A Survey on Fairness-aware Recommender Systems

Abstract

As information filtering services, recommender systems have extremely enriched our daily life by providing personalized suggestions and facilitating people in decision-making, which makes them vital and indispensable to human society in the information era. However, as people become more dependent on them, recent studies show that recommender systems potentially own unintentional impacts on society and individuals because of their unfairness (e.g., gender discrimination in job recommendations). To develop trustworthy services, it is crucial to devise fairness-aware recommender systems that can mitigate these bias issues. In this survey, we summarise existing methodologies and practices of fairness in recommender systems. Firstly, we present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems. Next, after introducing datasets and evaluation metrics applied to assess the fairness of recommender systems, we will delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications. Subsequently, we highlight the connection between fairness and other principles of trustworthy recommender systems, aiming to consider trustworthiness principles holistically while advocating for fairness. Finally, we summarize this review, spotlighting promising opportunities in comprehending concepts, frameworks, the balance between accuracy and fairness, and the ties with trustworthiness, with the ultimate goal of fostering the development of fairness-aware recommender systems.

Publication
Information Fusion
Luzhi Wang
Luzhi Wang
PhD Student @ Tianjin U. (07/2020-)

My research interests include machine learning and artificial intelligence.

He Zhang
He Zhang
PhD Student @ Monash (04/2021-)

My research interests include data mining, machine learning, and graph analysis.

Yizhen Zheng
Yizhen Zheng
PhD Student @ Monash (07/2021-)

My research interests include machine learning and artificial intelligence.

Shirui Pan
Shirui Pan
Professor | ARC Future Fellow

My research interests include data mining, machine learning, and graph analysis.