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Abstract—In light of the wide application of Graph Neural
Networks (GNNs), Membership Inference Attack (MIA) against
GNNs raises severe privacy concerns, where training data can be
leaked from trained GNN models. However, prior studies focus on
inferring the membership of only the components in a graph, e.g.,
an individual node or edge. In this paper, we take the first step in
MIA against GNNs for graph-level classification. Our objective
is to infer whether a graph sample has been used for training a
GNN model. We present and implement two types of attacks, i.e.,
training-based attacks and threshold-based attacks from different
adversarial capabilities. We perform comprehensive experiments
to evaluate our attacks in seven real-world datasets using five
representative GNN models. Both our attacks are shown effective
and can achieve high performance, i.e., reaching over 0.7 attack
F1 scores in most cases1. Our findings also confirm that, unlike
the node-level classifier, MIAs on graph-level classification tasks
are more co-related with the overfitting level of GNNs rather
than the statistic property of their training graphs.

Keywords-Membership Inference Attacks, Graph Classifica-
tion, Graph Neural Networks

I. INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-the-
art performance by generalising neural networks for graphs
and been widely used to analyse the graph-structure data in a
wide range of applications [1], [2]. Despite their great power,
privacy and security concerns about information exposure
in GNNs have been raised in sensitive applications [3]–[5].
The graph data for model training is commonly considered
as a private property of data owners. For example, chemi-
cal and biomedical networks carefully collected from highly
consuming experiments are deemed as proprietary assets of
companies. The leakage and abuse of such data may result in
serious issues.

Prior studies show that many deep learning methods are
vulnerable to a severe privacy attack named Membership
Inference Attack (MIA) [3], [6]–[9]. Given access to a model,
the attacker can infer whether an arbitrary data record has
been used during the training period of this model. In the
domain of GNNs, recent studies [6], [7], [10] start to explore

1The code and data used in the paper are released at
https://github.com/TrustworthyGNN/MIA-GNN

the feasibility of MIA over node-level GNN models. Specifi-
cally, node membership inference attacks [10], [11] can infer
whether a given node has been used during the training of a
target GNN model. Some other inference attacks [6] target at
connectives and predict whether a specific pair of nodes are
connected in the training graph. Note that those works only
infer the membership of a component in the graph. Therefore,
how to realise GNN MIAs in graph classification and how an
entire graph record can be leaked by the GNNs are yet to be
explored.

In this paper, we aim to investigate the GNN MIAs in
graph-level classification attacks. As aforementioned, the first
question is how to realise such attacks in graph classification.
In prior inference attacks against node-level GNNs, attackers
infer the membership for only a node’s attributes or connec-
tivity between two nodes based on the inherent property of
graph data. Such inference is implemented by utilising the
strong correlation between connected nodes, which does not
appear to be extended to graph-level GNN MIAs for inferring
the membership of individual graph records.

The second question we aim to tackle is how vulnerable
GNN models are to the MIAs. Specifically, 1) What factors
and how do they impact the performance of membership
inference attacks? According to previous studies [9] in DNN
models, overfitting is the most significant cause for the MIAs,
while studies [10], [11] in node-level GNNs show that the
graph property is also a significant contributor. In this paper,
we will explore how GNN models memorise the training
records and perform differently under divergent overfitting
levels and classification tasks of various graph data. 2) How is
the transferability of the MIAs on GNNs? Most of the MIAs
on DNN are shown to have strong transferability, i.e., the
classifier identifying the membership of models can also infer
the membership for the model trained with different domain
data [9]. The transferring attacks with enhanced generalisabil-
ity pose larger privacy threats. Therefore, the transferability of
MIA on GNNs needs also to be investigated.
Contributions. We present the first MIA attacks on graph-
level GNN tasks in this work. To address the first ques-
tion, we propose two types of attacks, i.e., training-based
attacks and threshold-based attacks based on the different



capabilities of the attacker. Specifically, the attack issues a
query to the target model and receives confidence scores as a
response. Intuitively, since the confidence scores are different
for member/nonmember inputs, our attacks can identify their
memberships in high confidence. To further investigate how
vulnerable the GNN models are to the MIAs, we comprehen-
sively measure the effectiveness of our attacks under various
experimental settings from two perspectives: GNN methods
and training datasets. The contributions of our work are
summarised as follows:

• We propose the first GNN membership inference attacks
for the graph-level classification tasks with black-box
access to target models.

• We propose two types of attacks to infer the membership
of an arbitrary graph record from learning-based and
threshold-based approaches, respectively.

• We evaluate our attacks in seven real-world datasets from
different domains using five representative GNN methods,
and conduct extensive evaluations for the transferability
of our attacks. We thoroughly analyse the factors which
impact the attack performance and reveal the implications
of MIAs against GNNs on both node-level and graph-
level classification tasks.

Highlights of our key findings. Particularly, we highlight
the significant findings corresponding to the aforementioned
research questions as follows.

• GNNs are vulnerable to the membership inference attacks
and can be even more vulnerable than the ML models
with non-graph structures in certain applications.

• Overfitting is the most significant factor for both training-
based or threshold-based attacks, which is consistent with
the observations of prior MIAs in DNN but different from
prior MIAs in node-level GNN models.

• The training-based attacks have strong transferability
among multiple GNN types and shadow datasets, while
the threshold-based attacks achieve higher attack perfor-
mance but poorer transferability.

II. RELATED WORK

Recent studies [8], [9], [12] have shown that attackers
can infer the training records of various machine learning
models via MIAs, and achieve outperformed attack success
rate and precision. However, all above mentioned works
show the successful MIAs on the machine learning model
trained on Euclidean space. There are also several preliminary
researches [6], [10], [11] on the MIAs against node-level
classifiers. However, these node-level MIAs only utilise the
information of the sub-graph around the target node and do
not consider the embedding of the entire graph. Recently,
Zhang et al. [13] infer the basic graph properties and the
membership of a sub-graph based on graph embedding, but
not the membership of the entire graph. Therefore, how graph-
level GNN classifiers are vulnerable to MIAs and what is the
insights behind them are still yet to be explored.

III. PROBLEM FORMALIZATION

A. Problem Definition

In this paper, we define the graph classification model as the
victim model and a Membership Inference Attack targeting the
confidentiality of the victim model’s training data membership.
Definition 2.1. (Graph Classification Model:) Graph classifi-
cation aims to predict a categorical class for a given graph.
Specifically, with a set of graphs G = {g1, g2, · · · , gn} where
each individual gi has a class yi in a set of label Y , a graph
classification model is a mapping fθ(.) : gi → yi which infers
the label of the graph.
Definition 2.2. (Membership Inference Attacks in GNNs:)
Given a GNN model fθ(.), it is trained on a labelled graph
set GTrain = (G, Y ) for a graph-level classification task.
The membership inference attack attempts to infer whether a
specific graph gi is in the target training dataset G. Formally,

A : (gi, fθ(.))→ {0, 1}, (1)

where A represents the attack model which outputs 1 if the
record gi is in the training set of fθ(.), and outputs 0 otherwise.

B. Attack Assumptions

This section introduces the detailed attack scenarios by ex-
plaining the attacker’s capability and background knowledge.
Black-box settings. We assume that the attacker can only
obtain black-box access to the target models, which is the
most common and realistic setting for the adversarial knowl-
edge [14]. In the black-box setting, the attacker has access to
neither the parameters of the target models nor the internal
representations during the inference. Only the model queries
(model outputs of a chosen input) are accessible. The black-
box attacker attempts to exploit the difference between the
prediction of their chosen queries and infer the membership
of the records.
Attacker’s background knowledge. Even though the at-
tacker has only black-box access to the model parameters and
internal representations, he can manage to obtain some public
information.

• Shadow dataset. A Shadow dataset can be a dataset with
the same domain as the target model training dataset. In
this paper, we also relax this assumption in the case that
the shadow dataset comes from a different domain.

• Training knowledge. We assume the attacker knows
the type of GNNs and how a GNN was trained (i.e., the
training algorithm). We will further relax this assumption
and discuss our attacks when the attacker does not know
the type of GNNs.

IV. THE PROPOSED ATTACKS

A. Training-based Attacks

The idea of training-based attacks is to train an attack
model to classify the membership of the input. This attack
model will be a binary classifier whose output is “in” or
“out” corresponding to whether one record has been or not
been used during the target model training. Therefore, we first



Algorithm 1 Algorithm for Attack Model Training

Input:
Shadow Dataset Gs

Output:
Attack Model fattack(.).

1: Split Gs to Gmember and Gnon member

2: Train Shadow Model fshadow(.) on Gmember
3: Vattack = ∅
4: for gi in Gs do
5: if gi in Gmember then
6: Vattack = Vattack ∪ {(fshadow(gi), “in”)}
7: if gi in Gnon member then
8: Vattack = Vattack ∪ {(fshadow(gi), “out”)}
9: Train Attack Model fattack(.) on Vattack

propose to construct a training dataset for the attack model.
Meanwhile, supervised training is adopted to obtain a more
accurate binary classifier, as it is better to build a training
dataset whose records have been labelled as “in” or “out”.
With only black-box access to the target model, the attacker
has no idea about the target model’s training dataset, as he
cannot get the membership label of a record. To construct the
attack model, the attacker needs to build a surrogate model
based on the background knowledge. Algorithm 1 shows how
to construct the attack model and the detailed steps for the
attack model construction are listed as followed:

• Step 1. Shadow Datasets Processing: The attacker gath-
ers the dataset and splits it into two parts. One for shadow
model training is the shadow model’s membership set,
and the other one is the non-member set.

• Step 2. Shadow Model Training: The attacker generates
a surrogate model to mimic the prediction behaviour of
the target model. Only the membership set constructed in
the first step is used to train the model.

• Step 3. Confidence Scores Gathering: The attacker then
feeds both membership and non-membership datasets into
the shadow model and obtains their confidence scores.
These confidence scores can be labelled as “in” or “out”
corresponding to the dataset they are from.

• Step 4. Attack Model Training: The attacker finally trains
the attack model to identify the membership of a record
based on its confidence score. The training data for the
attack model is the confidence score generated in step 3.

To apply our attack on an arbitrary record, the attacker first
issues a query to the target model and obtains the confidence
score of the record. Then the attack model can infer the
membership of the record based on its confidence score.
Remarks. If the shadow and target datasets are in the same
domain, the confidence scores for them will have equal
dimensions. However, in reality, the attacker may not have
knowledge of the data domain. Thus, the obtained datasets
may come from other domains, which results in different
class numbers, i.e., the dimensions of confidence scores are

different to the target one. To address the issue, we propose
to reduce the confidence scores with higher dimensions to be
consistent with the others. Only the most significant values
are kept during the reduction. That is, we select the top k
values in terms of the confidence scores and construct the
new confidence score with k dimensions.

B. Threshold-based Attacks

We then present how to apply the attacks without training
the attack models. In some applications, the attacker may not
have appropriate resources for expensive model training during
membership inference. Instead, a non-training based approach
with a much lower cost can be applied.

To identify the membership of a record only based on the
output posteriors, the idea is that the model is more confident
with the inputs it memorises. Thus, the input with comparably
higher confidence can be considered as membership. We pro-
pose to use the loss function as a metric for the confidence of
the records. In particular, since the model is trained to reduce
the loss of the training data, the loss of the memberships is
expected to be lower than the non-memberships. Therefore,
we calculate the loss of a record, and a smaller loss value
means higher confidence from the target models.

In the proposed attacks, Cross-entropy is used as the loss
function for the confidence metrics. Note that, the calculation
of the loss during the training requires the ground truth labels
of the data. In our attack settings, the attacker cannot obtain
these ground truth labels. Nevertheless, since the target models
are often well-trained, we can use the predictions as their
labels. So, we can still calculate the loss values and apply the
threshold-based attacks. Note that, the threshold value can be
chosen by considering the requirements of the attacks as prior
work [8]. Specifically, the higher threshold can be selected
when the attacker focuses more on precision, while choosing
a lower threshold if he concentrates more on recall.

V. EVALUATION AND ANALYSIS

Our evaluation aims at answering the following research
questions:

RQ1 Whether and how different types of GNNs can be vulner-
able to MIAs?

RQ2 How is the transferability of MIAs? how is the attack per-
formance affected if the attacker obtains less knowledge
of the target model?

RQ3 What are the factors that impact the performance of
MIAs? Is the overfitting only factor that affects the
performance of attacks in GNNs?

RQ4 Does the target model performance (e.g. overfitting level)
or the target dataset property (e.g. statistics of the graph)
affect the attack performance more? What is the differ-
ence between the MIAs on graph-level classification tasks
and other graph-based MIAs?

To answer RQ1, we apply our attacks on various types of
GNN models trained by different graph data, and then compare
them with the baseline attacks on MLP. To answer RQ2,
we apply the attacks with different adversarial background



knowledge and evaluate their effects. To answer RQ3, we
adjust several parameters to analyse their impacts on attack
performance. To answer RQ4, we discuss the empirical results
under different settings and compare our observations to prior
studies.

A. Experimental Setup

Datasets. To evaluate our attacks, we use seven real-world
datasets [15]: PROTEIN full, DD, ENZYMES, OGBG-PPA,
CIFAR10, MNIST and NCI. Note that, CIFAR10 and MNIST
are converted into graphs using super-pixels [16]. Here, we
evaluate our attacks by considering the worst case scenario
for the attacker, where no same data in the shadow dataset
is compared to the target one. In particular, we equally split
them into two equal parts: one is the target models’ training
dataset, while the other is the shadow dataset obtained by the
attacker.
GNN types. We evaluate five popular GNNs using these
datasets. For PROTEIN full, DD, ENZYMES, we use
GCN [17], GateGCN [18], GIN [19], GAT [20] as the target
models. And for CIFAR10 and MNIST, we use the above four
GNNs as well as GraphSAGE [21] for the target models. As
a common setting in practice, all of these models contain only
two layers. To investigate the vulnerability of deeper GNNs
with more parameters, we further evaluate DeepGCN [22]
in OGBG-PPA and NCI. We also use MLP as a non-graph-
structure baseline model as [23] to help evaluate our attacks. It
simply updates the representation for each node independently
without considering their neighbours. Other parameters, such
as the number of the model layers, are set to be the same as
GNNs.
Evaluation metrics. Since membership inference is a binary
classification problem, we adopt the attack F1 score to measure
the overall performance of our attacks, following prior work
on MIAs [9]. We run all our experiments 15 times.

B. Attack Performance

1) Performance Overview: We first show how different
types of GNN models are vulnerable to both our training-
based and threshold-based attacks on different datasets.

Findings #1: Several popular types of GNN models are
all vulnerable to the MIAs on different training data.

Table I shows the attack performance of both our attacks
on seven datasets with different GNN methods. For most
of the datasets, our attacks can achieve more than 70% F1
Score, which confirms our attacks are effective in various
GNN models on different tasks. The results also depict that
different GNN methods may have different levels of robustness
against MIAs. It is observed that GateGCN and GCN are more
vulnerable to inference attacks while GIN is more robust.

We compare our attacks on GNNs with the MLP baseline
as [23]. From the results, our attacks reach better performance
on GNNs than MLP for most of the datasets. It is shown that

(a) GNN Methods (b) Graph Datasets
Fig. 1: Confusion matrix of the attack transferability evalua-
tions.

all the MLP models are more robust than GateGCN and GCN
models; namely, some types of GNNs are more vulnerable to
MIAs than MLPs. For example, our attacks targeting at the
GateGCN model trained on DD has a 0.885 F1 score, which
is about 0.333 higher than 0.552 for the MLP model.

2) Transferability: We explore the transferability of our at-
tacks by relaxing the assumptions of the attacker’s background
knowledge about the target models and shadow dataset.

Findings #2: Our training-based MIAs have strong trans-
ferability with the shadow models trained as different
GNN types and different datasets.

Figure 1(a) reports the confusion matrix of the attack per-
formance for the targeted/shadow model using different GNN
methods. It can be found that, most of our transferring attacks
are effective with a reduction of F1 score within 0.1. Besides
the knowledge about the GNN methods, another important
knowledge is the shadow dataset. Figure 1(b) shows the confu-
sion matrix of the attack performance for the targeted/shadow
model trained on different datasets. It can be found that our
transferring attacks among cross-domain shadow datasets are
still effective. As a result, the knowledge of the shadow dataset
affects less in our attacks and our training-based MIAs are
shown to have strong transferability.

Different from the training-based attacks, we observe that
the mismatching of the dataset domain can lead to a dramatic
reduction of the threshold-based attack effectiveness for the
transferring attacks in cross-domain. Namely, the transferabil-
ity of the threshold-based attacks is poor and it is hard for
the attacker to apply the attacks without the same domain
knowledge.

3) Comparison between Two Proposed Attacks: Finally,
we summarise the advantages and disadvantages of both our
training-based attacks and the threshold-based attacks.

Findings #4: The threshold-based MIAs can achieve even
better attack performance but much lower transferability
compared to the training-based attacks.

Firstly, the threshold-based attacks achieve the highest at-
tack performance in most of the attack settings. In addition,
there is no GNN method or dataset which is significantly more



Dataset Model Training
Accuracy

Testing
Accuracy

Train-test
Gap

Training-based
Attack

Threshold-based
Attack

PROTEIN ful

GateGCN 0.990 0.710 0.280 0.595(0.063) 0.678(0.021)
GCN 1.000 0.688 0.313 0.668(0.043) 0.690(0.028)
GIN 0.730 0.690 0.040 0.561(0.075) 0.665(0.005)
GAT 1.000 0.660 0.340 0.630(0.066) 0.677(0.028)

MLP(baseline) 0.990 0.660 0.340 0.642(0.065) 0.701(0.027)

DD

GateGCN 1.000 0.630 0.370 0.885(0.030) 0.845(0.049)
GCN 1.000 0.630 0.370 0.733(0.057) 0.774(0.001)
GIN 1.000 0.610 0.390 0.597(0.051) 0.673(0.002)
GAT 1.000 0.670 0.330 0.792(0.036) 0.793(0.007)

MLP(baseline) 0.780 0.650 0.130 0.552(0.054) 0.533(0.014)

ENZYMES

GateGCN 1.000 0.550 0.450 0.782(0.072) 0.848(0.038)
GCN 1.000 0.520 0.480 0.778(0.088) 0.854(0.019)
GIN 0.940 0.480 0.460 0.592(0.067) 0.668(0.004)
GAT 1.000 0.530 0.470 0.774(0.043) 0.854(0.009)

MLP(baseline) 1.000 0.380 0.620 0.707(0.058) 0.807(0.011)

CIFAR10

GateGCN 1.000 0.476 0.524 0.859(0.010) 0.860(0.007)
GCN 0.995 0.363 0.632 0.754(0.013) 0.759(0.012)
GIN 0.984 0.319 0.666 0.600(0.013) 0.757(0.176)
GAT 0.989 0.416 0.573 0.682(0.012) 0.581(0.050)

GraphSAGE 1.000 0.494 0.506 0.860(0.008) 0.755(0.107)
MLP(baseline) 1.000 0.354 0.646 0.721(0.010) 0.661(0.064)

MNIST

GateGCN 1.000 0.918 0.082 0.625(0.031) 0.712(0.008)
GCN 1.000 0.805 0.195 0.759(0.008) 0.662(0.075)
GIN 0.984 0.755 0.228 0.547(0.010) 0.674(0.002)
GAT 1.000 0.888 0.112 0.646(0.033) 0.719(0.006)

GraphSAGE 1.000 0.910 0.090 0.693(0.013) 0.737(0.006)
MLP(baseline) 1.000 0.856 0.144 0.612(0.028) 0.671(0.034)

OGBG PPA DeepGCN 1.000 0.588 0.412 0.826(0.011) 0.796(0.088)
NCI GCN 1.000 0.622 0.378 0.649(0.029) -

TABLE I: Accuracy of the target models for different datasets and the corresponding performances.

Model Architecture Train-test Gap F1 Score
28-layer 0.412 0.826(0.011)
22-layer 0.484 0.858(0.009)
20-layer 0.480 0.860(0.013)
18-layer 0.490 0.864(0.010)
16-layer 0.510 0.852(0.012)
12-layer 0.500 0.838(0.010)

TABLE II: F1 scores comparison among attack models with
different model complexity.

robust than others under the threshold-based attacks, while we
observed that GIN is less vulnerable compared with training-
based attacks against other types of GNNs. Furthermore, the
threshold-based attacks require fewer computation resources
since no attack models need to be trained during the attacks.
However, the threshold-based attacks also have limitations.
The selection of the thresholds is non-trivial, which may
significantly affect the attack performance. Moreover, the
transferability of the threshold-based attacks is much poorer
than the training-based attacks, as the selection for the confi-
dence metric is critical.

C. Factors affecting attack performance

Findings #5: Overfitting is the most significant factor that
affects the MIA performance on graph-level classification
tasks.

Fig. 2: Impact of the overfitting.

Impact of the overfitting. Similar to the prior works [9], we
first analyse the relationship between the overfitting level of
the target GNN models and the attack performance. Figure 2
shows how the train-test gap and the F1 score change when
increasing the training epoch. Generally, after more epoch
training, the target model becomes overfit and the train-test
gap increases. Accordingly, the F1 scores of the attack also
increase significantly which indicates that GNN models with
higher overfitting levels are more vulnerable to the MIAs.
Impact of the model architecture complexity. We then eval-
uate how the model architecture affects our attacks. Table II
reports the relationship between the number of layers in the
DeepGCN model and the effectiveness of the attacks. We
observe that adding more layers to the DeepGCN model will
reduce the train-test gaps and increase the F1 scores of our
attacks. As mentioned in [22], adding layers may lead to
higher training loss. In MIAs, higher training loss translates to
less confidence in the member data which reduces the attack
performance. Therefore, we can observe that the models with
deeper layers achieve slightly stronger robustness.



Target Graph Data Property Target GNN Model Property
#Nodes #Edges Graph Density #Classes Train-Test Gap

Graph-level
Training-based GCN -0.0296 -0.0256 -0.0155 0.8420 0.8110

MLP -0.1071 -0.1125 0.1038 0.4748 0.5562

Threshold-based GCN 0.0235 0.0268 0.0687 0.2385 -
MLP 0.0001 0.0099 0.0846 0.3662 -

Node-level [10] GCN - - - 0.3857 -0.2524
[11] GraphSAGE - - 0.7023 -0.0550 0.2986

TABLE III: Correlations between several potential effect factors and attack performance.

Findings #6: GNNs for graph classification with more
classes or trained by graph data with larger average
degrees are inherently more vulnerable to the MIAs.

Impact of the target graph data property. We evaluate
the correlation coefficient between the statistic values and
the F1 score. The results of Spearman’s correlations for both
graph-level classification on PORITIEN full and node-level
classification on CORA are shown in Table III. It can be found
that for graph-level GNNs, the property related to the model
such as the overfitting level (train-test gap) is highly related to
the attack effectiveness, while the statistic of the training graph
does not affect the attacks. However, node-level classification,
[10] emphasises that the graph can significantly affect their
attacks while the overfitting level of the target model does
not. The experimental results in [11] about the graph density
also satisfy this observation as shown in Table III.

D. Comparison to MIAs on Node-level GNNs
To investigate the difference between our MIAs on graph-

level GNNs and prior works on node-level GNNs, we com-
pare and discuss our above findings to theirs. As shown in
Table III, graph-level MIAs are more correlated to the model
property, while the performance of node-level MIAs depends
more on the graph data property. This observation actually
satisfied the implications behind the two attacks. Previous
attack performance on inferring the membership of only one
node has shown to be highly correlated with its neighbours
[10], [11]. It is consistent with their attack design, where the
attack model derives the membership based on the posterior
of also the neighbour nodes. On the contrary, our attacks infer
the membership of the inputs based on the final posterior of
the entire graph. The effectiveness of the attacks fully relies
on how the target GNN model overfits its training graph data.
Therefore, the correlation between the target model property,
especially the overfitting level, becomes the most significant
factor in MIAs on graph-level classification.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper investigates how GNNs are vulnerable to the
MIAs and develops training-based and threshold-based attacks
against various target GNN models. The experiment results
demonstrate that our attacks are effective against GNN models.
We also investigate several impact factors of the MIAs, which
are common in other ML models or unique in GNNs. Our
findings show that overfitting is still the most significant factor
that affects the attack performance.
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