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Abstract—Graph neural architecture search (NAS) has gained
great popularity in automatically designing powerful graph
neural networks (GNNs) with superior learning abilities, signif-
icantly relieving human effort and expertise reliance. Despite
the advanced performance of automated learning, existing graph
NAS models mainly work on single-relational graphs, while the
widespread multi-relational graphs in real-world applications, are
not well addressed. Moreover, current search spaces of automated
GNNs are generally coarse-grained by simply integrating typical
GNN layers and hyper-parameters, resulting in severe limitations
on search capacities and scopes for creating innovative GNN
architectures. To tackle the limitations of single-relational set-
ting and coarse-grained search space design in existing graph
NAS, in this paper, we propose a novel framework of multi-
relational graph neural architecture search, dubbed MR-GNAS,
to automatically develop innovative and excellent multi-relational
GNN architectures. Specifically, to enlarge search capacities and
improve search flexibility, MR-GNAS contains a fine-grained
search space that embraces the full-pipe multi-relational message
passing schema, enabling expressive architecture search scopes.
With the well-designed fine-grained search space, MR-GNAS
constructs a relation-aware supernet with a tree topology, to
jointly learn discriminative node and relation representations.
By searching with a gradient-based strategy in the supernet,
the proposed MR-GNAS could derive excellent multi-relational
GNN architectures in multi-relational graph analysis. Extensive
experiments on entity classification and link prediction tasks over
multi-relational graphs illustrate the effectiveness and superiority
of the proposed method.

Index Terms—graph neural networks, automated graph learn-
ing, graph neural architecture search, multi-relational graphs,
fine-grained message passing

I. INTRODUCTION

Graphs are pervasive structured data and have been widely

used in many real-world scenarios, such as social networks [1],

knowledge bases [2], and recommendation systems [3]. Re-

cently, graph neural networks (GNNs) have become prevalent

models with excellent learning abilities for analyzing various

graph-structure data [4]–[13]. Despite the remarkable success,

existing GNN models are usually designed manually by ex-

perts for various network architectures on different graphs.

Under the variety and complexity of tasks and structures

∗Corresponding author.

Fig. 1. Difference between single-relational graphs and multi-relational
graphs.

on graphs, such manual designs would cost much human

effort with heavy reliance on expert knowledge. Moreover,

the design scopes of model architectures would be limited

by human understanding, resulting in limited performance on

graph learning. Hence, it is necessary to build tailored GNN

architectures driven by specific graph tasks and data to relieve

human effort.

In light of this, a line of automated machine learning

research, i.e., neural architecture search (NAS) [14]–[19], is

introduced into GNN development for automatically discov-

ering and creating excellent network architectures. With well-

designed search spaces and well-customized search strategies,

graph NAS methods have achieved promising progress in

automated graph learning [20]–[25], yielding superior GNN

architectures for specific tasks and data than hand-crafted

models. However, there are two critical challenges remaining

with existing graph NAS methods, from the perspectives of

graph data modelling and search space design, respectively.

Concretely, current automated GNNs mainly serve on the

single-relational graph setting [20], [21], where there exists at

most one edge between arbitrary nodes and each edge indicates

a binary relation, i.e., connected and unconnected, as shown in

Fig. 1(a). Such a setting significantly limits the applications of

existing automated GNNs, while real-world graphs generally

contain multiple relation types, e.g., knowledge graphs [26],

the typical multi-relational graphs with different relation types

and edge directions, as shown in Fig. 1(b). Furthermore,

existing graph NAS models merely focus on the node repre-

sentation learning, while the relation representation learning

is not well explored. On multi-relational graphs, node and
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relation representations are required to be learned jointly.

From the perspective of search space design, current search

spaces of automated GNNs generally integrate typical GNN

layers and hyper-parameters as candidate operations. To some

extent, such a coarse-grained search space design could be

regarded as a modular ensemble of existing GNN layers,

and the principle GNN architectures are not changed and

innovated. This would significantly limit the capacity and

scope of new GNN architecture development, leading to the

damaged flexibility and reasoning ability of automated GNNs.

To tackle the two challenges mentioned above, we propose a

novel framework of multi-relational graph neural architecture

search, named MR-GNAS, to automatically develop power-

ful multi-relational GNN models with outstanding abilities

in analyzing multi-relational graphs. Specifically, to enlarge

the search capacities and improve the search flexibility, we

propose a fine-grained GNN search space with functional

candidate operations to integrate the critical components of

the multi-relational message passing schema. In this way, the

proposed MR-GNAS could build innovative multi-relational

GNN architectures with excellent learning abilities. To jointly

learn with the diverse entity and relation types, MR-GNAS

constructs a relation-aware supernet with a tree topology, in

which the informative messages would be effectively learned,

resulting in discriminative node and relation representations

for better analyzing multi-relational graphs.

Concretely, based on the fine-grained search space, the

relation-aware supernet is composed of four sequentially

stacked cells, embracing the overall pipeline of multi-relational

message passing. Given a multi-relational graph, it first inputs

(1) an entity-relation integration cell, so that the semantics

and contexts of nodes and edges would be well captured and

integrated according to their interactions, leading to informa-

tive messages of diverse entity and relation types. Then, the

obtained informative messages flow to (2) a relation-aware

message filtering cell to further learn effective messages with

sparse and dense gating mechanisms, so that the most rele-

vant information of relation-aware message passing could be

preserved. Further, the filtered messages would be aggregated

with (3) a neighbor aggregation cell according to the structure

information on multi-relational graphs, leading to informative

node representations. Finally, (4) an entity-aware embedding

filtering cell outputs the ultimate node representations with

entity-level sparse and dense feature selection operations. For

relation representation learning, it is not only incorporated into

the first entity-relation integration cell, but also implements

a linear combination and mapping for yielding the ultimate

relation embeddings.

Benefiting from the relation-aware supernet with full-pipe

multi-relational message passing, the proposed MR-GNAS

could incorporate different relation types and edge direc-

tions with joint node and relation representation learning.

And the functional candidate operations in the fine-grained

search space further encourage adequate exploration of multi-

relational graph structures and contexts. Through a gradient-

based search strategy, MR-GNAS can automatically derive ex-

pressive multi-relational GNN models driven by various multi-

relational graph data and tasks, leading to wide architecture

design scopes, flexible model architectures, and outstanding

multi-relational graph analysis abilities.

In summary, the contributions of this work are as follows:

• To overcome the limitation of single-relational setting in

graph NAS, we propose a novel framework of multi-

relational graph neural architecture search, dubbed MR-

GNAS, enabling innovative multi-relational GNN archi-

tecture design with excellent learning abilities.

• To enlarge the search capacities and improve the search

flexibility, we design a fine-grained search space with

functional candidate operations to embrace the multi-

relational message passing schema, leading to outstanding

architecture search abilities.

• To jointly learn with diverse entity and relation types, we

construct a relation-aware supernet with four sequentially

stacked cells in the tree topology, resulting in discrim-

inative node and relation representations for benefiting

multi-relational graph analysis.

• Through a gradient-based search strategy, the proposed

MR-GNAS could derive expressive multi-relational GNN

architectures and extensive experiments on entity classi-

fication and link prediction tasks illustrate its superiority.

II. PRELIMINARY

General Message Passing Schema. Let G = (V, E) be an

undirected, unweighted graph where V = {v1, · · · , v|V|} is

the node set and E ∈ V × V is the edge set. The neighbor

set of node v is N (v) = {u : (v, u) ∈ E}, and initial node

features are represented by X ∈ R
|V|×d0 with d0-dimension

features. For the uniform message passing scheme of general

GNNs, node representations are learned by first aggregating

the messages from local neighbors, and then combining the

aggregated messages with ego-node representations [27] for

update. This process is denoted as:

m(l)
v = AGG(l)({h(l−1)

u : u ∈ N (v)}),
h(l)
v = UPDATE(l)(h(l−1)

v ,m(l)
v ),

(1)

where m
(l)
v and h

(l)
v are the message vector and the represen-

tation vector of node v at the l-th layer, respectively. AGG(·)
and UPDATE(·) are the aggregation function and the update

function, respectively.

Based on the general message passing schema, existing

automated GNNs on single-relational graphs usually design

their search spaces on AGG(·) and UPDATE(·) as OAGG

and OUPD, respectively. Concretely, OAGG usually contains

typical GNN layers as candidate operations, i.e., GCN [28],

GAT [29], and GraphSAGE [1]. AndOUPD generally contains

combination and update functions to integrate neighbor infor-

mation and central node information, i.e., Multi-Layer Percep-

tron (MLP) and concatenation operations [21], [22]. Moreover,

existing search spaces might contain intra-layer operations,

i.e., skip connection, to benefit multi-layer message passing.

Furthermore, some of current automated GNNs also involve
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certain hyper-parameters in their search spaces, i.e., activation

functions and the number of multi-head attentions [20], [30].

Multi-relational Message Passing Schema. Given a multi-

relational graph G = (V,R, E) with the set of nodes V ,

relations R, and edges E , each edge (u, r, v) represents that

the relation r exists from source node u to target node v for

∀u, v ∈ V and r ∈ R. Typically, RGCN [7] first proposed

multi-relational message passing schema by incorporating

edge-specific weights into AGG(·) as:

m(l)
v = AGG(l)({W(l)

r h(l−1)
u : u ∈ Nr(v)}). (2)

To further address relation representation learning,

CompGCN [6] integrated the relation embedding zr ∈ R
d

into the multi-relational message passing with φ(·) operator

for combining the entity-relation representations as:

m(l)
v = AGG(l)({W(l)

λ(r)φ(h
(l−1)
u , z(l−1)

r ) : u ∈ Nλ(r)(v)}),
(3)

Note that Nλ(r)(v) indicates the neighbor set with dif-

ferent relation types and edge directions as λ(r) ={
r ∈ R ∪ r−1 ∈ R−1 ∪ rl = �

}
, where rl = � and r−1 ∈

R−1 denote the self-loop connection with (u,�, u) and the

inverse relation with (v, r−1, u), respectively. To enlarge the

search capacities for flexible automated GNN construction,

in this work, we build upon the multi-relational message

passing schema by designing a fine-grained search space, with

φ(·) operator, AGG(Wλ(r)), and UPDATE(l)(·) in different

component cells, composing of a relation-aware supernet with

a tree topology.

III. THE PROPOSED METHOD

Through the lens of multi-relational message passing

schema, we propose a novel framework of multi-relational

graph neural architecture search, named MR-GNAS. Specif-

ically, MR-GNAS contains a fine-grained search space with

functional candidate operations. Based on the well-designed

search space, MR-GNAS constructs a relation-aware supernet

with four sequentially stacked cells in the tree topology,

and the overall pipeline is illustrated in Fig. 2. Importantly,

such multi-relational message passing schema ensures the

proposed MR-GNAS to better incorporate multi-relational

graph structures into the learning process of tree-topology

supernet. Based on this, the delicately tailored search space

with adequate fine-grained candidates make MR-GNAS enjoy

the advantages of different functional operations, and then,

the expressive architectures would be selected to automatically

build powerful and innovative MR-GNN models.

Specifically, given a multi-relational graph, MR-GNAS first

takes the d-dimensional entity embeddings hu,hv ∈ R
d and

relation embedding zr ∈ R
d as the initial inputs. Then, the en-

tity and relation inputs would experience four-component cells

sequentially : C1: entity-relation integration cell, C2: relation-

aware message filtering cell, C3: neighbor aggregation, and

C4: entity-aware embedding filtering cell.

• C1: Entity-relation Integration Cell: capturing and inte-

grating the semantics and contexts of nodes and edges

according to their interactions, leading to informative

messages of diverse entity and relation types.

• C2: Relation-aware Message Filtering Cell: learning ef-

fective messages with sparse and dense gating mech-

anisms, preserving the most relevant information of

relation-aware message passing.

• C3: Neighbor Aggregation Cell: merging filtered mes-

sages according to multi-relational graph structures, lead-

ing to informative node representations.

• C4: Entity-aware Embedding Filtering Cell: conducting

entity-level sparse and dense feature selections for ob-

taining the ultimate node representations.

In the meantime, the relation embeddings are further up-

dated with linear combination and mapping to generate rep-

resentative relation features. Hence, the proposed MR-GNAS

encases an overall pipe of multi-relational message passing

with fine-grained functional operations, enabling it to jointly

learn with diverse entity and relation types. In this way,

discriminative node and relation representations could be

generated for benefiting multi-relational graph analysis. More

details of the proposed search space for each cell are as

follows.

A. Search Space
C1: Entity-relation Integration Cell. To capture the interac-

tions between entity nodes and relation-type specific edges, we

introduce three types of entity-relation integration operations

to capture and compose the semantics and contexts of entities

and relations, leading to informative and beneficial messages.
Specifically, we extend the φ(·) operator in Eq. (3) to the

set of integration operator with following candidate operations:

(1) φ+ (hu, zr) = hu + zr; (2) φ− (hu, zr) = hu − zr; (3)

φ∗ (hu, zr) = hu ∗ zr. Then, we can obtain the integrated

entity-relation message mc1
e ∈ R

d for each edge e ∈ E as:

mc1
e = Φop (hu, zr) , (4)

where Φop = {φ+, φ−, φ∗} is the candidate set of the

composition operators.
C2: Relation-aware Message Filtering Cell. The key chal-

lenge of message passing on multi-relational graphs is to

preserve the most relevant messages and filter the redundant

information for specific tasks. In light of this, we develop a set

of message gating mechanisms inspired by [31] in the message

filtering cell. Different from [31] merely considering the node

representation filtering with node-level messages, we introduce

relation-aware message filtering, which incorporates diverse

relation types and edge directions. Hence, the proposed MR-

GNAS could learn informative entity and relation interaction

messages, leading to better adaption and learning ability for

multi-relational graph analysis.
Taking the relation-aware message matrix Mc1 =

[mc1
1 , · · · ,mc1

e ] ∈ R
|E|×d, e ∈ E from C1 as the input, C2

considers three types of filters with five candidate operations,

by extending AGG(Wλ(r)) in Eq. (3) to Γop searching set,

encouraging effective multi-relational message passing via

Mc2 = Γop(M
c1), (5)
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Fig. 2. The overall framework of multi-relational graph neural architecture search with fine-grained message passing.

where Γop =
{Fλ, Fs, Fs

λ, Fd, Fd
λ

}
, i.e., vanilla filter Fλ,

sparse filters Fs and Fs
λ, as well as dense filters Fd and

Fd
λ . Note that Fλ could be taken as the basic AGG(Wλ(r))

in Eq. (3). Moreover, we include the identity operation

I(Mc1) = Mc1 in this cell, which can be taken as the skip-

connection to preserve the original beneficial messages. Differ-

ent types of message filters learn and select specific messages

at different scales of relation types and edge directions, leading

to the full exploration of data-driven and task-driven messages

of entity-relation interactions.

We summarize the main differences of different relation-

aware message filters in Γop in Table I, from the perspectives

of three essential components, i.e., mapping functions, weight

matrices, and operators. For convenience, we simplify the

relation-type set λ(r) as λ and more details of each filter can

be found as follows.

(1) Vanilla Filter Fλ typically weights the beneficial mes-

sages according to the directions of edges and the types of

relations. In detail, it learns the re-scaling weight parameter

matrix Wλ = [Wr;Wr−1 ;W�] ∈ R
3×d×d′ , where each

of Wr, Wr−1 , and W� learns a R
d → R

d′ mapping with

the original relations r, inverse relations r−1, and self-loop

relations �, respectively. Hence, the vanilla filter is calculated

by
Fλ (Mc1) = Wλ(r) ·Mc1

= [Mc1
r Wr; M

c1
r−1Wr−1 ; M

c1
�W�],

(6)

where Mc1
λ denotes corresponding messages with specific

relation types, e.g., Mc1
r ∈ R

|Er|×d, and |Er| denotes the

number of edges with the original relations r in G.

(2) Sparse Filters Fs and Fs
λ select and re-scale the bene-

ficial messages through the sparse gating mechanism by fully

understanding the importance of relation-aware information.

TABLE I
SUMMARY OF DIFFERENT TYPES OF RELATION-AWARE MESSAGE FILTERS.

‘·’ DENOTES THE MATRIX PRODUCT AND ‘�’ IS THE HARDMARD PRODUCT.

Types Candidates Mappings Weights Operators

Vanilla Fλ - Wλ ∈ R
3×d×d′ ·

Sparse
Fs ϕs Ws ∈ R

|E|×|E| ·
Fs

λ ϕs
λ = [ϕs

r;ϕ
s
r−1 ;ϕ

s
�] Ws

λ ∈ R
|E|×|E| ·

Dense
Fd ϕd Wd ∈ R

|E|×d′ �
Fd

λ ϕd
λ = [ϕd

r ;ϕ
d
r−1 ;ϕ

d
�] Wd

λ ∈ R
|E|×d′ �

Specifically, this mechanism is implemented by the sparse

mapping function ϕs(·) and its relation-type specific variant

ϕs
λ(·). We first calculate the weight matrix Ws ∈ R

|E|×|E|

with the sparse mapping function ϕs : Rd → R
1, then the

messages can be re-scaled as:

Ws = diag [ϕs(Mc1)] , Fs(Mc1) =Ws ·Mc1 , (7)

where diag[·] is adopted for converting the vector to diagonal

matrix, and ϕs(·) is implemented by a two-layer MLP with

sigmoid activation function.

Furthermore, as shown in Table I, ϕs
λ(·) extends the above

mapping with different relation types and edge directions by

assembling them together as ϕs
λ = [ϕs

r; ϕ
s
r−1 ; ϕs

�]. Hence,

the relation-specific sparse filter Fs
λ is natural to be derived

following the same logic in Eq. (6) and Eq. (7) as Fs
λ(M

c1) =
Ws

λM
c1 , where

Ws
λ = diag [ϕs

λ(M
c1)]

= diag
[
ϕs

r(M
c1
r ); ϕs

r−1(M
c1
r−1); ϕ

s
�(M

c1
� )

]
.

(8)

(3) Dense Filters Fd and Fd
λ consider a more fine-grained

message gating scheme to control information flows and

exploit the importance of relation-aware messages in a dense

manner. Specifically, the dense mapping function ϕd(·) and

its relation-type specific variant ϕd
λ(·) learn the R

d → R
d′

mapping, yielding dense message re-scaling weights Wd and

Wd
λ with the dimension of R|E|×d′ . Then, we have:

Wd = ϕd (Mc1) , Fd(Mc1) =Wd �Mc1 , (9)

where � denotes the Hardmard product and ϕd(·) is a

single-layer MLP with sigmoid activation function. Similarly,

the relation-type specific dense filter can be obtained by

Fd
λ(M

c1) =Wd
λ �Mc1 , where

Wd
λ = ϕd

λ (M
c1) =

[
ϕd
r(M

c1
r ); ϕ

d
r−1(M

c1
r−1); ϕ

d
�(M

c1
� )

]
.

(10)

In summary, sparse filters calculate the weights among

edges with different relation types, while dense filters go

for weighting each attribute of each edge. The ensemble of

dense and sparse filters would ensure comprehensive message

learning at different weighting scales, leading to effective

information passing.
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TABLE II
ARCHITECTURE COMPARISON OF THE PROPOSED MR-GNAS vs.EXISTING MULTI-RELATIONAL GNNS.

Models
C1 C2 C3 C4 #Leaf Nodes of DAG

Entity-relation Integration Relation-aware Message Filtering Neighbor Aggregation Entity-aware Embedding Filtering

RGCN [7] × ≈ Fλ AGGmean × [0, 1, 1, 0]
SACN [32] × ≈ Fλ AGGsum × [0, 1, 1, 0]
CompGCN [6] ≈ Φop Fλ AGGsum × [1, 1, 1, 0]

MR-GNAS (ours) Φop = {φ+, φ−, φ∗} Γop =
{Fλ, Fs, Fs

λ, Fd, Fd
λ

}
AGGop = {sum,mean,max} ΓVop =

{Fs,Fd, I} [Nc1 , Nc2 , Nc3 , Nc4 ]

C3: Neighbor Aggregation Cell. Based on the multi-

relational graph structures, we consider three types of aggre-

gation functions to generate node embeddings via merging

filtered relation-aware messages Mc2 from their neighbors,

i.e., AGGop = {sum,mean,max}. As demonstrated by [27],

AGGsum works well for capturing comprehensive structure

information, AGGmean considers the statistics of input mes-

sages in the aggregating process, while AGGmax is robust to

noise and performs better on identifying the typical and critical

information. Hence, neighbor aggregation cell C3 would yield

node embeddings Hc3 ∈ R
|V|×d′ as:

Hc3 = AGGop(M
c2). (11)

With the ensemble of these complementary aggregation op-

erations, the proposed MR-GNAS could benefit from the

advantages of each operation so that the searched models

would be more expressive compared with manually designed

multi-relational GNN architectures.
C4: Entity-aware Embedding Filtering Cell. We impose

sparse and dense filters Fs and Fd on node embeddings

to further capture discriminative entity representations, corre-

sponding to coarse-grained and fine-grained feature selections,

respectively. Note that different from C2 that considers the

relation-aware message gating, this cell C4 conducts the entity-

aware embedding gating. That means the former focuses on the

message level with diverse relation types and edge directions,

and the latter concerns the embedding level with various entity

types. Thus, the candidate operation set of the entity-aware

embedding filtering cell is ΓVop =
{Fs,Fd, I} and the filtered

node features can be obtained by:

Hc4 = ΓVop(H
c3), (12)

where the computations of sparse and dense weights in Fs and

Fd following the same paradigm in Eq. (7) and Eq. (9) but

working on the node embeddings. We introduce the superscript
V to make a clear distinction. At last, we concatenate the

outputs of C3 and C4 and impose an MLP for obtaining the

ultimate node representations:

Hout =MLP ([Hc3 ;Hc4 ]). (13)

Relation Representation Learning. Considering the scala-

bility with large-scale relation types and edges, we adopt

the linear combination of a set of basis relation vectors

following [6]. Then, the relation embeddings can be updated

with a single fully-connected mapping with parameters Wrel

as follows:

zr =
B∑

b=1

βryb, Zout =Wrel[zr]
R
r=1, (14)

where B denotes the number of bases, {yb}Bb=1 is the set of

learnable basis vector and βr ∈ R is the learnable relation

specific weight scalar of a certain basis. Moreover, the relation

embeddings are also incorporated into the first entity-relation

integration cell, leading to the joint learning of discriminative

node and relation representations.

B. Relation-aware Supernet of MR-GNAS

Based on the proposed framework that embraces the overall

pipe of multi-relational message passing schema in Fig. 2,

we further build a multi-relational GNN supernet within a

tree topology by injecting different numbers of nodes into

each cell, leading to a relation-aware Directed Acyclic Graph

(DAG) shown in the left of Fig. 3.

Specifically, in the supernet, we keep the sequential con-

nection of four cells in the search space and expand the

single-stream message passing to N leaf nodes with multiple

information streams for each cell in DAG, leading to more

comprehensive and adequate informative message capture and

flow. Note that different from the entity nodes on multi-

relational graphs, each leaf node in the supernet x(i) is the

latent representation of the output of each cell. For example,

in the first cell of entity-relation integration, x
(i)
c1 denote the

message matrix Mc1 ; While in the cell of entity-aware embed-

ding filtering, x
(i)
c4 denote the entity representation matrix Mc4

of all nodes on multi-relational graphs. In the left of Fig. 3,

we take Nc1{x(0)} = 1, Nc2{x(1,2,3)} = Nc3{x(4,5,6)} =
Nc4{x(7,8,9)} = 3 for illustration convenience. With the

ensemble of complementary N functional candidates in each

cell, the proposed relation-aware supernet of MR-GNAS could

benefit from the advantages of different operations. This

further enables MR-GNAS to incorporate multiple information

streams in each cell and further evaluate the strengths of

different candidate operations. At the end of the search stage,

MR-GNAS selects appropriate candidates cell-by-cell and

builds the ultimate multi-relational GNN architectures driven

by specific data and tasks, as shown in the right of Fig. 3. In

this way, the searched MR-GNNs would be more expressive

and powerful due to the fine-grained candidate selection inside

each cell.

To illustrate the effectiveness well-designed search space

and the sufficiency of the proposed supernet, we make a

detailed comparison between our MR-GNAS supernet and

state-of-the-art multi-relational GNNs in Table II. As can be

generally observed, existing prevalent human-designed GNN

models on multi-relational graphs, i.e., RGCN [7], SACN [32],

CompGCN [6], can be approximated as the sub-architectures

in the proposed supernet of MR-GNAS. In each cell, our MR-

GNAS contains more adequate functional candidate operations

to enlarge the search scope of architecture design, along with

more flexible leaf node number settings for developing creative

and expressive MR-GNN models.
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Fig. 3. Supernet of MR-GNAS (left). The right shows an example of model
architecture after searching.

C. Search Algorithm

Based on the proposed relation-aware supernet of MR-

GNAS, we introduce the gradient-based differential search

strategy following [14] to relax the categorical choices of can-

didate operations, resulting in the continuous optimization of

the supernet. Concretely, given MR-GNAS supernet S(X ,A)
with leaf node set X and the edge set A, as well as the

overall search space O = {Φop,Γop, AGGop,Γ
V
op} containing

multi-relational candidate operations, we first define the mixed

operation ō(i,j) relaxed by softmax function as:

ō(i,j)(x) =
∑
o∈O

exp
(
α
(i,j)
o

)

∑
o′∈O exp

(
α
(i,j)
o′

)o(x), (15)

where α
(i,j)
o denotes the operation specific weight vector,

i.e., certain weight of one edge in S. The leaf node pair

(x(i), x(j)) ∈ X is denoted as (i, j) for brevity.

In this way, the task of architecture search is to learn the

network architecture α ∈ A, i.e., a set of continuous edge

variables α =
{
α
(i,j)
o |o ∈ O

}
. Then, we jointly learn the

architecture α and weights w in the proposed MR-GNAS

supernet through the bi-level optimization as

min
α

Lval (w
∗(α),α) ,

s.t. w∗(α) = argminw Ltrain(w,α).
(16)

At the upper level, we find α∗ by minimizing the validation

loss Lval for learning network architectures, while at the

lower level, we learn weights w∗ by minimizing the training

loss Ltrain for learning network parameters. At the end of

the gradient-based search, we construct the corresponding

discrete network architecture by selecting the operation with

the highest architecture weights as o∗ = argmaxo∈O α
(i,j)
o .

IV. EXPERIMENTS

We conduct experiments within two stages following the

general NAS pattern [14], i.e., the search stage and the training

stage. In the first search stage, we search in the relation-

aware supernet of MR-GNAS for an optimal multi-relational

GNN model with the bi-level optimization scheme. Then, in

the second training stage, we train the searched models from

scratch. Finally, we evaluate the proposed MR-GNAS on the

TABLE III
THE STATISTICS OF EVALUATION DATASETS.

(a) Entity Classification Datasets

Datasets Entities Relations Edges Labeled Classes

AIFB 8,285 45 29,043 176 4
MUTAG 23,644 23 74,227 340 2
BGS 333,845 103 916,199 146 2
AM 1,666,764 133 5,988,321 1,000 11

(b) Link Prediction Datasets

Datasets Entities Relations Train Validate Test

FB15K-237 15k 237 272k 18k 20k
WN18RR 41k 11 87k 3k 3k

tasks of entity classification and link prediction, respectively.

The overall experiments are based on the open-source Deep

Graph Library (DGL) [33] under the Pytorch framework and

run with V100 and Quadro RTX 6000 GPUs.

A. Evaluation Tasks and Datasets

Entity Classification is the task of inferring the entity types

on multi-relational graphs. We evaluate our model on four

datasets: AIFB, MUTAG, BGS, and AM, whose statistics are

listed in Table III (a). We adopt the standard test protocol

in Resource Description Framework (RDF) format from [34]

and take the average classification accuracy (ACC%) as the

evaluation metric. As for the baselines, we compare the

proposed MR-GNAS with following human-designed models:

Feat [35], WL [5], RDF2Vec [36], RGCN [7], SACN [32],

and CompGCN [6], as well as automated graph NAS model

GNAS [31].

Link Prediction is the task of inferring missing facts based

on the known facts in knowledge graphs, where the facts are

denoted by the set of triples (subject, relation, object), i.e.,
(u, r, v). Given a knowledge graph, link prediction aims to

find the correct entities to complete the facts of (u, r, ?) or

the (?, r, t), corresponding to the tail entity prediction and

the head entity prediction, respectively. The proposed MR-

GNAS serves as a graph encoder and we adopt ‘ConvE’ [41]

as the score function for simple setting. We conduct exper-

iments on FB15K-237 [44] and WN18RR [41] datasets in

Table III (b) with two commonly used evaluation metrics, i.e.,
Mean Reciprocal Rank (MRR) and Hits@k (k = 1, 3, 10)
under the filtered setting following [37]. Specifically, through

conducting head and tail prediction on all test triples, the rank

q of each target entity against the others would be calculated,

leading to the overall test prediction ranks Q. Then, MRR

evaluates the average of the inverse of the obtained ranks [45]

as MRR = 1/|Q|∑q∈Q 1/q. And Hits@k measures the

TABLE IV
RESULTS OF AVERAGE ACCURACY (%) FOR THE ENTITY CLASSIFICATION

TASK. BEST RESULTS ARE IN BOLD, AND THE SECOND BEST RESULTS ARE UNDERLINED.

Types Models AIFB MUTAG BGS AM

Human-designed

Feat [35] 55.55 77.94 72.41 66.66
WL [5] 80.55 80.88 86.20 87.37
RDF2Vec [7] 88.88 67.20 87.24 88.33
RGCN [7] 95.83 73.23 83.10 89.29
SACN [32] - 77.90 - 90.20
CompGCN [6] - 85.30 - 90.60

Graph NAS
GNAS [31] 88.90 85.86 75.90 85.35

MR-GNAS (ours) 100.00 89.70 89.70 89.90
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TABLE V
MRR AND HITS@k RESULTS FOR THE LINK PREDICTION TASK. BEST RESULTS ARE IN BOLD, AND THE SECOND BEST RESULTS ARE UNDERLINED.

Types Models
FB15K-237 WN18RR

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

Human-designed

TransE [37] 0.294 0.465 - - 0.226 0.501 - -
TransH [38] 0.233 0.401 - - 0.186 0.451 - -
DisMult [39] 0.241 0.419 0.263 0.155 0.430 0.490 0.440 0.390
ComplEx [40] 0.247 0.428 0.275 0.158 0.440 0.510 0.460 0.410
ConvE [41] 0.325 0.501 0.356 0.237 0.430 0.520 0.440 0.400
RGCN [7] 0.248 0.417 - 0.151 - - - -
ConvKB [42] 0.243 0.421 0.371 0.155 0.249 0.524 0.417 0.057
VR-GCN [43] 0.248 0.432 0.272 0.159 - - - -

Graph NAS
GNAS [31] 0.273 0.422 0.299 0.197 0.175 0.273 0.199 0.123

MR-GNAS (ours) 0.348 0.530 0.380 0.258 0.456 0.541 0.470 0.414

ratio of predictions ranked in top k = {1, 2, 3} as Hit@k =
|{q ∈ Q : q ≤ k}|/|Q|. The higher MRR and Hit@k indicate

the better link prediction performance. We compare the pro-

posed MR-GNAS with following human-designed methods:

TransE [37], TransH [38], DistMult [39], ComplEx [40],

ConvE [41], RGCN [7], ConvKB [42], and VR-GCN [43], as

well as the automated graph NAS method GNAS [31]. Note

that considering GNAS is proposed to serve single-relational

graph learning, we reproduce the experimental results of both

entity classification and link prediction tasks by adapting it

to the multi-relational setting without relation representation

learning.

B. Experimental Results.

Entity Classification. The experiment results of the entity

classification task are reported in Table IV. In general, our

proposed MR-GNAS achieves the best and highly competitive

performance of average classification accuracy on all datasets.

Specifically, MR-GNAS significantly exceeds the existing

models with the performance improvement of 4.4%, 5.2%,

and 2.8% on AIFB, BGS, and MUTAG datasets, respectively.

Due to large-scale and complex data statistics of AM dataset,

automated search in the proposed supernet of MR-GNAS

would become more complicated than other datasets. It is

more challenging to derive optimal multi-relational GNN

models driven by large-scale graphs with the computation

memory limitation, causing limited entity classification per-

formance improvement. This point could be further verified

by the performance of GNAS, which is under-performed than

most existing human-designed models. Even though, our MR-

GNAS still achieves better classification results than automated

GNAS (89.90% vs.85.35%) and most human-designed models.

We attribute the superiority of the proposed MR-GNAS to the

well-designed and wide-scope search spaces, as well as the

multi-relational message passing based supernet construction,

enabling its excellent performance to automatically develop

task-specific and data-driven MR-GNN architectures.

Link Prediction. The experiment results of the link prediction

task is presented in Table V. On the whole, our proposed

MR-GNAS achieves outstanding performance on both FB15K-

237 dataset and WN18RR dataset. MR-GNAS significantly

surpasses the human-designed multi-relational GNN models,

i.e., RGCN and VR-GCN, on FB15K-237 dataset with 40.3%

performance improvement for MRR from 0.248 to 0.348.

Moreover, MR-GNAS still has better link prediction perfor-

mance when compared with the automated GNAS model.

Specifically, MR-GNAS improves MRR on FB15K-237 from

0.273 to 0.348, while on WN18RR dataset, the MRR per-

formance improvement is greater from 0.175 to 0.456. We

attribute this to the joint node and relation representation

learning of the proposed MR-GNAS in the entity-relation

integration cell, as well as the relation linear combination and

mapping, since GNAS is unable to deal with the relation rep-

resentation learning. This further reflects the effectiveness of

the delicate search space design with relation-aware message

passing of the proposed MR-GNAS. By enriching relation-

aware candidate operations in the fine-grained manner, MR-

GNAS could automatically derive expressive and powerful

MR-GNNs for multi-relational graph learning.

C. Discussion and Analysis

a) Understanding of Searched Models: We present the

derived models for each task and dataset by searching in the

relation-aware supernet of MR-GNAS in Fig. 4. We set the

number of leaf nodes in the supernet as [1, 3, 3, 3] with two

layers and [1, 2, 2, 2] with a single layer for entity classification

and link prediction, respectively. In general, we can observe

that different tasks and datasets have different preferences for

the functional candidate operations in each cell. Therefore,

resort to the well-designed search space with adequate can-

didates, the proposed MR-GNAS could enjoy the advantages

of different functional operations for multi-relational message

passing and automatically select the optimal ones to build

creative and expressive MR-GNN architectures.

b) Scalability with Number of Relations: We discuss the

effects of different numbers of relation basis vectors on AM

dataset for the entity classification task in Fig 5. As can be

observed, the performance would not improve along with the

increased numbers of bases, and there might be a proper basis

number for better performance, i.e., 80 in our searched model.

Hence, the number of relation basis vectors could be taken as a

hyper-parameter of the automated MR-GNAS tuned for better

multi-relational graph learning.

c) Effectiveness of the Search Strategy: To verify the

effectiveness of the search strategy on deriving optimal

searched models, we randomly select five MR-GNN archi-

tectures (Rand arch 01∼Rand arch 05) from the proposed

search space on FB15K-237 dataset for the link prediction
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Fig. 4. The searched models from the supernet of MR-GNAS on different datasets for entity classification and link prediction tasks.

TABLE VI
SEARCH TIME OF 10 EPOCHS (CLOCK TIME IN SECONDS) COMPARISON.

Search time (10 epochs) GNAS [31] MR-GNAS (ours)

Entity Classification Dataset

AIFB 36.49 36.12
MUTAG 69.97 69.11
BGS 26.59 26.89
AM 317.95 329.42

Link Prediction Dataset
FB15K-237 2.41 3.92
WN18RR 4.23 5.91

task, and make comparison with the derived MR-GNAS based

on the gradient-based differential search strategy. The exper-

imental results are presented in Fig. 6. As can be observed,

the proposed MR-GNAS achieves the best performance on

link prediction for all metrics of MRR and Hit@k than all

other randomly-built architectures, significantly verifying the

effectiveness of the search strategy adopted by the proposed

method. Moreover, the randomly-built MR-GNN architectures

from the proposed search space are all with MRR metrics over

0.270, which still outperform existing multi-relational GNNs,

e.g., RGCN with 0.248 MRR in Table V, further illustrating

the effectiveness of the proposed search space with multi-

relational message passing schema.

d) Search Efficiency: To illustrate the search efficiency

of the proposed method, we report the search time costs of

10 epochs between our MR-GNAS and graph NAS model

GNAS presented in Table VI. As can be observed, even with

enlarged search spaces containing more operations and relation

representation learning progress, MR-GNAS does not take

much extra search time compared with GNAS, illustrating the

outstanding search efficiency of the proposed method.

V. RELATED WORK

Multi-Relational Graph Neural Networks. Multi-relational

graphs are widespread graph-structured data in the real world,

reflecting complex and diverse relationships among various

objects [37], [41], [43], [46]. As a typical category of multi-

relational graphs, knowledge graphs (KGs) provide a formal

understanding of the world based on the human knowl-

edge [26], [32], [39], [47]. Specifically, KGs denote nodes

as entities and edges as relations with labels, indicating the

Fig. 5. Effects of different numbers of relation basis vectors on AM dataset
for the entity classification task.

Fig. 6. Comparison between randomly-selected architectures vs.gradient-
based differential searched architectures on FB15K-237 dataset for link
prediction.

specific triplet facts connecting arbitrary two entities with

a certain relation. Knowledge graph representation learning

(KRL) is an important research line of KG analysis, where

entities and relations would be embedded into low-dimensional

latent spaces for capturing their semantic and context in-

formation. There are two critical components of KRL, i.e.,
embedding models and score functions, where the former

learns low-dimensional entity and relation representations and

the latter measures the plausibility of triplet facts. As a

prevalent type of KG embedding models, a multi-relational

graph neural network (MR-GNN) utilizes the multi-relational

structure connections to benefit GNN learning under mes-

sage passing schema. MR-GNN models jointly learn node

and relation representations of various entity and relation

types with different edge directions. Typically, RGCN [7]

constructed graph convolutional network (GCN) on relational

graphs with relation-specific filters, where basis and block

diagonal decomposition were introduced to deal with the

scale issue of numerous relation types. SACN [32] developed

a weighted GCN as the embedding model to capture node

structures and attributes, as well as edge relation types, with

adaptive relation-specific scalar weight learning. Despite the

satisfying performance, these methods paid more attention

to the node representation learning while the relation repre-

sentation learning was not well addressed. In light of this,

CompGCN [6] introduced the entity-relation embedding com-

position to incorporate relation learning, resulting in a more

general relational GNN framework with superior performance.

Nevertheless, all these relational GNN models are human-

designed, leading to heavy reliance on expert knowledge with

much human effort cost, since massive manual enumerations

need to be conducted for obtaining expressive network ar-

chitectures. To relieve human effort and enlarge the multi-

relational GNN design prospect, we leverage the NAS tech-

nique for automated multi-relational GNN architecture design
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TABLE VII
THE COMPREHENSIVE COMPARISON BETWEEN THE PROPOSED

MR-GNAS AND OTHER EXISTING GRAPH NAS MODELS.(‘SINGLE-REL’ AND

‘MULTI-REL’ DENOTE THE SINGLE-RELATIONAL GRAPHS AND MULTI-RELATIONAL GRAPHS, RESPECTIVELY. ‘COARSE’

AND ‘FINE’ INDICATE THE COARSE-GRAINED AND FINE-GRAINED SEARCH SPACE CHARACTERISTICS, RESPECTIVELY.

‘DETE. DIFFER.’ AND ‘STOC. DIFFER’ DENOTE THE DETERMINISTIC DIFFERENTIAL SEARCH STRATEGY AND

STOCHASTIC DIFFERENTIAL SEARCH STRATEGY, RESPECTIVELY.)

Methods Graph Types
Search Spaces

Search Strategy

Character Models

GraphNAS [20] Single-rel Coarse GNN RL
AGNN [30] Single-rel Coarse GNN EA+RL
SANE [21] Single-rel Coarse GNN Dete. Differ.
SANG [48] Single-rel Coarse GNN RL
Auto-SF [25] Multi-rel Fine Bi-Linear Greedy Search
GNAS [31] Single-rel Fine GAP Dete. Differ.

MR-GNAS (ours) Multi-rel Fine MR-GNN Dete. Differ.

to address the above challenges. With the fine-grained search

space and relation-aware supernet, the proposed MR-GNAS

could automatically develop powerful multi-relational GNNs

for discriminative node and relation representation learning.

Graph Neural Architecture Search. As a critical research

branch of automated machine learning, NAS techniques [14]–

[17] have been introduced into automated GNN model design

recently, leading to a promising research direction on graph

NAS. Existing research on graph NAS has greatly enlarged

the design picture of automated GNN development and re-

lieved the human effort cost of discovering excellent and

powerful GNN architectures [20]–[25], [30], [48]. Generally,

graph NAS methods have two important components: search

space defines functional candidate operations and search

strategy explores optimal network architectures. Typically,

GraphNAS [20] and AGNN [30] constructed the micro-level

search space containing classical GNN layers and related

hyper-parameters, along with architecture controllers based

reinforcement learning (RL) search strategy. And SNAG [48]

further simplified GraphNAS at the micro-level and introduced

the macro-level inter-layer connections. Based on this search

space, SANE [21] implemented DARTS [14], a gradient-based

differential search strategy, on graphs for deriving optimal

GNN architectures efficiently. Also taking the gradient-based

DARTS as the search strategy, GNAS [31] developed a Graph

Neural Architecture Paradigm (GAP) composed of two types

of operations, i.e., feature filtering and neighbor aggregation,

to explore better architectures with the optimal depth of

message passing on the graphs.

Despite excellent learning abilities, these graph NAS meth-

ods mainly work in the single-relational graph setting, sig-

nificantly limiting their applications of learning on multi-

relational graphs. In light of these, few researchers divert their

attention to the multi-relational graph setting. For example,

Auto-SF [25] worked on the score function (SF) compo-

nent of KRL to automatically search in a bi-linear model

based SF search space. Through a unified representation of

existing prevalent SFs, Auto-SF could derive creative and

KG-dependent SFs with superior KG analysis abilities. Nev-

ertheless, the advance of automated GNN learning is not

enjoyed by current KRL embedding models on multi-relational

graphs. The main reason behind this lies in the complexity

and difficulty of training GNNs when lacking domain-specific

constraints on diverse multi-relational graph structures, as also

verified by Auto-SF [25]. This further leads to instinctively

less well performance of GNN embedding models than bi-

linear models. However, due to the powerful abilities of GNNs

on complex graph structure and representation learning, it

motivates us to overcome such challenges to explore the

automated multi-relational GNN architecture development.

Although Auto-GEL [22] attempted to involve the implicit link

information of multi-relational graphs for automated multi-

relational GNN design, it still falls into the coarse-grained

design of search spaces by integrating existing typical GNN

layer based operations straightforwardly. That means the prin-

ciple of multi-relational GNN architectures is not changed,

leading to significant limitations on the capacity and scope of

novel multi-relational GNN architecture development.

Therefore, instead of the simple ensemble of existing GNN

layer components, we propose a fine-grained search space

with functional candidate operations that embrace the multi-

relational message passing schema, leading to a novel relation-

aware supernet followed by a gradient-based search strategy.

The comprehensive comparison between the proposed MR-

GNAS and other existing graph NAS models are listed in

Table VII. As can be observed, our MR-GNAS is the only

method that works on automated multi-relational GNN archi-

tecture development with the fine-grained search space.

VI. CONCLUSION

This paper proposes a novel framework for multi-relational

graph neural architecture search, dubbed MR-GNAS, to au-

tomatically develop innovative and excellent multi-relational

GNN architectures. Specifically, to tackle the challenges of

the single-relational setting and coarse-grained search spaces

in existing graph NAS, MR-GNAS first designs a fine-grained

search space that embraces the full-pipe multi-relational mes-

sage passing schema, and then constructs a relation-aware

supernet composed of four sequentially stacked cells within

the tree topology. In this way, MR-GNAS greatly enlarges the

search capacity and improves the search flexibility for enabling

expressive architecture search scopes. Through searching with

a gradient-based strategy in the supernet, the proposed MR-

GNAS could automatically derive creative multi-relational

GNN architectures and jointly learn discriminative node and

relation representations, enabling excellent multi-relational

graph learning abilities. Experimental results demonstrate that

the proposed MR-GNAS not only achieves outstanding per-

formance on entity classification and link prediction, but also

generally provides fresh ideas for future task-specific and data-

driven multi-relational GNN design.
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