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Abstract—Structured sequences are a popular data represen-
tation, used to model complex data such as traffic networks.
A key machine learning task for structured sequences is node
classification, that is predicting the class labels of unlabeled
nodes. Though many node classification models were proposed,
they assume a closed world setting, that all class labels appear
in the training data. But in the real-world, the presence of
never-before-seen class labels in testing data can considerably
degrade a classifier’s accuracy. A promising solution to this issue
is to build classifiers for an open-world setting, where samples
with unknown class labels are continuously observed such that
training and testing data may have different class label spaces.
Several approaches have been proposed for open-world learning
problems in computer vision and natural language processing,
but they cannot be applied directly to structured sequences due
to the complexity of their non-Euclidean properties and their
dynamic nature. This paper addresses this important research
gap by proposing a novel Open-world Structured Sequence node
Classification (OSSC) model, to learn from structured sequences
in an open-world setting. OSSC captures the structural and
temporal information via a GCN-based dynamic variational
framework. A latent distribution sequence is learned for each
node using both stochastic states and deterministic states, to
capture the evolution of node attributes and topology, followed
by a sampling process to generate node representations. An
open-world classification loss is further adopted to ensure that
node representations are sensitive to unknown classes. And a
combination of Openmax and Softmax is utilized to recognize
nodes from unknown classes and to classify others to one of the
known classes. Experiments on real-world datasets show that the
proposed OSSC method is capable of learning accurate open-
world node classifiers from structured sequence data.

Index Terms—Open-world learning, Structured sequences, Dy-
namic variational autoencoder

I. INTRODUCTION

Machine learning from structured data plays a key role

in numerous fields. To represent complex relationships be-

tween objects and how they evolve over time, a popular

data model is structured sequences. A structured sequence
(also known as dynamic [1], evolving [2], time-varying [3],

[4], or temporal [5] graphs/networks) may be viewed as a

*Corresponding author.

sequence G1, G2, . . . , GT of static attributed graphs observed

at different timestamps. Research on structured sequences is

essential as real-world systems are generally dynamic, and

evolve rapidly over time [6]. For instance, structured sequences

are well-suited to model changes in traffic networks [7], social

networks [8], and proteins [9].
A key task in structured sequence learning is node clas-

sification, that is to predict the labels of unlabeled nodes,

and has many applications such as traffic state prediction

[10], and disease classification [11]. Node classification in a

structured sequence is difficult because it requires considering

not only the influence of node labels and the topology but also

the time. Besides, a general challenge for machine learning

with structured sequences is that unlike image or speech data,

structured sequences cannot be easily represented in Euclidean

space to benefit from its properties.

Fig. 1: Comparison between closed-world classification and

open-world classification. The left figure depicts an original

dataset distribution with four known classes (class a,b,c,d )

and two unknown classes (class ? ). The middle figure shows

the decision boundary of each class obtained by a traditional

closed-world classification method, which will obviously mis-

classify unknown class samples into known classes during

testing. The right figure depicts an open-world classifier, where

decision boundaries limit the scope of the known classes

a,b,c,d, keeping space for unknown classes. Via these decision

boundaries, samples from unknown classes will be labeled as

“unknown” rather than misclassified as one of known classes.

Recently, several machine learning frameworks such as

STAR [6] and Aspen [12] were proposed to facilitate struc-

703

2022 IEEE International Conference on Data Mining (ICDM)

2374-8486/22/$31.00 ©2022 IEEE
DOI 10.1109/ICDM54844.2022.00081



tured sequence data analysis. However, current models for han-

dling structured sequence data implicitly assume that samples

are collected from a closed-world setting [13], [14] where all

streaming examples are from a static class label space [15]–

[17]. For example, some methods for graph node classification

[6], [18], [19] that strictly follow the closed-world assumption

are SS-GSELM [19], which combines dynamic graph learning

with self-paced learning in a semi-supervised scenario, and

STAR [6], which uses a spatiotemporal attentive recurrent

network to extract the vector representation of the neigh-

borhood by sampling and aggregating local neighbor nodes.

Even though these methods achieve satisfactory results in the

closed-world learning scenario, they cannot handle unknown

class labels in the open-world learning scenario because these

graph models will incorrectly classify unknown-class samples

into one of the known classes [13], [20], [21]. Considering

the needs of practical applications, open-world learning [22]

was proposed where new samples may come from new label

spaces, and open-world classifiers are required to solve the

challenges of both known-class classification and unknown-

class recognition.

Fig. 2: An example of open-world learning from a structured

sequence. In the training phase, a sequence of graphs is

observed, having a dynamic structure and features, where

nodes belong to three classes, i.e., class a, b, and c. Data from

the testing domain is inconsistent with that of the training

domain in terms of class labels. The class label space for

testing consists of elements having unknown class labels (such

as class d and class e), which were not seen in training.

Open-world learning models require strong generalization

capability [23], [24] to handle an unknown class label space. It

has received increasing attention from researchers in computer

vision (CV) and natural language processing (NLP) [25] [26].

In computer vision, ORE [23] adopts contrastive clustering and

energy based unknown identification for open-world object

detection. Perera et al. [27] formalized this as an open set
recognition problem, and trains a generative model for all

known classes. In natural language processing, Zheng et
al. [28] formalized open-world learning as an out-of-domain

detection problem. Yan et al. [29] used a semantic-enhanced

Gaussian mixture (SEG) model for unknown intent detection.

In structured data analysis, OpenWGL [22] [30] was proposed

for static graph open-world learning. Another study [31] pre-

sented an incremental training method for open-world lifelong

learning on graphs which focuses on the catastrophic forget-

ting and cold start problems. Building on these foundations,

this work attempts to address the open-world learning problem

for structured sequences, where we focus on the problem

of accurately identifying samples of unknown classes in the

testing phase.

The input data for this problem is a structured sequence,

where the testing data contain both known-class nodes and

unknown-class nodes. Open-world learning on a structure

sequence aims to learn a new classifier that either classifies

a new node into one of the known classes or rejects it from

all the known classes. In order to achieve this goal, there are

numerous challenges:

• Challenge 1 : Learning approximate representations (fea-

tures) among nodes from same classes and establish

relatively closed class boundaries, to keep space for

unknown classes. As shown in Fig. 1, traditional closed-

world classification methods normally adopt open-end

classification boundaries and will misclassify unknown

classes into known classes during testing. For open-

world learning, we need closed-end class boundaries and

compact categories in the learned feature space.

• Challenge 2 : Learning an open-world classifier that can

solve the class label inconsistency problem between the

training and testing domains of structured sequence data.

As shown in Fig. 2, in the training domain, the class

label space consists of instances of classes a, b, and c.

However, in the testing domain, instances of unknown

classes are encountered (such as class d and e). An open-

world classifier must classify data samples either into the

already known class label space, or the unknown-class

label space.

In light of the above challenges, we present a new Open-

world Structural Sequence node Classification model (OSSC

for short) for learning from structured sequences. To solve

Challenge 1, OSSC proposes a graph convolutional network

(GCN)-based dynamic variational framework that captures

both structural and temporal dynamics of graph sequences.

It learns a latent distribution sequence for each node via

sampling to generate node representations that are more stable.

The adoption of an open-world classification loss further

ensure that a node representation is closely related to its own

label, to yield more compact categories and making the sample

sensitive to unknown classes. To solve challenge 2, Besides

the open-world classification loss, a combination of Openmax
and Softmax is utilized to recognize nodes from unknown

classes and to classify others to one of the known classes.

The contributions of the paper are summarized as follows:

• A new Open-world Structural Sequence node Classifica-

tion model is proposed to solve the problem of open-

world learning from structured sequences.

• OSSC solves the technical challenges to jointly capture

temporal and structural dynamics, and a time-changing

class label space from open-world structured sequences.

To learn a node representation and classification model

from structured sequences, OSSC uses a dynamic graph

variational framework to capture the temporal and struc-

tural dynamics. Besides using commonly used determin-

istic states, OSSC relies on stochastic states to learn
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a latent distribution for each node at each timestamp.

dynamic variational autoencoder (DVAE) loss and open-

world classification loss are utilized to restrict model

learning and Openmax and Softmax are used to obtain

the final classification and recognition function.

• Experiments on real-world structured sequences have

shown that the proposed method is capable of generating

accurate node classifiers from structured sequences.

The rest of the paper is organized as follows. Section II

defines the problem and the proposed learning framework.

Section III introduces the proposed method in detail. Section

IV presents the algorithm. Section V report results from exper-

iments. Lastly, Section VI draws a conclusion and discusses

future work.

II. PRELIMINARIES

This section introduces the problem definition, and then the

overall framework of the proposed OSSC method.

A. Problem Description

Consider static structured data denoted as a graph G =
(V,E,A,X, Y ), where V = {vi}i=1,...,N is a set of N nodes

in the graph, and ei,j = (vi, vj) ∈ E is an edge indicating the

relationship between two nodes. The topological structure of

G is represented by an adjacency matrix A, where Ai,j = 1
if (vi, vj) ∈ E; otherwise Ai,j = 0. xi ∈ X indicates features

associated with each node vi. Y ∈ R
N×C is a label matrix of

G, where C is the already-known node categories (classes). If

a node vi ∈ V is associated with a label c, Y c
(i) = 1; otherwise,

Y c
(i) = 0.

A structured sequence G can be denoted as a se-

quence of static graphs G = {G1, . . . , GT }, where Gt =
(Vt, Et, At, Xt, Yt) represents a graph observed at time t.
Then, the task of node classification for a structured sequence
can be described as follows: given a structured sequence

G, the aim is to learn the label y
(t)
(i) of each node vi at

each timestamp t of the sequence. We aim to learn a map-

ping function of ft : {G1, . . . , GT } → Y ∈ R
N×C , i.e.,

y(t) = ft(G1, . . . , Gt), such that y(t) can capture temporal

patterns required to optimize y(t+1). In many scenarios, each

node’s class label remains unchanged in a sequence, and

y
(t)
(i) can be simplified as y(i). The final prediction Y =

y(i) = fT (G1, . . . , GT ), i = 1, . . . , N is also expected.

Now, we formally describe the problem of open-world
learning on structured sequences. Let there be a structured

sequence G = {G1, . . . , GT }, Gt = (Vt, Et, At, Xt, Yt),
Vt = V train

t ∪V test
t , where V train

t denotes training nodes with

class labels obtained at time t and V test
t denotes testing data

without class labels. Furthermore, let V test
t = S ∪ U, where

S is a set of nodes belonging to the already known classes

whose class label has already appeared in V train
t , and U is a

set of nodes not belonging to the already-known classes whose

class label has never been observed before. Then, open-world

learning on structured sequences aims to learn a (C+1)-class
classifier, where f(V test

T ) → Y, (Y ∈ {1, . . . , C, unknown})
either classifies each node v to one of the already known

classes, or rejects it from all the known classes, taking it as a

sample from an unknown class.

B. Overall Framework

Fig. 3 shows the framework of OSSC. It consists of three

main components. The first one learns temporal and structural

information from graph sequences. The second component

generates node representations, and the third component trains

an open-world learning classifier.

The purpose of the first component (temporal and struc-
ture learning) is to capture the dynamic information in a

structured sequence. Many graph neural network models only

generate deterministic representations for nodes, and thus they

cannot model the uncertainty in a stream. Based on the idea

of Variational Graph Autoencoder network (VGAE), OSSC

learns a sequence of latent distributions of each node, so as to

learn both deterministic latent variables and stochastic latent

variables. In this way, OSSC can simultaneously capture the

evolution of structured sequences and learn the final latent

distribution of each node to obtain more stable representations.

In the second component of node representation genera-
tion, based on the latest learned distribution, OSSC generates

M types of representations for each node by sampling from

the truncated Gaussian distribution, where the samples with

tail-probability are removed.

In the third component of open-world classifier learning,
to learn a good classifier for known classes and an effective

detector for unknown classes, OSSC introduces an open-world

classification loss to describe whether a node belongs to

an existing class or an unknown class. A sampling process

generates multiple versions of feature vectors to test the

certainty that a node belongs to known classes, while openmax
and softmax are utilized to reject nodes from unknown classes

and classify others in known classes.

III. THE PROPOSED MODEL

OSSC consists of three components, i.e., temporal and

structural learning, node representation generation, and open-

world classifier learning. All the three types of learning are

combined to formulate the ultimate learning function.

A. Temporal and structural learning

Given a structured sequence, encoding latent features for

each node requires to take into consideration the uncertainty of

the node. For this, we combine a graph convolutional network

(GCN) with a Dynamical Variational AutoEncoder (DVAE)

network to generate a latent distribution for each node.

Given a structured sequence G = {G1, . . . , GT }, consider

a specific graph snapshot taken at timestamp t, i.e., Gt =
(Vt, Et, At, Xt). To learn node feature Xt and graph structure

At, OSSC first uses a GCN [32] to learn the representation

of each node based on feature information propagation in the

graph.

The first GCN layer generates a lower-dimensional feature

matrix at timestamp t as follows,

H
(1)
t = GCN(Xt, At) = ReLU(D̃−

1
2 ÃD̃

1
2XtW

(1)), (1)
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Fig. 3: The framework of the proposed Open-world Structural Sequence node Classification (OSSC) method. The input is a sequence of

graphs where each node has structure and attribute information. The training process includes three main components, that are temporal

and structural learning, node representation generation, and open-world classifier learning. The model is trained with two types of loss

functions, i.e., the dynamic variational autoencoder loss which includes the KL divergence loss and the reconstruction loss, and the open-

world classification loss. As a result, OSSC can learn node representations generated from a truncated Gaussian distribution, which is sensitive

to unknown classes. More details are given in Section III.

Fig. 4: The classification and identification process. For nodes in the testing set, the OSSC model generates feature embedding

from each node by sampling. The linear layer reduces the dimensionality to the corresponding number of categories, then

openmax is utilized to classify a sample into the unknown-class and softmax is applied to identify a known-class.

where Ã = A + In is an adjacency matrix with self-loops,

In ∈ R
n×n is the identity matrix. D̃i,i =

∑
j Ãi,j and D̃i,j =

0 if i �= j. Accordingly, D̃
1
2 ÃD̃

1
2 is the normalized adjacency

matrix. W (1) is the trainable parameters of the GCN network,

and ReLU(·) denotes the activation function.

At the second layer, we calculate the deterministic states dt,
which is determined through the recursion

dt = fθd(dt−1, H
(1)
t ), (2)

where fθd is a recurrent neural network (RNN) with parameter

θd. Specifically, we use a long short-term memory (LSTM)

network in experiments. For simplicity, we use a general

formulation of RNN as follows,

dt = H
(2)
t = RNN(H

(2)
t−1, H

(1)
t )

= tanh(
−→
W (2)H

(1)
t +

−→
U (2)H

(2)
t−1 +

−→
b (2)),

(3)

where θd = {−→W (2),
−→
U (2),

−→
b (2)} is the parameters of the

RNN.

Moreover, a separated stochastic layer is added to learn

the stochastic state zt in the iterative process for the nodes.

Following the structure of DVAE, the posterior inference of

zt is conducted by using an inference network, which uses

a backward-recurrent state at to approximate the nonlinear

dependence of zt on future observations:

at = gθa(at+1, [dt, Xt]). (4)

To be specific, at can be calculated as

at = H
(3)
t = RNN(H

(2)
t , H

(3)
t+1, Xt)

= tanh([H
(2)
t , Xt]

←−
W (3) +H

(3)
t+1

←−
U (3) +

←−
b (3)),

(5)

where dt = H
(2)
t is the deterministic state, Xt is the node

original feature matrix, and θa = {←−W (3),
←−
U (3),

←−
b (3)} is the

backward-part parameters of the RNN.

Finally, the fourth layer models the stochastic state zt, and

obtains the latent distribution of each node. We let zt be

continuous and follow a multivariate Gaussian distribution.

According to the inference model [33], we have,

q(zt|zt−1, at) =
N∏
i=1

q(zit|zt−1, at) (6)

Furthermore, embedding the above equation into a stochastic

recurrent neural network structure leads to

zt = fθz (zt−1, at), (7)
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i.e.,

H
(4)
t = [μt, σt] = RNN(H

(3)
t , H

(4)
t−1)

= tanh(H
(3)
t

−→
W (4) +H

(4)
t−1

−→
U (4) +

−→
b (4))

(8)

Then, we have

q(zi|zt−1, at) = G(zi|μi
t, diag((σ

i
t))) (9)

where μt is the matrix of mean vector μi
t at timestamp t. σt is

the standard variance matrix of the distribution at timestamp

t. Then, we can calculate the representation of nodes rt, using

a parameterization trick [33] as follows,

zt = μt + σt · ζ, ζ ∼ G(0,1), (10)

where 0 is a vector of zeros and 1 is the identity matrix. By

using the temporal latent variable z1:T , OSSC can capture the

data dynamics and structural patterns.

B. Node representation generation

Following the idea of VAE methods that use a Gaussian

distribution to mimic the original distribution of a latent

vector, we use the Gaussian distribution to describe the latent

features of each node. By sampling, we generate M different

versions of feature vectors (z1i , . . . , z
M
i ) for each node vi from

the corresponding distribution based on Eq. (10), which is

also known as a reparametrization trick. In addition, during

the sampling process, in order to enhance the robustness,

we discard tail probabilities [34], which means that when a

sampling is outside the range [−2σ, 2σ], it will be discarded

and resampled. σ is the corresponding standard deviation.

Thus, the proposed method can be more stable for node rep-

resentation learning while capturing the evolution information

of a dynamic structured sequence.

C. Open-world node classifier learning

When obtaining the latent variable zt at each timestamp

t = 1 : T , we use a decoder model to reconstruct the graph

structure At to learn the relationship between two nodes. The

graph decoder model is defined by a generative model [33] as

follows,

P (At|zt, dt) =
N∏
i=1

N∏
j=1

p(Ai,j
t |zit, zjt , dit, djt )

p(Aij
t = 1|zit, zjt , dit, djt ) = fs((z

i
t)

T zjt + λ(dit)
T djt ),

(11)

where Aij
t are the elements of At, and fs denotes the logistic

sigmoid function.

For the ultimate learning function, we use two loss func-

tions, i.e., the DVAE loss, LDVAE , and the open-world

classification loss, LOWC , to optimize the model, i.e.,

Ltotal �→ LDVAE + LOWC . (12)

To learn class discriminative node representations, we op-
timize the dynamic variational graph autoencoder module by

maximizing a variational evidence lower bound (ELBO) [35],
which is also called the DVAE loss,

LDV AE =

N∑

i=1

T∑

t=1

Eq∗
φ
(zt−1)[Eqφ(zt|zt−1,d̃t:T ,xt:T )[log pθ(xt|zt, d̃t)]

−KL(qφ(zt|zt−1, d̃t:T , xt:T )||pθ(zt|zt−1, d̃t))]

=
N∑

i=1

T∑

t=1

Eq∗
φ
(zt−1)[Eqφ(zt|zt−1,at)[log pθ(xt|zt, d̃t)]

−KL(qφ(zt|zt−1, at)||pθ(zt|zt−1, d̃t))],
(13)

where q∗φ(zt−1) denotes the marginal distribution of

zt−1 in the variational approximation to the posterior

qφ(z1:t−1|d̃1:T , x1:T , z0). Specifically, q∗φ(zt−1) is as follows,

q∗φ(zt−1) = Eq∗φzt−2 [qφ(zt−1|zt−2, d̃t−1:T , xt−1:T )], (14)

and d̃t is an exact approximation of dt with a delta-function.

The first term in Eq. (13) is an expected log likelihood under

Eq∗φ(zt−1), which is the reconstruction loss between the input

adjacency matrix and the reconstructed adjacency matrix. The

second term is the KL-loss, which is the Kullback-Leibler

divergence between two distributions.

By applying the dynamic variational graph autoencoder

network, we obtain uncertainty embeddings for each node

at different timestamp t through Eq. (10). Since unknown

class instances are assumed to not occur in the training and

validation stage1, we choose the k% nodes with the largest

entropy as the “expected unknown class nodes” (depicted as

Sunk), to better learn an accurate classifier for both known

and unknown nodes of the testing data. The proposed model

consists of a cooperative module, an open-world classification

loss and the DVAE loss. They work together to identify

whether a node belongs to an existing class or an unknown

class. The overall objective function is as follows:

Ltotal = λ1LOWC + λ2LDVAE (15)

where λ1, λ2 are balance parameters. The LOWC and

LDVAE terms represent the open-world classification loss and

the dynamic variational autoencoder loss, respectively.

More precisely, the open-world classification loss is used to

encourage larger prediction probabilities for the true class of

seen class nodes, and to balance the classification output of

“expected unknown class nodes” thus avoiding false positive

predictions. The open-world classification loss is defined as:

LOWC =
∑
i

L i
OWC (16)

and

L i
OWC =

⎧⎪⎨
⎪⎩

− log(ŷic), if xi is from class c & xi /∈ Sunk

1

C

C∑
c=1

ŷiclog(ŷic), if xi ∈ Sunk.

(17)

1Our settings are relatively stricter than many other open-world learning
frameworks, including [22], [36], which used real unseen class samples for
training and validation in a semi-supervised way.
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where C denotes the number of known classes, ŷi,c is the

classification prediction score for the i-th labeled node vi in

the c class through a softmax layer.

LOWC , and LDVAE are jointly optimized via the proposed

objective function, presented in Eq. (15), and all parameters

are optimized using the standard backpropagation algorithms.

D. Classification and rejection process

We next introduce how open-world classification and rejec-

tion is done during testing. This process is illustrated in Fig.

4. After performing temporal and structure learning and node

representation generation, we obtain M different versions of

feature vector (z1i , . . . , z
M
i ) for each node vi. To obtain the

probability that the node belongs to any unknown class, we

utilize the openmax [37] method which provides pseudo prob-

ability estimation that a node belongs to unknown class space

by aggregating calibrated scores from known classes [38]. If

the node is identified as “unknown-class sample” by openmax,

it will be marked as an unknown-class sample. Otherwise, we

feed its M different representations into softmax to turn them

into probabilities over C classes respectively, and we obtain

a prediction matrix Si ∈ R
M×C . In Si, each column denotes

M different probabilities of a specific class. We choose the

largest average column probability and give the related class

label as prediction. In summary, the predicted label of a given

test sample is predicted through

ŷi =

{
unknown, if argmaxc∈C∪{−1}Popen(c|xi) = −1

argmax
c∈C

Psoft(c|xi), otherwise.

(18)

where Popen(c|xi) is obtained from openmax and

argmaxc Popen(c|xi) = −1 denotes the average pseudo

probability that the unknown class is the largest among all the

C + 1 probabilities and the node is rejected as a sample not

from any known class. Psoft(c|xi) is obtained from softmax,

and the node’s predicted label is the one with the highest

average probability among the C known classes.

Therefore, by using a sampling process to generate multiple

versions of feature vectors, we are able to assess the confidence

that a node belongs to known classes, and automatically obtain

a pseudo probability for rejecting nodes that do not belong to

any known class.

IV. ALGORITHM

Algorithm 1 shows the details of the solution. Given an

input structured sequence G, the output is the OSSC model, the

node representation, and the labels of nodes. First, a dynamic

variational graph autoencoder network is built to learn the

representation of each node with temporal and structural

information encoded (Lines 2-11). The network is built though

the DVAE loss and the open-world classification loss (Lines

15-16). By adding up these losses, both deterministic states

and stochastic states are trained to capture the uncertainty

representations and differentiate known nodes and unknown

class nodes.

The complexity of the first layer (GCN) is O(|E|maxDT ),
where D is the dimension of the node features, T is the length

of the sequence of the graph sequence, and |E|max is the

maximum number of edges that appeared at the same time

in the graph. The complexity of the second, third and last

layers is O(h2
maxNT ), where hmax is the maximum length

of the embedding generated by these layers, and N is the

number of nodes. The total complexity of the proposed method

is O(|E|maxDT + h2
maxNT ) which is linear with respect to

the number of graph edges and the number of nodes.

Algorithm 1 The OSSC algorithm

Require: : G = {V,Xt, At, Y }, t = 1, . . . , T : structured

sequence data with T graph snapshots. V = Vtrain∪Vtest,

Vtest = S ∪ U : S are the known classes appearing in

Xtrain and U are the unknown classes;

C: the number of known classes.

Ensure: f(Xtest) → Y, Y ∈ {1, . . . , C, unknown}.
1: while has not converged do
2: // Encoder Model

3: For the first layer:

4: H
(1)
t ← ReLU(D̃−

1
2 ÃD̃

1
2XtW

(1))
5: For the second layer:

6: H
(2)
t = tanh(

−→
W (2)H

(1)
t +

−→
UH

(2)
t−1 +

−→
b )

7: For the third layer:

8: H
(3)
t = tanh([H

(2)
t , H

(1)
t ]

←−
W (3) +H

(3)
t+1

←−
U +

←−
b )

9: For the fourth layer:

10: [μt, σt] = tanh(H
(3)
t

−→
W (4) +H

(4)
t−1

−→
U (4) +

−→
b (4))

11: ZT ← μT + σT · ζ, ζ ∼ G(0,1)
12: // Decoder Model

13: p(Aij
T = 1|ziT , zjT ) ← σ((ziT )

T zjT )
14: // Compute Loss

15: LDVAE ← obtain the ELBO loss using Eq. (13)

16: LOWC ← obtain the open-world classification loss

using Eq. (17)

17: Back-propagate loss gradient using Eq. (15)

18: Update the model’s weights

19: if early stopping condition is satisfied then
20: Terminate

21: end if
22: end while

V. EXPERIMENTS

We conducted experiments to validate the performance of

OSSC. The experiments were run on a workstation equipped

with an Intel(R) Xeon(R) Gold 6226R CPU and Nvidia V100S

GPU. All the algorithms were implemented using Pytorch and

trained with the Adam optimizer. Hyperparameters are tuned

by using validation sets. Testing results are reported at the best

validation epoch. Experiments include open classification com-
parison, ablation analysis, parameter analysis, and efficiency
analysis. To allow reproducibility and future comparisons,

codes of the experiments is made available online 2.

2https://github.com/sunnyqiny/OSSC

708



TABLE I: Statistics of the structured sequence datasets

Datasets # Nodes # Edges # Attributes # Timestamps # Classes

DBLP-5 6606 42815 100 10 5
Reddit 8291 264050 20 10 4
DBLP-3 4257 23540 100 10 3
Brain 5000 1955488 20 12 10

A. Experimental Setup

Datasets: We use four real-world datasets, i.e., DBLP-5 3,

Reddit4, DBLP-3 and Brain5. DBLP-5 and DBLP-3 are co-

author network datasets extracted from the DBLP bibliography

website. Nodes in Reddit represent posts and two nodes are

connected if the corresponding posts contain similar keywords.

Brain is generated from functional magnetic resonance imag-

ing (fMRI) data, where nodes represent tidy cubes of brain

tissue and edges indicate the connectivity. Those are typical

structured sequence data. A summary of these data is shown

in Table I.

Test settings: For each dataset, we hold out part of the

class labels as the unknown classes for testing and took the

remaining classes as the already seen classes. We randomly

sampled 80% of the seen class nodes for training, 10% for

validation and 10% for testing. Nodes of unknown classes only

appear in the testing set. We varied the number of unknown

classes to assess the performance.

Evaluation Metrics: The Accuracy, AUC and Macro F1
score were used for evaluation [39].

Implementation Details: The first GCN layer generates

node embeddings with a dimension of 256, the second LSTM

layer generates deterministic node embeddings with a dimen-

sion of 64. Then, the concatenation of the outputs of the

first and second layers are given to the third layer to obtain

stochastic embeddings of nodes. In the last step, we obtain μt

and σt at the fourth layer through two different linear layers

to generate μp and σp of dimension 16 respectively. We use

a fixed learning rate of 5 × 10−3 and a dropout rate of 0.2.

The balance parameters λ1, λ2 are chosen from a grid search

of {0.01,1,100}.

B. Baselines

The following methods are used as baselines:

• GCN [32]: GCN is a deep convolutional network for graph-

structured data, which was originally designed for static

networks. First, we apply GCN to each graph snapshot to

generate the node representation at each timestamp. Then,

we concatenate these representations into a vector and a

linear regression is applied to predict the node label. Note

that GCN does not have the capability of rejecting the

unknown class.

• GAT [40]: GAT leverages masked self-attentional layers to

implicitly specify different weights for different neighbor-

nodes. We follow the inductive learning framework of GAT.

3https://dblp.uni-trier.de
4https://www.reddit.com
5https://tinyurl.com/y4hhw8ro

The last graph snapshot is used for testing while the second

last graph is utilized for validation and the remaining graphs

are used for training. Notice that we removed the nodes from

unknown classes from the training sets so that they do not

influence the training process. GAT also does not have the

capability of rejecting the unknown class.

• GCNthre: Based on GCN, we use a probability threshold

of ti = 0.5 for classification of each class i to identify

the unknown class nodes. It means that if all predicted

probabilities are less than the threshold 0.5 for a node, then

it will be rejected as an unknown class node. Otherwise, its

predicted class is the one that has the highest probability.

• GATthre: Similar with GCNthre, we applied GAT to the

structured sequences with a threshold of 0.5 to identify

unknown nodes.

• OpenWGL [22]: OpenWGL is an open-world graph learning

algorithm for static graphs. We applied it to each graph snap-

shot and the final label of each node was obtained through

voting. Note that OpenWGL can identify the unknown class

using an automatically determined threshold and it uses real

unseen class nodes during training (in the computing of the

class uncertainty loss).

• STAR [6]: STAR is a spatio-temporal attentive recurrent net-

work model, which extracts neighborhood representations

by sampling and aggregating local neighbor nodes to jointly

learn the spatio-temporal contextual information. STAR is

an efficient model for dynamic graph node classification.

However, it is unable to reject the unknown class.

• STARthre: Same with STAR, the only difference is that a

threshold of 0.5 is adopted in the last step to identify nodes

of unknown classes.

We compared the proposed method with the above baseline

methods, which can be classified into four categories: static

graph methods without rejection capability (GCN, GAT),

dynamic graph methods without rejection capability (STAR),

static graph methods with rejection capability (GCNthre,

GATthre, OpenWGL) and dynamic graph methods with re-

jection capability (STARthre).

The baseline algorithms are implemented using Tensorflow

(OpenWGL, STAR) and Pytorch (GCN,GAT) trained with the

Adam optimizer. We follow the evaluation approach used for

open-world learning [41]–[43]. We evaluated all the methods

according to the instructions reported in the original papers

with the same set of parameter configurations unless otherwise

specified, and reported the best results. Except for OpenWGL

which use some real unseen class samples during training,

the other baselines use the same split in train-validation-test

datasets as ours with the setting that no real unseen class

samples are used for training and validation.

C. Open Classification Comparison

Table II and Table III list the Accuracy, Macro AUC and

Macro F1 score of the methods on an open-world graph node

classification task. Table II lists the results on the four datasets

with one unknown class (the last class), while Table III lists
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the results on three datasets with two unknown classes 6 (the

last two classes). From the results, we make the following

observations:

• GCN obtains the worst results since it does not have the

capability of rejecting the unknown class. Thus, it cannot

handle the temporal evolution in the dynamic structured

sequence data. Therefore, all the unknown nodes will be

misclassified and the results become worse as the number

of unknown nodes increases.

• GAT performs better than GCN since the inductive learn-

ing framework can learn representative information from

a bunch of graphs simultaneously. However, GAT cannot

capture the temporal information, and cannot identify the

unknown class properly.

• STAR performs better than both GCN and GAT, which

shows the power of adding temporal information into struc-

tured sequence learning. It can classify the samples more

exactly and result in better performance. However, this

method cannot reject the unknown class samples neither.

• GCNthre, GATthre and STARthre obtain better results than

GCN, GAT and STAR respectively, which proves that a

threshold can improve the results of detecting unknown

nodes. In addition, as the number of unknown nodes in-

creases, GCNthre, GATthre and STARthre become more

competitive.

• OpenWGL obtains better results than GCNthre and GATthre

on all the datasets. It also performs better than STARthre on

most datasets with one or two unknown classes, even if it

cannot handle dynamic information. This demonstrates the

power of the flexible thresholds, which improves the iden-

tification of unknown class samples significantly, compared

to the fixed thresholds.

• STARthre performs better than all the other baselines on

Brain, including OpenWGL. We conjecture that Brain is

more complex than the other datasets, and STAR achieves

better classification result on it, as shown in Table IV.

• The proposed OSSC model consistently outperforms the

baselines on the four datasets. This shows that the proposed

method can better differentiate between a known class and

an unknown class, and capture the label uncertainty in the

representation of each node by jointly learning the temporal

information and the open-world classification loss.

We also report results in a closed-world learning setting,

which means that there is no unknown class, in Table IV.

The results show that OSSC reaches competitive results with

STAR in a closed-world classification setting, showing its

effectiveness and generalization.

D. Ablation Analysis

In this part, we compare variants of OSSC to assess three

aspects: (1) the impact of the DVAE loss (KL loss and

reconstruction loss), (2) the effect of the open-world classifi-

cation loss, and (3) the effect of adopting “expected unknown

6We omit this experiment on DBLP-3 since it has only three classes in
total.

TABLE II: Results on four datasets with an unknown class

Methods
DBLP5 Reddit

Acc AUC F1 Acc AUC F1
GCN 0.2579 0.5007 0.0901 0.1721 0.5283 0.1474
GAT 0.5394 0.7531 0.5307 0.5133 0.4814 0.1904
STAR 0.5443 0.7896 0.5070 0.2045 0.5662 0.2067
GCNthre 0.2931 0.5039 0.1011 0.2620 0.4994 0.1985
GATthre 0.5431 0.7660 0.5364 0.5156 0.4847 0.1864
OpenWGL 0.5771 0.8528 0.5316 0.4577 0.5159 0.2524
STARthre 0.5540 0.7924 0.5244 0.3260 0.5638 0.2929
OSSC 0.6110 0.8742 0.6037 0.4753 0.5841 0.3026

Methods
DBLP3 Brain

Acc AUC F1 Acc AUC F1
GCN 0.3114 0.5007 0.1610 0.1271 0.5175 0.0899
GAT 0.3356 0.6111 0.2643 0.2153 0.4581 0.0777
STAR 0.4068 0.7067 0.3527 0.5467 0.9249 0.6831
GCNthre 0.3136 0.5009 0.1644 0.3806 0.5006 0.0698
GATthre 0.5015 0.6311 0.4654 0.2888 0.4526 0.0693
OpenWGL 0.5174 0.8188 0.5009 0.3799 0.8841 0.1617
STARthre 0.4265 0.7097 0.3988 0.5533 0.9257 0.6895
OSSC 0.6674 0.8433 0.5827 0.5698 0.9367 0.5025

TABLE III: Results on three datasets with two unknown

classes

Methods DBLP5 Reddit Brain
Acc AUC F1 Acc AUC F1 Acc AUC F1

GCN 0.189 0.504 0.096 0.120 0.509 0.128 0.254 0.449 0.335
GAT 0.325 0.727 0.369 0.126 0.499 0.093 0.135 0.749 0.099
STAR 0.318 0.750 0.369 0.137 0.543 0.148 0.480 0.919 0.593
GCNthre 0.595 0.508 0.208 0.343 0.506 0.252 0.468 0.502 0.589
GATthre 0.571 0.777 0.548 0.668 0.503 0.323 0.160 0.751 0.102
OpenWGL 0.634 0.790 0.529 0.604 0.564 0.353 0.474 0.874 0.262
STARthre 0.321 0.751 0.372 0.337 0.546 0.290 0.503 0.921 0.614
OSSC 0.657 0.855 0.570 0.677 0.581 0.371 0.509 0.839 0.548

TABLE IV: Results on four datasets in a closed-world setting

Methods
DBLP5 Reddit

Acc AUC F1 Acc AUC F1
GCN 0.3389 0.5702 0.2434 0.2470 0.5058 0.2217
GAT 0.8124 0.9415 0.8130 0.2759 0.4969 0.1758
STAR 0.8030 0.9550 0.8070 0.5080 0.7500 0.5110
OSSC 0.8275 0.9618 0.8226 0.4700 0.6600 0.4200

Methods
DBLP3 Brain

Acc AUC F1 Acc AUC F1
GCN 0.4695 0.4967 0.2188 0.3760 0.6990 0.3542
GAT 0.5869 0.7104 0.4924 0.1160 0.7872 0.0967
STAR 0.8620 0.9710 0.8670 0.8920 0.9920 0.9000
OSSC 0.9038 0.9726 0.9005 0.7160 0.9588 0.7250

class nodes”. The following OSSC variants are designed for

comparisons:

• OSSC/v: A variant of OSSC with the DVAE loss( LDVAE)

removed.

• OSSC/o: A variant of OSSC with the open-world classifi-

cation loss (LOWC) removed.

Table V reports the ablation study’s results on losses. In

terms of the DVAE loss (KL loss and reconstruction loss),

OSSC performs better than OSSC/v , which confirms that the

usage of KL loss can better capture the latent representation

of each node, and that the reconstruction loss can preserve

node information. In terms of open-world classification loss,

comparing OSSC with OSSC/o, we can observe that the

results of node classification on all the datasets are improved
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TABLE V: OSSC variants on three datasets

DBLP5
|U | = 1 |U | = 2

Acc AUC F1 Acc AUC F1
OSSC/v 0.5923 0.8721 0.6002 0.6310 0.8502 0.5681

OSSC/o 0.6038 0.8685 0.6035 0.6340 0.8515 0.5690

OSSC 0.6110 0.8742 0.6037 0.6572 0.8547 0.5701

Reddit
|U | = 1 |U | = 2

Acc AUC F1 Acc AUC F1
OSSC/v 0.4647 0.5840 0.2964 0.6356 0.5798 0.3681

OSSC/o 0.4672 0.5563 0.2591 0.6277 0.5804 0.3627

OSSC 0.4753 0.5841 0.3026 0.6768 0.5809 0.3710

Brain
|U | = 1 |U | = 2

Acc AUC F1 Acc AUC F1
OSSC/v 0.5516 0.9251 0.4982 0.4618 0.8282 0.5369

OSSC/o 0.5565 0.9323 0.4715 0.5060 0.8317 0.5588
OSSC 0.5698 0.9367 0.5025 0.5088 0.8387 0.5481

TABLE VI: Evaluation of the effect of “expected unknown

class nodes” (Sunk).

Accuracy DBLP5 Reddit Brain

Without unknown-class nodes 0.5801 0.4435 0.5455
With expected unknown-class nodes 0.6110 0.4753 0.5698

when the open-world classification loss is used, indicating its

effectiveness for classification and rejection. To sum up, no

matter which loss is removed, the average results of the model

decreases. This proves the necessity of using these losses.

Table VI shows the study results on the effect of using “ex-

pected unknown class nodes” for training. The first row shows

the results obtained without using any unknown class nodes.

The second row reports results using “expected unknown class

nodes”, which are the 10% of known-class samples with the

largest entropy (i.e. Sunk). We can see that the adoption

of pseudo unknown-class nodes significantly improves open-

world node classification performance.

E. Parameter Analysis

Feature dimension: We varied the feature dimension of

nodes from 24 to 28 with an increasing step of 21, and

report results on four datasets with an unknown class in

Fig. 5. In terms of accuracy, on the DBLP-5, Reddit and

DBLP-3 datasets, as the representation dimension is increased

from 8 to 32, the results raise to a peak, and then decrease

when the dimension reaches 64. The results on the Brain

dataset fluctuates at first. Then, they increase rapidly when

the dimension reaches 64. The curve reaches a peak when

the embedding dimension is 128. This is another evidence of

the complexity of the Brain dataset. However, increasing the

embedding dimension from 8 to 128 does not results in a

significant improvement. The results in terms of AUC and F1

score are similar to that of accuracy. Results show that when

the feature dimension is relatively high, OSSC becomes stable.

VI. CONCLUSION

Most machine learning models for node classification as-

sume that training and testing data are drawn from the same

class label space. Hence, these models can perform poorly

when new classes are observed. To address this problem, this

paper presented a new Open-world Structural Sequence node

Classification method (OSSC) for open-world learning from

structured sequences. This problem is challenging because

testing samples are from unknown classes that were never seen

before.

OSSC uses a GCN-based dynamic variational autoencoder

model, which utilizes stochastic states and deterministic states

to capture the evolution of node attributes and structures.

With the learned latent distribution of each node, a sampling

process with truncated Gaussian distribution is adopted to

generate multiple versions of node representations, to obtain

stable node representations. An open-world classification loss

is further utilized to ensure that node representations are

sensitive to unknown classes. A combination of openmax and

softmax is adopted to recognize nodes from unknown-classes

and to classify others to one of the known-classes. In terms

of experiments, a classification comparison, ablation analysis,

parameter analysis and efficiency analysis were conducted.

Results validate the effectiveness and the efficiency of the

proposed method.

An interesting future work is to learn the generative frame-

work for open-world structured sequence data learning. An-

other research direction is to enable the model to recognize

new class labels such that not only the unknown-class samples

can be identified. Last but not least, features and distributions

of these new samples can be explored with the new class

labels.
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