
One-Shot Neural Architecture Search via Novelty Driven Sampling

Miao Zhang1,2 , Huiqi Li1∗ , Shirui Pan3 , Taoping Liu2 and Steven Su2

1School of Information and Electronics, Beijing Institute of Technology
2Faculty of Engineering and Information Technology, University of Technology Sydney

3 Faculty of Information Technology, Monash University
{Miao.Zhang-2, Taoping.Liu}@student.uts.edu.au, huiqili@bit.edu.cn, shirui.pan@monash.edu,

steven.su@uts.edu.au

Abstract
One-Shot Neural architecture search (NAS) has re-
ceived wide attentions due to its computational effi-
ciency. Most state-of-the-art One-Shot NAS meth-
ods use the validation accuracy based on inheriting
weights from the supernet as the stepping stone to
search for the best performing architecture, adopt-
ing a bilevel optimization pattern with assuming
this validation accuracy approximates to the test
accuracy after re-training. However, recent works
have found that there is no positive correlation be-
tween the above validation accuracy and test accu-
racy for these One-Shot NAS methods, and this re-
ward based sampling for supernet training also en-
tails the rich-get-richer problem. To handle this
deceptive problem, this paper presents a new ap-
proach, Efficient Novelty-driven Neural Architec-
ture Search, to sample the most abnormal architec-
ture to train the supernet. Specifically, a single-path
supernet is adopted, and only the weights of a sin-
gle architecture sampled by our novelty search are
optimized in each step to reduce the memory de-
mand greatly. Experiments demonstrate the effec-
tiveness and efficiency of our novelty search based
architecture sampling method.

1 Introduction
Neural architecture search (NAS) recently has attracted mas-
sive interests from deep learning community since it could
relieve experts from a labor-intensive and time-consuming
neural network design process [Elsken et al., 2019; Liu et
al., 2018]. Despite its capacity to find competitive architec-
tures, the computational complexity of NAS is highly expen-
sive. Zoph et al. [2018] spends more than 1800 GPU days
for reinforcement learning (RL) based NAS and Real et al.
[2019] uses 450 GPUs for 7 days through evolutionary al-
gorithm (EA) to train the model. Several works have been
proposed to improve the efficiency of NAS, including per-
formance prediction [Baker et al., 2018], weight generation
[Zhang et al., 2019], and the popular weight sharing method
[Pham et al., 2018].
∗Corresponding Author

Weight sharing, also called One-Shot NAS [Pham et al.,
2018; Bender et al., 2018], defines a supernet subsuming all
possible architectures in the search space so that architectures
can directly inherit weights from the supernet to avoid train-
ing from scratch. ENAS [Pham et al., 2018] utilizes the vali-
dation accuracy with shared weights as the reward to optimize
the RL based architecture sampling controller. Following up
works [Liu et al., 2019; Luo et al., 2018] relax architectures
into a continuous space, and optimize the architecture with
respect to its validation accuracy through gradient descent.
An important assumption in the weight-sharing NAS is that
the validation accuracy with inherited weights from the su-
pernet approximates to the test accuracy after re-training, or
at least be highly predictive. However, several recent works
[Bender et al., 2018; Singh et al., 2019; Sciuto et al., 2020;
Zhang et al., 2020] point out that there is no positive correla-
tion between the above validation accuracy and test accuracy
for most One-Shot NAS methods. It indicates that we could
not utilize the validation accuracy with inherited weights as
useful feedback for controller improvement. In other words,
searching for the optimal architecture based on weight shar-
ing is deceptive because architectures with optimal perfor-
mance on proxy tasks are not guaranteed to perform the best
in the target task [Cai et al., 2019].

Sciuto et al. [2020] and Singh et al. [2019] observed this
deceptiveness that weight sharing is supposed to disorder the
architecture rank, which usually deteriorates the performance
of other architectures when training a new generated archi-
tecture. Benyahia et al. [Benyahia et al., 2019] defined it as
multi-model forgetting that the architecture learning in each
step will deteriorate the performance of other architectures
with shared connections, and make the proxy reward based
on the supernet unreliable. Furthermore, since architectures
with updated weights are supposed to have higher rewards,
those performance reward based controllers have the poten-
tial to select those previously visited architectures with up-
dated weights. Sampling architectures solely based on this
deceptive reward without encouraging intelligent exploration
entails the rich-get-richer problem [Li et al., 2019] and leads
to the local optima. As suggested by curiosity-driven explo-
ration in deep reinforcement learning [Conti et al., 2018],
novelty-seeking could help the agent to learn new knowledge
and avoid the local optima in RL domains with deceptive or
sparse rewards. Different from the RL controller or gradient
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method, novelty search can alleviate this problem by encour-
aging the agent to visit unexplored areas rather than those
areas with high performance. Compared with random sam-
pling, novelty search further has the potential to fairly train
the supernet in One-Shot NAS, as it always samples those
untrained or less trained parts of the supernet to be trained,
which could improve the predictive ability of the supernet
[Chu et al., 2019]. Instead of devising a complicated reward-
based controller, we innovatively introduce novelty search
to NAS, which samples architectures to train the supernet
through novelty search. Since our method always samples
architectures containing few shared connections with previ-
ously visited architectures, it could effectively relieve the
multi-model forgetting that occurs during the supernet train-
ing and make the supernet more predictive. A weight-sharing
based single-path model is adopted to reduce computational
cost and memory storage, where all candidate architectures
share weights and only the single-path weights are optimized
in each step. Our contributions can be summarized as follows.
• Firstly, a novelty search based mechanism is innova-

tively applied to architecture sampling in One-Shot NAS
for supernet training, where an efficient novelty-driven
approach is devised to sample architectures without per-
formance reward.
• Secondly, we adopt a weight-sharing based single-path

model for neural architecture search, which could reduce
not only the computational cost but also the memory
storage significantly.
• Thirdly, extensive experimental results illustrate the su-

periority of our method, which achieves remarkable per-
formance on benchmark datasets with efficiency. Our
approach obtains the state-of-the-art test error of 2.51%
for CIFAR-10 with only 7.5 hours of search time in
a single GPU, and a competitive validation perplexity
of 57.83 and a test perplexity of 55.88 on PTB with 4
hours search time. After transferring to larger datasets,
our best models achieve a state-of-the-art test error of
16.56% on CIFAR-100, a competitive 26.66% on Im-
ageNet, and a validation perplexity of 70.14 and a test
perplexity of 69.31 on WT2. Our method also beats
baselines on a NAS benchmark dataset.

2 Background
2.1 Neural Architecture Search
Neural architecture search (NAS) has attracted increasing at-
tention to automatically design neural architectures to relieve
human experts from the labor-intensive and time-consuming
neural network design process. The search space of neural
architecture A is generally represented as a directed acyclic
graph (DAG), and the subgraph in the search space is denoted
as α ∈ A corresponding to a neural architecture U(α,w) with
weights w. NAS aims to find a subgraph α with the best val-
idation loss after being trained on the training set, as:

α∗ = argmin
α∈A

Lval(U(α,wα)) (1)

where Lval is the loss function on the validation set, and wα
are the weights of the architecture after being trained on the

training set to minimize the training loss Ltrain:

wα = argmin
w

Ltrain(U(α,w)) (2)

Early NAS works adopt a nested manner to optimize
weights and architectures, which samples numerous architec-
tures to be trained on the training set and utilize EA or RL
[Real et al., 2019] to find promising architectures based on
those evaluated architectures. These approaches have a high
computational demand because evaluating an architecture is
computationally expensive. A lot of NAS approaches are mo-
tivated by reducing computational cost, and a weight sharing
mechanism (also called as One-Shot) is proposed [Pham et
al., 2018; Bender et al., 2018], which dramatically reduces
the search time to less than 1 GPU day. Instead of sepa-
rate training architectures, weight sharing strategy encodes
the whole search space A as a supernet U(A,W), and all
candidate architectures U(α,w) directly inherit weights from
the weights W of the supernet. Since only the supernet is
trained in the architecture search phase, weight sharing NAS
approaches can reduce the time for architecture search signif-
icantly. Weight sharing NAS contains two sequential steps:

1) supernet training:

WA = argmin
W

Ltrain(U(A,W)) (3)

and 2) architecture selection:

α∗ = argmin
α∈A

Lval(U(α,WA(α))) (4)

Recent works further relax architectures into a continuous
space [Liu et al., 2019; Dong and Yang, 2019; Xie et al.,
2019; Zhou et al., 2019; Luo et al., 2018], and alternatively
optimize the supernet weights and architecture parameters
based on bilevel optimization. Different from searching in the
continuous space, Casale et al. [2019] propose a probabilistic
approach PARSEC to sample architectures without continu-
ous relaxation, where it uses an Importance-Weighted Monte
Carlo empirical Bayes to define the architecture distribution.

Extensive experimental analysis in recent works [Bender et
al., 2018] shows it is possible to efficiently sample architec-
tures for supernet training without any complex controllers
for NAS. Guo et al. [2019] and Li et al. [2019] utilized the
random sampling method to sample architectures for super-
net training. The weight sharing is adopted in both of them to
reduce the computational cost, and the memory requirements
are the same as training a single architecture as only one path
is activated in each step of the architecture search phase.

2.2 Novelty Search
Novelty search comes from the evolutionary community
[Lehman and Stanley, 2011; Real et al., 2019], which encour-
ages the population to search for notably different areas to
enhance the exploration. This approach utilizes the novelty
as the stepping stone instead of the reward function, which
makes it easy to avoid local optima in return. Previous nov-
elty search based evolutionary algorithms [Lehman and Stan-
ley, 2011] have shown their superiority in searching for small
neural networks. Recent works on deep reinforcement learn-
ing [Conti et al., 2018] also suggested that hybridized with
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Algorithm 1 EN2AS
Input: Training datase Dtrain, validation dataset Dval, test
dataset Dtest, randomly initialized W , initial architecture
archive A = ∅, maximum number of stored architectures S,
batch size b, training iteration T

1: for i = 1, 2, ..., (T ∗ size(Dtrain)/b) do
2: if size(A) < S then
3: randomly sample an architecture α, updateWA(α)

by descending∇WA(α)Ltrain(WA(α)), and add ar-
chitecture α into A;

4: else
5: randomly select αmθ from A, update it according

Eq.(7), and replace αmθ with αm
′

θ ;
6: Apply argmax operation on the updated architecture

to obtain α, and update the shared weights WA(α)
by descending∇WA(α)Ltrain(WA(α));

7: end if
8: end for
9: Perform random search or EA on the trained supernet

with validation dataset Dval to get α∗ based on Eq.(8).
10: Retrain α∗ and get the best performance on the test

dataset.
Return: architecture α∗ with best performance.

novelty search evolutionary algorithm could effectively avoid
local optima in RL domains with deceptive reward functions.
We investigate the effects of novelty search on neural archi-
tecture search in this paper and present how to use the novelty
search mechanism as the controller to sample architectures
for supernet training in the following section.

3 Methodology
In this section, we will describe our Efficient Novelty-driven
Neural Architecture Search (EN2AS). Algorithm 1 presents
a simple implementation of EN2AS, and we detailedly de-
scribe the architecture sampling for supernet training based
on novelty search and also discuss architecture selection from
trained supernet in following subsections.

3.1 Single Path Supernet Training based on
Novelty Search

As described in Eq.(3), the inherited weights WA(α) of ar-
chitecture α from the supernet A should approximate to the
optimal weights wα or be highly predictive. Therefore, the
key to weight sharing based NAS is how to train the super-
net. As discussed in [Sciuto et al., 2020; Bender et al., 2018],
a reward gradient-based architecture sampling controller is
easy to be trapped in local optima, where there is no posi-
tive correlation between the validation accuracy with inher-
ited weights and the test accuracy after re-training for such
One-Shot NAS methods. Recent work [Conti et al., 2018] on
deep reinforcement learning demonstrates the effectiveness
of novelty search as it could help the agent get out of local
optimal when the reward function is very deceptive. In this
paper, we utilize the novelty search to sample architectures
for supernet training in One-Shot NAS.
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Figure 1: Best cell structures found by our algorithm. For CNN
cells, each node needs to select two former nodes with applied op-
erations as its input. As to RNN cells, each node only selects one
former node with applied operation as its input. The outputs for the
three types of cells are the summation of outputs for all nodes.

The novelty search policy is defined as π and a behavior
characterization b(π) to describe its behavior. During the ar-
chitecture search phase, every architecture α sampled from π
is described as b(πα) and added into archive A after calcu-
lating the novelty particular policy N(b(πα), A). A simple
and common novelty measurement is to calculate the mean
distance of α and its k-nearest neighbors from A:

N(α,A) = N(b(πα), A) =
1

|S|
∑
j∈S
‖b(πα)− b(πj)‖2

S = kNN(b(πα), A) = {b(π1), b(π2), ..., b(πk)}
(5)

However, the distance calculation between neural architec-
tures is not efficient because we need to compare all nodes
and connections of two subgraphs, and calculating distances
between the sampled architecture and all previously visited
architectures in every search step. In this section, we intro-
duce an archive based novelty search to relieve the high com-
putational complexity for the novelty calculation. Given an
archive Aθ containing a fixed number of continuous repre-
sentation of sampled architectures as αiθ = αθ + σεi, the
gradient of expected novelty could be approximated as:

∇αθEε∼N (0,I)[N(αθ + σε,A)|A] ≈ 1

nσ

n∑
i=1

N(αiθ, A)εi (6)

where εi ∼ N (0, I), αiθ is the i-th architecture with continu-
ous parameters representation in the archive, n is the number
of sampled perturbations to αtθ, and the archive is fixed at the
beginning of the iteration and updated at the end. Eq. (6)
demonstrates how to change the current architectures to in-
crease the novelty of the archive, and we could update m-th
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Method Test Error (%) Param. Search Cost Memory Supernet
CIFAR-10 CIFAR-100 ImageNet (M) (GPU Days) Consumption Optimization

NAO-WS [Luo et al., 2018] 3.53 - - 2.5 0.3 single path gradient
ENAS [Pham et al., 2018] 2.89 18.91 - 4.6 - single path RL
SNAS [Xie et al., 2019] 2.85±0.02 20.09 27.3 2.8 1.5 whole supernet gradient
BayesNAS [Zhou et al., 2019] 2.81±0.04 - 26.5 3.40 0.2 whole supernet gradient
MdeNAS [Zheng et al., 2019] 2.51 - - 4.06 0.16 single path MDL
MdeNAS* [Zheng et al., 2019] 2.87 17.61 26.8 3.78 0.16 single path MDL
GDAS [Dong and Yang, 2019] 2.93 18.38 27.5 3.4 0.21 single path gradient
DARTS (1st) [Liu et al., 2019] 2.94 - - 2.9 1.5 whole supernet gradient
DARTS (2nd) [Liu et al., 2019] 2.76±0.09 17.54 26.9 3.4 4 whole supernet gradient
Random Search WS [2019] 2.85±0.08 17.63 - 4.3 2.7 single path random
EN2AS 2.61±0.06 16.45 26.66 3.1 0.3 single path novelty search
EN2AS with more epochs 2.51±0.05 - - 3.1 0.3 single path novelty search

Table 1: Comparison results with state-of-the-art weight sharing NAS methods on CIFAR-10, CIFAR-100 and ImageNet. “MdeNAS*”
indicates that we reproduce the results based on the best-reported model in MdeNAS. All models are trained with 600 (250 for ImageNet)
epochs, where the batch size is 96, and the initial channel is 36, to obtain the test error. We also further train our best architecture with 1000
epochs on CIFAR-10 and 500 epochs on ImageNet to achieve state-of-the-art results.

architecture in the archive according to:

αm
′

θ ← αmθ + γ
1

nσ

n∑
i=1

N(αm,iθ , A)εi (7)

where γ is the stepsize. Based on Eq.(7), we only need to cal-
culate the distance of the sampled architecture and an archive
with a fixed number of architectures in every search step. It
is straightforward to randomly select an architecture from the
archive, and update it accordingly to optimize the novelty. In
our practical implementation, only the architectures stored in
the archive are continuous, and they are also applied with the
argmax operation before calculating the distance to the sam-
pled architectures.

3.2 Model Selection
Since evaluating an architecture is very efficient based on the
trained supernet, it is possible to utilize a heuristic approach
to find the most promising architecture, where random search
and evolutionary algorithms are the two most common meth-
ods [Li and Talwalkar, 2019; Guo et al., 2019]. In this paper,
we adopt the validation accuracy as the optimizing goal in
model selection as:

maximize
α

ACC(WA(α)) (8)

whereACC(WA(α)) is the validation accuracy of α with in-
hered weights from the supernet, and a baseline evolutionary
algorithm is adopted to find the most promising architecture
from the trained supernet.

4 Experiments and Results
The experimental design is following [Li and Talwalkar,
2019; Liu et al., 2019; Xie et al., 2019] for a fair compari-
son, which contains three stages: architecture search, archi-
tecture evaluation, and transfer to larger datasets. We perform
our EN2AS on small datasets, CIFAR-10 and PTB, to search
for cell architectures on a smaller supernet architecture with
fewer cells in the architecture search phase, and stack more

multiple cells to construct larger architecture for full training
and evaluation. Finally, the best-learned cells are also trans-
ferred to CIFAR-100, ImageNet and WT2 to investigate the
transferability. We also evaluate the supernet predictive abil-
ity of our novelty based sampling method compared with two
baselines in the following subsections 1.

4.1 Architecture Search for Convolutional Cells
Results on CIFAR-10
The comparison results on CIFAR-10 with the state-of-the-
art NAS methods are demonstrated in Table 1. We report
the results of the best found structure from 10 independent
search experiments. It is impressive that the Random Search
WS could obtain satisfactory results, which randomly sample
architectures for supernet training. Random sampling strat-
egy beats most reward-based sampling methods for One-Shot
NAS with the same search space, except for DARTS (2nd)
and BayesNet, which are with an elaborate controller. The
result is also in line with the observation from [Bender et al.,
2018]. It is inspiring that the best architecture searched by our
EN2AS obtains the state-of-the-art test error on CIFAR-10 for
weight sharing NAS. Our approach is also very efficient since
the architecture search phase only costs about 7.5 hours (0.3
GPU day), and the memory consumption is the same as train-
ing a single architecture. The convolutional cell obtained by
our EN2AS is also very efficient, which has fewer parameters
than most NAS methods.

Results on CIFAR-100 and ImageNet
The architecture evaluation setting on CIFAR-100 is the same
as CIFAR-10, and the comparison results are also presented
in Table 1. Our model could obtain a competitive result with
17.58% Top1 test errors with only 3.13M parameters. We
further increase the number of initial filters from 36 to 50
(and the parameters increase to 5.88 M), and our network

1It is easy to reproduce our experimental results by replacing cell
structures in DARTS [Liu et al., 2019] with the structures shown in
Fig.1. All codes, log files, and also trained models could be found
in https://github.com/MiaoZhang0525/ENNAS MASTER.
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Method Perplexity(PTB) Perplexity(WT2) Param. Search Cost Memory
Consumption

Search
MethodValid Test Valid Test (M) (GPU Days)

ENAS [Pham et al., 2018] 60.8 58.6 72.4‡ 70.4‡ 24 0.5 single path RL
DARTS (1st) [Liu et al., 2019] 60.2 57.6 - - 23 0.5 whole supernet gradient
DARTS (2nd) [Liu et al., 2019] 58.1 55.7 71.2 69.6 23 1 whole supernet gradient
DARTS (2nd)* [Liu et al., 2019] 59.21 56.70 - - 23 1 whole supernet gradient
GDAS [Dong and Yang, 2019] 59.8 57.5 71.0 69.4 23 0.4 single path gradient
GDAS* [Dong and Yang, 2019] 60.23 57.69 - - 23 0.4 single path gradient
Random Search WS [2019] 57.8 55.5 - - 23 0.25 single path random
Random Search WS* [2019] 60.34 57.8 73.35 70.86 23 0.25 single path random
EN2AS 59.28 57.26 - - 23 0.67 single path novelty&reward
EN2AS with 3600 epochs 57.83 55.88 70.14 69.31 23 0.67 single path novelty&reward

Table 2: Comparison results with state-of-the-art NAS approaches on PTB and WT2. Since the results on PTB reported in these peer methods
are with different training epochs, we reproduce the results of the best models reported in these approaches with the same experimental setting
as ours, which are indicated by “*”, for a fair comparison. ‡ means that the results are reproduced by DARTS with the same search space as
ours. All models are trained with 1600 epochs with 64 batch size to obtain the perplexity, and we also further train our best-found architecture
with 3600 epochs on to achieve competitive results.

achieves state-of-the-art results with a test error of 16.45%
among all compared methods. The mobile setting on Ima-
geNet also follows [Liu et al., 2019] and we stacked the best
found structure by 14 cells with batch size 128. Our model
could obtain a competitive result with Top1/Top5 test errors
as 26.66%/8.58% with only 4.5M parameters.

4.2 Architecture Search for Recurrent Cells
Results on PTB
The comparison results on PTB with the state-of-the-
art manually-designed architectures and NAS methods are
demonstrated in Table 2. We can find that the DARTS (2nd)
achieves state-of-the-art results on PTB among those NAS
methods, which obtains a validation perplexity of 59.21 and
a test perplexity of 56.71 and shows the efficiency of gradient
method in the recurrent search space. Our EN2AS obtains a
competitive validation perplexity of 59.28 and a test perplex-
ity of 57.26, which is much better than DARTS (1st) and on
par with the state-of-the-art NAS methods on PTB. As dis-
cussed before, our EN2AS is a first-order iterative optimiza-
tion based on novelty. The results clearly show that enhanc-
ing the exploration instead of sampling architecture based on
performance reward could improve the supernet predictive
ability, as evidenced by the fact that our EN2AS beats the
DARTS with first-order approximation. We further train our
best found recurrent cell structure with more training epochs
and achieve a competitive validation perplexity of 57.83 and
test perplexity of 55.88.

Results on WT2
We also transfer those promising models obtained on PTB to
WT2 following the experimental settings in [Liu et al., 2019].
The embedding and hidden sizes are changed to 700, weight
decay to 5 × 10−7, hidden-node variational dropout to 0.15,
and other hyperparameter settings are the same as PTB. The
results of different models on WT2 are presented in Table
2. We train our best model with 3600 epochs on WT2 and
achieve a state-of-the-art validation perplexity of 70.14 and a
test perplexity of 69.31.
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Figure 2: Validation accuracy of sampled architecture and fixed ar-
chitectures during the supernet training for GDAS (dash lines) and
EN2AS (solid lines).

4.3 Empirical Comparison with Baselines
Supernet Training Comparison with Reward based Sam-
pling Strategy. As discussed previously, the reward based
controller entails the rich-get-richer problem [Li et al., 2019],
and the multi-model forgetting that occurs during the super-
net training will also deteriorate the supernet’s validation per-
formance. In this section, we investigate the validation per-
formance of architectures during the supernet training for our
proposed novelty search based sampling strategy compared
with reward based sampling strategy. We adopt the GDAS
[Dong and Yang, 2019] as the reward based sampling base-
line as it also only trains a single path in each step during the
architecture search phase. We conduct this comparison exper-
iment on CIFAR-10 and train the supernet with the two dif-
ferent sampling methods with 100 epochs, respectively. We
tracked the validation accuracy of the sampled architecture in
each step and also three fixed architectures through inherit-
ing weights during the supernet training for the two sampling
strategies. We present the validation accuracy of the sampled
architectures during the supernet training in Fig.2 (a), and the
validation accuracy of those fixed architectures in Fig.2 (b). It
is straightforward that architectures are supposed to increase
their validation accuracy with the supernet training. However,
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Figure 3: The τ metric and mean test accuracy for architectures ob-
tained through different architecture sampling methods.

the performance of all those architectures shockingly gets
worse during the supernet training for GDAS after several
generations, as shown in Fig. 2, which demonstrates the ex-
istence of multi-model forgetting [Benyahia et al., 2019] in-
duced by reward-based sampling methods in One-Shot NAS
that makes the supernet unreliable. Differently, our E2NAS
always samples abnormal architectures containing few shared
connections with previously visited architectures to overcome
this forgetting. Fig. 2 shows that the performance of archi-
tectures does not get worse during the supernet training based
on novelty based sampling. It suggests that our proposed nov-
elty search based sampling strategy can effectively relieve the
multi-model forgetting and is more reliable than reward based
sampling strategy.

Supernet Predictive Ability Evaluation. To demonstrate
the effectiveness of our approach in relieving the rank dis-
order caused by weight sharing, we further conduct experi-
ments to verify the supernet predictive ability of the proposed
method compared with random sampling (Random Search
WS, depicted as RS WS) and reward gradient based sampling
(GDAS) in One-Shot NAS. We also replace the baseline evo-
lutionary algorithm in the model selection of our EN2AS with
a random search for a fair comparison in this experiment. We
conduct this comparison experiment on CIFAR-10 and also
train the supernet with different sampling strategies for 100
epochs. Then we randomly sample 10 architectures and eval-
uate these architectures based on the three different trained
supernets. We measure the correlation of architecture ranking
based on weight sharing and retraining, and demonstrate the
supernet predictive ability of three different sampling meth-
ods based on the Kendall Tau (τ ) metric [Kendall, 1945].
Kendall Tau (τ ) is to demonstrate the difference of ranking
based on weight sharing and retraining for the three sampling
methods. As shown in Figure 3 (a), the random sampling
and gradient based sampling both obtain negative values that
show the rank disorder in the two baselines. Our approach
obtains a much better τ=0.378 with a positive correlation be-
tween the architecture ranking based on weight sharing and
retraining, which indicates that the supernet trained based on
novelty search sampling archives a better predictive ability.
Since the supernet with better predictive ability tends to ob-
tain better architectures, we further compare the retraining

Method Test Acc(%) τ metric s-τ metric

EN2AS 93.36±0.3 0.228±0.066 0.333
RS WS [2019] 91.93±1.2 -0.016±0.100 0.111
GDAS [2019] 92.05±0.2 -0.067±0.109 -0.092

Table 3: Comparison with two baselines on NAS-Bench-102
dataset.

validation accuracy of sampled architectures from the trained
supernet based on the three different architecture sampling
methods. Figure 3 (b) plots the mean retraining validation
accuracy, and we could observe that our novelty search based
architecture sampling achieves the best results.

4.4 Experiments on Benchmark Dataset
The high computational cost of evaluating architectures is the
major obstacle of analyzing One-Shot NAS methods, and sev-
eral recent works try to build benchmark datasets [Ying et al.,
2019] to relieve this difficulty. We adopt NAS-Bench-102
[Dong and Yang, 2020] as a benchmark dataset to analyze
our approach in this experiment. The search space in NAS-
Bench-102 contains 4 nodes with 5 associated operations,
which results in 15625 cell candidates. Although the search
space in NAS-Bench-102 is much simpler than the common
search space, the ground-truth test accuracy of all candidates
in the search space is reported, which could greatly reduce
the computational requirements in the analysis of One-Shot
NAS methods. We run our EN2AS on NAS-Bench-102 for
three independent times with the same experimental settings
in [Dong and Yang, 2020], and report the mean test accuracy
of the best-found architectures in Table 3. To evaluate the
supernet predictive ability, we further measure the Kendall
Tau (τ ) metric to demonstrate the difference of ranking based
on supernet and ground truth for the three sampling methods.
Apart from τ , we also calculate the s-τ to measure the stabil-
ity of generated ranks from different runs, which is defined as

2
N(N−1)

∑
1≤i<j≤N τ(Ri, Rj), where N = 3 in this experi-

ment. We ranked 15 randomly generated architectures based
on supernet and the ground-truth to obtain the (τ ) and s-τ for
the three methods, and the results are presented in Table 3,
where our method beats the two baselines.

5 Conclusion and Future Work
This paper originally focuses on resolving the rich-get-richer
problem in supernet training for weight-sharing neural archi-
tecture search, where a novelty search is proposed to enhance
the exploration for architecture sampling during the supernet
training. In particular, a novelty search mechanism is devel-
oped to efficiently find the most abnormal architecture, and
the single-path model is adopted to greatly reduce computa-
tional and memory demand. Experimental results show the
proposed approach could find the state-of-the-art or competi-
tive CNN and RNN models, and also improve the predictive
ability of the supernet in one-shot NAS. In our future work,
we will focus on leveraging human knowledge in neural ar-
chitecture search to enhance its transferable ability. Further-
more, how to use graph neural networks [Wu et al., 2020] in
NAS is also one of our future work directions.
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