

thereby improving the overall efficiency of the learning process.

However, on the whole, the GRNN algorithm still costs a lot: From

the space perspective, this overhead is reflected in the huge param-

eter and the intermediate state nodes that need to be stored. From

the time perspective, these algorithms require a large number of

iterations and long training time.

Table 1: The notations and their implications.

Notations Implications

Basic Operation:
| · | The number of elements in the set.

⊙ Hadamard product operation.

Graph Theory Related:
G A graph.

V The node set of graph G.
E The edge set of graph G.
A The adjacency matrix of graph G.
D The degree matrix of graph G.

Graph Learning Method Related:
Ia The identity matrix of a × a.
X The Feature matrix.

Ā The renormalized adjacency matrix.

D̄ The renormalized degree matrix.

σ(·) The activation function

SM(·) The softmax function.

W ,Θ The weight parameter matrix to be trained.

Graph Convolutional Neural Network (GCNN). Different
methods for defining convolution have created various graph convo-

lutional neural network models. Bruna et al. [1] combined spectral

graph theory with graph learning methods. They used the graph

Fourier transform and Convolution theorem in the field of graph

signal processing (GSP) [23, 24, 29], to obtain the graph convolution

formula. Defferrard et al. [7] made further improvements on their

basis. By cleverly designing convolution kernels and combining

Chebyshev polynomials, this algorithm has fewer parameters and

can effectively aggregate local features in the graph structure. The

GCN model proposed by Kipf et al. [14] is the master of this di-

rection. By approximating the Chebyshev polynomial of the first

order, their method is more stable while avoiding overfitting. Seo

et al. [31] combined the long short-term memory (LSTM) mech-

anism [28] in RNN, and proposed the GCRN model that can be

applied to dynamic networks. On the other hand, Micheli [20] pro-

posed to directly use the neighborhood information aggregation

mechanism to implement the graph convolution operation. Gilmer

et al. [8] integrated this theory and proposed a general framework

for this kind of GCNN. Hamilton et al. [12] used the sampling

method to unify the number of neighbor nodes and established

the well-known GraphSage algorithm. Velickovic et al. [33] com-

bined the attention mechanism [5] with GCNN and proposed the

graph attention network (GAT) model. These two ideas have their

advantages, but they are still limited to neighborhood information.

This will lead to partial omission or even complete loss of the rich

multivariate relationship information in the network.

3 THE DESIGN OF MORE
In this section, we introduce the framework of the MORE. First,

we illustrate the definition and characteristics of the network mo-

tif. Then, the correlation between the multivariate relationship

and the network motif will be explained. Finally, we introduce the

framework of the MORE model in detail.

3.1 Network Motif
The network motif firstly refers to a part that has a specific function

or a specific structure in a biological macromolecule. For example,

a combination of amino acids that characterize a particular func-

tion in a protein macromolecule can be called as a motif. Milo et

al. [21] extended this concept to the field of network science in

2002. Their research team discovered a frequent subgraph struc-

ture while studying gene transcription networks. In subsequent

research work, they found some special subgraphs with similar

characteristics but different structures in many natural networks.

Milo et al. summarized the relevant results and proposed a new

network subgraph concept called the network motif.

Unlike network graphlets and communities, the network motif

is a special type of subgraph structure in the network, which has a

stronger practical scene and significance. By definition, the network

motif is a kind of connected induced subgraphs, which have the

following three characteristics:

(1) Network motifs have stronger practical meaning. Sim-

ilar to the concept of motifs in biology, network motifs also have

some specific practical significances. This practical meaning is de-

termined by the certain structure of the network motif, the type and
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Table 2: Network motifs used in this paper.

Motif Code d̄ max (d) D ρ |T |

M31 2.00 2 1 1.00 1

M32 1.33 2 2 0.67 0

M41 3.00 3 1 1.00 4

M42 2.50 3 2 0.83 2

M43 2.00 2 2 0.67 0

the characteristic of the network. For example, a typical three-order

triangle motif can represent a three-person friendship in a general

social network. Therefore, the number of such network motifs can

be effectively used to study the correctness of the ternary closure

principle in social networks.

(2) Network motifs appear more frequently in real world
networks. This phenomenon is caused by the structural character-

istics of the network motif and its practical significance. In a real

network and a random network with the same number of nodes

and edges, the network motif appears much more frequently in

the former than the latter. In some real sparse networks, such as

transportation networks, some complex network motifs may still

occur frequently. But they cannot be found in the corresponding

random networks.

(3) Network motifs are mostly low-order structures. Net-
work motifs can be regarded as a special kind of low-order subgraph

structure. In general, the number of nodes that make up a network

motif will not exceed eight. Scholars refer to a network motif con-

sisting of three or four nodes as a low-order network motif, and a

networkmotif composed of five or more nodes is called a high-order

network motif. High-order network motifs are numerous, complex,

and are often used in the super-large-scale network. Applying it to

the analysis of a general network requires a lot of time to perform

preprocessing, and it is difficult to obtain better experimental re-

sults than using low-order motifs. That is, the input time cost and

the output experimental effect often fail to balance. Therefore, in

this paper, we mainly use low-order network motifs composed of

three or four nodes for network analysis.

At present, the research scope of network motif researchers has

expanded from the biochemical network, gene network, and bio-

logical neural network to social networks, academic collaboration

networks, transportation networks, etc. In these networks, they

found a large number of network motifs with different structural

characteristics. In this sense, the network motif can reveal the basic

structure of most network structures and play an important role

in the specific application functions of the network. In Table 2,

we list various network motifs used in this paper. Among them, d̄
denotes the average degree, max (d) denotes the maximum degree,

D denotes the diameter, ρ denotes the density, and |T | denotes the
number of triangles contained in the network motif.

3.2 Multivariate Relationship & Network Motif
Relationships are the foundation of network building. In the net-

work dataset, the edge between two nodes actually reflects a kind of

binary relationship, that is, there is a relationship between the two

data entities. This low-order relationship is simple, direct, and easy

to characterize. However, because it only considers the association

between two data, low-order relationships often lose high-order

information within many datasets. To this end, researchers have

extended the binary relationship into the multivariate relation-

ship, and analyzed the multivariate relationship to mine patterns,

features and implicit associations in the network, to obtain more

accurate and valuable conclusions.

Multivariate relationships are common in actual networks, and

the network motif can effectively characterize them because of

their definitions and properties. As shown in Figure 2, in a social

network, besides the direct relationship connect one user to an-

other, the ternary closure relationship between three users is a

common phenomenon existing in the social environment. This re-

lationship can be regarded as a fully-connected small group, and

fully-connected network motifs, such asM31 andM41 (in Table 2),

can effectively characterize this multivariate relationship in the

social network. This kind of network motifs can also be used to

characterize the ubiquitous coauthor team consisting of three or

four scholars in the academic network. In transportation networks,

such as urban road networks, there are a large number of block-

like structures in the network, due to the constraints of realistic

conditions such as traffic planning and geographical factors. This

multivariate relationship between intersections can be effectively

characterized by M43.
In this paper, we utilize the concept of NodeMotif Degree (NMD)

to characterize the association of a particular multivariate relation-

ship at a node, and its definition is as follows.

Figure 2: Schematic diagram of multivariate relationships
in a social network, an academic network, and a traffic net-
work.

AP-L-3: Digital Libraries - 1  JCDL ’20, August 1–5, 2020, Virtual Event, China

80



Figure 3: Schematic diagram of MORE framework in a 2-label network (Represented by blue and yellow nodes in the graph).

Definition 1. (Node Motif Degree) In the graph G = {V ,E},
the node motif degree informationNMD(v) of a nodev ∈ V is defined
as the number of the motifM , whose constituent nodes includes the
node v .

As shown in the Figure 4, the number of the nodes represents the

node motif degree information of the triangle motif (M31). Through
these graph features, we can better connect the single node, the

network motif and the multivariate relationship in the network

structure.

3.3 The Framework of MORE
In this part, we will introduce the MORE model proposed in this

article, which is simple and easy to implement. This model can

effectively catch the multivariate relationship information in the

network. While improving the accuracy of graph learning tasks,

Figure 4: Schematic diagram of nodemotif degree in the net-
work. TheM31-NMD of the orange node equals to 4, because
four triangle motifs M31 shown in the box contains this or-
ange node.

MORE greatly speeds up the convergence and reduces the time cost

in the learning process.

The framework structure of the entire MORE model is shown

in Figure 3. The overall model contains two parts, one is the graph

feature information calculation, and the other is the learning and

classification process. The attribute feature tensor and structure

feature tensor output by the first part will be used as the input of

the second part. It is worth noting that in the above figure, due to

space constraints, we have not fully expanded the content of the

aggregated part (the red dotted box in the figure). The content of

the method in this part will be explained in Figure 5.

For the input network dataset, we first extract the characteristic

information of its nodes. MORE algorithm considers the attribute

features and structural features of the node. The algorithm directly

extracts the attribute information of each node in the graph struc-

ture, and integrates it into the node Attribute Feature Tensor (AFT)
of the total graph. Moreover, to better characterize the structural as-

sociation and multivariate relationship information, the algorithm

calculates five kinds of node motif degree information of each node

in the network, including the node motif degree of M31,M32,M41,
M42 andM43. This information will be integrated with the original

degree of the node, and then the node Structural Feature Tensor

(SFT) will be obtained.
Because the two feature tensors obtained in the above process

often have large scale differences, and the direct connection two

tensors will easily destroy the internal correlation of the feature

itself, we consider using a graph representation learning model to

reduce or expand the dimension of original tensors. By transform

its node feature representation method, we can make the two have

the same dimensional information. In this paper, this model uses

the GCN model, which uses a graph convolutional network to

implement the network embedding process. The GCN model is an

effective model to deal with graph-related problems. The core of

GCN uses a graph convolution operation based on spectral graph
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theory, and its formula is expressed as follows:

дθ ×G x = θ (In + D
− 1

2AD− 1

2 )x (1)

Wherein, x represents the graph feature vector, θ represents the

weight parameter vector, and ×G represents the graph convolution

operation. To improve the stability of the algorithm and avoid gra-

dient explosion or disappearance during the learning process, GCN

replaced In +D
− 1

2AD− 1

2 in the above formula with Ã = D̄− 1

2 ĀD̄− 1

2 .

Wherein, Ā = In +A and D̄ii =
∑
j Āi j . Through this methodmodel,

we transform the original AFT and SFT into their respective em-

bedding tensors, namely the Attribute Feature Embedding Tensor

(AFET) and the Structure Feature Embedding Tensor (SFET).
In order to aggregate the AFET and SFET, get the Aggregated

Embedding Tensor (AET), and apply it to practical tasks, MORE

proposed three multivariate relationship aggregation methods, as

shown in Figure 5. The Hadamard Aggregation (HA) method, or

dot multiplication aggregation method, gets AET by performing

dot multiplication of two embedding tensors; The Summation Ag-

gregation (SA) method gets AET by adding two embedding tensors.

These two aggregation methods will not change the size of the

aggregation tensor, consume less time for the iterative process,

and will not greatly affect the internal correlation information of

the features. The Connection Aggregation (CA) method gets AET

by connecting two embedding tensors. Although this method will

double the size of the aggregation tensor, and the iterative process

requires a higher time cost, it can completely retain all the fea-

ture information in the total network dataset. In this paper, we use

MORE-HA,MORE-SU, andMORE-CO, to represent the MORE

algorithm using three aggregation methods (HA, SA and CA) in

the aggregation processing of AFET and SFET, respectively.

Figure 5: Schematic diagram of three different multivariate
relationship aggregation methods. The t-SNE view on the
right shows the embedding results of three different meth-
ods on the Cora dataset.

Finally, the MORE model is used for node classification tasks

to measure and express the performance of our algorithm in real

network environments. We have considered inputting AET into a

graph learning model again for iterative training. However, it was

found through experiments that, when the GCN model was applied,

the previous iterative process was sufficient to meet the needs of

the processing task. If we add more graph learning models, it will

cause severe overfitting. To this end, the algorithm directly adds a

Softmax layer at the end to generate the one-hot vector required

for node classification.

The above is an iterative process of the MORE model. This pro-

cess can be expressed by the following formula.

Ŷ = SM(Ã · Aддre(GCN (AFT ),GCN (SFT )) · Θ) (2)

Among them, GCN (·) represents the single GCN iteration process,

and Aддre(·) represents the aggregation process, which is selected

from three methods. SM(·) represents the Softmax function, which

is defined as SM(xi ) = exp (xi )/
∑
i exp (xi ). Next, we use the cross-

entropy error as the loss function of the model in the node classifica-

tion task, and continuously adjust the values of the relevant weight

parameters through the gradient descent algorithm. The specific

error function of one data Li can be described by the following

formula.

Li = −

#label∑
l=1

Yil · ln(Ŷil ) (3)

Wherein, Y represents the true node classification label of the net-

work data set, and Ŷ represents the node classification label pre-

dicted by the model.

4 EXPERIMENT
In this section, we explain the experimental design of the node

classification task using the MORE model. We illustrate the data

set used firstly. Then, the operating environment, hyperparameter

settings, and baseline method will be introduced. Finally, the ad-

vantages of our method are explained in terms of the accuracy and

efficiency of the node classification task.

4.1 Datasets
We selected 6 different datasets to conduct experiments to reflect

the characteristics and advantages of our model. The basic informa-

tion of these data sets is shown in Table 3. The information of each

dataset is divided into three parts: the first part is the basic informa-

tion, the second part is the structure information, and the third part

is the network motif information. In this tabel, #Node represents
the number of nodes in the dataset network, #Edge represents the
number of edges, #Feature represents the feature number of each

node, and #Label represents the type number of node labels in the

total network. ‘-’ in #Feature means that the dataset is missing

node feature data. In addition to the above basic network informa-

tion, we have additionally listed the average degree d̄ , the maximum

degree max (d), the network density ρ, and the overall clustering

coefficient Clustering of the network. These statistical indicators

will effectively characterize the density of associations between

data and the connection status of the network.
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Table 3: Datasets used in the experiment.

Network Name Cora1 Email-Eucore3 Facebook4

#Node 2708 1005 6637

#Edge 5278 16706 249967

#Feature 1433 - -

#Label 7 41 3

d̄ 3.9 33.25 75.32

max (d) 168 347 840

ρ 0.00144 0.033113 0.011351

Clustering 0.24 0.399 0.278

#M31 1630 105461 2310053

#M32 47411 866833 30478345

#M41 220 423750 13743319

#M42 2468 2470220 83926778

#M43 1536 909289 45518420

Network Name Polblogs2 Football2 TerrorAttack1

#Node 1224 115 1293

#Edge 16718 613 3172

#Feature - - 106

#Label 2 12 6

d̄ 27.32 10.66 4.91

max (d) 351 12 49

ρ 0.022336 0.093516 0.003798

Clustering 0.32 0.403 0.378

#M31 101043 810 26171

#M32 1038396 3537 232

#M41 422327 732 241419

#M42 2775480 1155 0

#M43 1128796 564 0

1 https://linqs.soe.ucsc.edu/node/236

2 http://www-personal.umich.edu/~mejn/netdata/

3 http://snap.stanford.edu/data/email-Eu-core.html

4 http://networkrepository.com/fb-CMU-Carnegie49.php

Because our model needs to consider the number of motifs in

the network, and use this to characterize the multivariate relation-

ships and high-order structural features in the dataset, we need to

count several representative network motifs and get the motif node

degree information of each node in the network. The number of

network motifs we used in each network dataset is also shown in

Table 3. #M31 represents the number of triangle motif, and #M32
represents the number of three-order path motif in the network.

#M41, #M42 and #M43 respectively represent the number of three

kinds of four-order motif mentioned in this paper.

4.2 Environmental Settings
Because the comparison of the running time is needed in this ex-

periment, we provide information for the computer’s operating en-

vironment and hardware configuration. We use a Hewlett-Packard

PC, ENVY-13: The operating system is Windows 10 64-bit, the

CPU is Intel i5-8265U, and the memory is 8G. We use Python 3.7.3

and Tensorflow 1.14.0 for coding, and use Visual Studio Code for

programming.

During the training process, we divide the original dataset into a

training set, a validation set, and a test set. If the number of nodes

in the dataset is between 1150 and 3000, we randomly select 150
data as the training set (TRS) and 500 data as the verification set

(VAS), and finally test the model effect on a test set (TES) consist-
ing of 500 data. For the Email-Eucore, Facebook, and Football,
we construct three sets at similar proportions. Besides, since the

attribute information of the nodes is used in the iteration, we use

a method that assigns a one-hot vector to each node randomly

for the network without features. This method is simple, easy to

implement, and almost does not affect overall mission performance.

The choice of hyperparameters is also worth considering because

they directly affect the final experimental results. In this experi-

ment, if there is no special statement, we optimize the model using

Adam with the learning rate α of 0.01, and the maximum training

iterations numbermax_epoch of 300. This experiment uses two

regularization methods: random inactivation and L2 regularization.

The probability of random inactivation drop_out is 0.5, and the L2
regularization factor λ is 0.0005. To avoid the occurrence of over-

fitting, the early stopping method is adopted, and the tolerance is

30 (If the loss of the validation set does not decrease during 30 con-

secutive iterations, the algorithm will automatically stop). Also, the

embedding dimension ED is an important attribute, which directly

determines the capacity of the model space. In this experiment,

the graph representation learning model use one layer of GCN
structure. AFT and SFT are embedded in 32, 64, 128, 256, and 512
dimensions, respectively, and the best performance is selected as

the final experimental result.

4.3 Baseline Method
We compare the MORE model with the GCN model proposed by

Kipf et al [14]. As a well-known algorithm in the field of graph

convolutional networks, GCN is based on spectral graph theory

and has been recognized by many researchers in this field. We think

that using it as a comparison algorithm can effectively illustrate the

advantages of our algorithm. During the experimental phase, the

GCN model used for comparison adopts the double-layer structure

as the original paper. The specific iteration formula is as follows:

Ŷ = SM(Ã · ReLU (ÃXW (0)) ·W (1)) (4)

Wherein, ReLU represents the linear rectification function which

used as the activation function, andW (0)
andW (1)

represent the

training weight matrix.

4.4 Node Classification Accuracy
On the whole, we will show our experimental content in terms of

the accuracy and overall efficiency of the node classification task.

For experiments on the accuracy, we set three groups of hyperpa-

rameters that differ in the learning rateα and themaximumnumber

of iterations max_epoch (Their values are [0.01, 300], [0.001, 500],

and [0.0003, 1000], respectively), to enhance the persuasiveness of

our experimental results. Then, we iterated the MORE model and

GCN model using three groups of hyperparameters in six network

datasets, and the experimental results are shown in Table 4. It can

be seen that in all networks, the highest accuracy of the MORE

model is better than that of the GCN model. In the Email-Eucore
dataset which is rich in the network motif, our model has improved

by 10% based on the 51.50% accuracy of the GCN model.

By comparing the three models proposed in this paper, namely

MORE-HA, MORE-SU, and MORE-CO, we can obviously find that
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Table 4: GCN, MORE-HA, MORE-SU and MORE-CO model accuracy of node classification tasks on 6 network datasets. The
bolded data indicate the best performing method in the set of parameters on the network.

Network α = 0.01,max_epoch = 300 α = 0.001,max_epoch = 500 α = 0.0003,max_epoch = 1000

GCN MORE-HA MORE-SU MORE-CO GCN MORE-HA MORE-SU MORE-CO GCN MORE-HA MORE-SU MORE-CO

Cora 82.20% 81.80% 81.40% 81.60% 79.00% 82.30% 80.40% 81.60% 76.20% 81.20% 79.90% 81.40%
Email-Eucore 51.50% 61.50% 58.25% 60.75% 23.00% 53.50% 54.00% 56.00% 09.75% 47.00% 50.25% 51.75%
Facebook 58.20% 60.05% 61.45% 60.40% 53.70% 58.65% 56.65% 54.65% 53.85% 55.70% 54.20% 54.65%

Polblogs 95.80% 96.20% 95.80% 95.90% 96.00% 96.20% 95.80% 95.80% 95.80% 96.20% 95.80% 95.60%

Football 86.67% 86.67% 86.67% 86.67% 44.44% 86.67% 86.67% 86.67% 40.00% 86.67% 84.44% 86.67%
TerrorAttack 75.20% 35.00% 76.20% 76.40% 71.20% 33.80% 75.00% 76.20% 66.40% 33.60% 75.20% 76.40%

Table 5: Efficiency comparison of GCN, MORE-HA, MORE-SU and MORE-CO model in the case of convergence in 6 network
datasets. The hyperparameters are set to α = 0.003, ED = 256 (to guarantee horizontal comparison can be carried out), and
max_epoch = 2000 (to ensure that the algorithm runs to local convergence).

Network Model Accuracy #Iter ASTT(s) OIT(s) TET(s) Network Model Accuracy #Iter ASTT(s) OIT(s) TET(s)

Cora

GCN 82.10% 791 0.0622 71.8276 0.0301

Polblogs

GCN 95.60% 1008 0.0458 62.2642 0.0175

MORE-HA 81.30% 338 0.0887 42.9283 0.0322 MORE-HA 96.20% 315 0.0586 25.4139 0.0309

MORE-SU 79.90% 251 0.0867 31.8249 0.0359 MORE-SU 95.80% 124 0.0732 12.5456 0.0346

MORE-CO 81.10% 257 0.1047 39.1086 0.0583 MORE-CO 95.80% 157 0.0812 17.7403 0.0319

Email-Eucore

GCN 51.00% 954 0.0434 56.0472 0.0170

Football

GCN 84.44% 559 0.0142 9.9511 0.0140

MORE-HA 59.25% 350 0.0417 20.1162 0.0160 MORE-HA 86.67% 164 0.0149 3.1719 0.0123

MORE-SU 54.75% 220 0.0376 11.8910 0.0160 MORE-SU 84.44% 138 0.0145 2.5635 0.0044

MORE-CO 57.25% 220 0.0507 17.0667 0.0259 MORE-CO 86.67% 99 0.0171 2.2097 0.1577

Facebook

GCN 57.60% 495 0.5414 360.3334 0.1871

TerrorAttack

GCN 75.40% 327 0.0236 10.9818 0.0110

MORE-HA 59.05% 167 0.5475 123.9314 0.2079 MORE-HA 33.80% 146 0.0263 5.3676 0.0110

MORE-SU 59.55% 102 0.5890 81.4163 0.1985 MORE-SU 76.20% 86 0.0374 4.4990 0.0150

MORE-CO 59.80% 82 0.6361 70.6593 0.2224 MORE-CO 76.20% 87 0.0333 4.0502 0.0140

the MORE-HA model has the highest times of getting the best

accuracy. This is because the MORE-HA model uses the Hadamard

product process to make one type of feature information as a bias

of another type, and preserves the implicit association as much as

possible. The aggregation process of the MORE-SU model and the

MORE-CO model leads to the cancellation or even destruction of

some of this correlation information, resulting in a decrease in the

overall accuracy. However, it is worth noting that in TerrorAttack
dataset, we find that the accuracy of the MORE-HA is very low.

The reason for this phenomenon is that the number of M42 and

M43 motif in the network is zero, causing the Hadamard product

to completely lose data. This phenomenon does not occur during

the summation process and connection process, so it can be said

that the MORE-SU and MORE-CO models have stronger stability

than MORE-HA model.

4.5 Node Classification Effectiveness
We perform comparative experiments on the efficiency of the node

classification task. We iterate the four models to convergence with

a learning rate α of 0.003. The experimental results are shown

in Table 5. Wherein, we use the number of iterations #Iter, the
Average Single Training Time (ASTT), the Overall Iteration Time

(OIT), and the TEst running Time (TET) to measure the conver-

gence speed and training efficiency of the model. It can be found

that by combining the multivariate relationships in the network en-

vironment, the overall efficiency of the algorithm has been greatly

improved. Compared with the GCN model, the MORE model can

reduce the OIT required in the iterative process by up to 19.5%

of GCN, and reduce #Iter by up to 15.5% of GCN. Moreover, the

MORE model has not reduced the accuracy or even improved it in

the node classification tasks of most datasets.

Figure 6 further shows the convergence speed comparison be-

tween MORE and GCN models. We run four models on the Email-
Eucore dataset with α = 0.001, and continue to iterate until one

of the models converges. In this process, we calculate the accuracy

and loss of the four models on the training set, validation set, and

test set for node classification tasks after each iteration, and draw it

into a line chart. It can be clearly seen that the convergence speed

of the MORE model is significantly higher than that of the GCN

model. And compared with MORE-HA and MORE-SU, because the

node information is completely preserved during the connection

process, MORE-CO using the connection aggregation has more

information available during the iteration. This reason ultimately

leads that MORE-CO has the highest training efficiency.

It is worth noting that we can clearly find from Figure 6 (a)-(c)

that around the 25th iteration, the accuracy trends of all models have

shown a large degree of smoothness. Even in the MORE-HA model,

the accuracy of the node classification task experienced a local

peak. This phenomenon is caused by the data set and the gradient

descent algorithm. In the Email-Eucore dataset, comparing the

four models, it can be found that MORE-SU and MORE-CO are less

affected. They did not experience a sudden increase or decrease in

the accuracy of the validation set and the test set. This matches the

conclusions we have drawn above, that is, MORE-SU andMORE-CO

are more stable than MORE-HA.
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(a) Change in Accuracy on TRS. (b) Change in Accuracy on VAS. (c) Change in Accuracy on TES.

(d) Change in LOSS on TRS. (e) Change in LOSS on VAS. (f) Change in LOSS on TES.

Figure 6: Comparison diagram of the convergence speed of the four models on Email-Eucore dataset. The hyperparameters
of the running environment are set to α = 0.001, max_epoch = 500, and ED = 256.

5 DISCUSSION
In this section, we discuss the future direction of improvement

about the current model. For our model, we propose three feasible

directions to meet the needs of more data processing tasks.

• Use other graph representation learning model. Our
method has the potential as a framework. The MORE model

proposed in this paper uses a single-layer GCN structure as

an intermediate module for graph representation learning

and only compares it with the GCN model. Next, we will try

to improve MORE into a framework that can be applied to

graph learning algorithms to improve the comprehensive

performance of GCNN models.

• Extend the application scope of the graph structure.
Due to the limitation of the GCN algorithm, the currently

proposed MORE model can only be applied to undirected

graph structures. In the future, we hope to extend existing

models to more graph structures, such as directed graphs.

There are many types of directed network motif and they

can more specifically represent some kinds of multivariate

relationships in the network. We believe that it can further

improve the accuracy and efficiency of the method.

• Apply to large-scale networks. The existing graph learn-

ing methods all face the challenge that it is difficult to apply

to large-scale networks. This is due to multiple reasons such

as low iteration efficiency, high memory consumption, and

poor parallelism in a large-scale network environment. With

the continuous increase of data, graph learning of large-scale

networks is an inevitable development trend in the future.

We want to improve the applicability of the algorithm in

large-scale networks to meet the needs of an ever-increasing

network dataset in the future work.

6 CONCLUSION
Multivariate relationships appear frequently in various types of

real networks. In this paper, we propose a new node classification

method based on graph structure and multivariate relations. Our

MOREmodel utilizes the network motif to characterize multivariate

relations in the network environment. This relation information

that is partially missed or even completely lost in other graph

learning algorithms is effectively used in MORE, which makes

our algorithm more accurate and efficient. MORE transforms the

multivariate relation into the node structural characteristics, and

aggregates with the node attribute characteristics, and completes

the task of predicting the types of nodes. Experimental results on

several network datasets show that the MOREmodel can effectively

capture the potential multivariate relationship information. In this

setting, our model is comprehensively superior to the GCN method

in terms of computational efficiency and accuracy. In future work,

we will try to expand MORE to a graph learning framework, and

improve the adaptability of various graph structures and large-scale

networks.
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