
Domain-Adversarial Graph Neural Networks for
Text Classification

Man Wu †, Shirui Pan ¶∗, Xingquan Zhu †, Chuan Zhou ‡§, Lei Pan ††
†Dept. of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, USA

¶Faculty of Information Technology, Monash University, Melbourne, Australia
‡Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
§School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
††School of Information Technology, Deakin University, Geelong, VIC, 3220, Australia

mwu2019@fau.edu, shirui.pan@monash.edu, xzhu3@fau.edu, zhouchuan@amss.ac.cn, l.pan@deakin.edu.au

Abstract—Text classification, in cross-domain setting, is a
challenging task. On the one hand, data from other domains
are often useful to improve the learning on the target domain;
on the other hand, domain variance and hierarchical structure of
documents from words, key phrases, sentences, paragraphs, etc.
make it difficult to align domains for effective learning. To date,
existing cross-domain text classification methods mainly strive
to minimize feature distribution differences between domains,
and they typically suffer from three major limitations — (1)
difficult to capture semantics in non-consecutive phrases and
long-distance word dependency because of treating texts as word
sequences, (2) neglect of hierarchical coarse-grained structures
of document for feature learning, and (3) narrow focus of the
domains at instance levels, without using domains as supervisions
to improve text classification. This paper proposes an end-to-end,
domain-adversarial graph neural networks (DAGNN), for cross-
domain text classification. Our motivation is to model documents
as graphs and use a domain-adversarial training principle to lean
features from each graph (as well as learning the separation of
domains) for effective text classification. At the instance level,
DAGNN uses a graph to model each document, so that it can
capture non-consecutive and long-distance semantics. At the
feature level, DAGNN uses graphs from different domains to
jointly train hierarchical graph neural networks in order to
learn good features. At the learning level, DAGNN proposes a
domain-adversarial principle such that the learned features not
only optimally classify documents but also separates domains.
Experiments on benchmark datasets demonstrate the effective-
ness of our method in cross-domain classification tasks.

Keywords-Graph neural networks, cross-domain learning, text
classification

I. INTRODUCTION

Text classification, an important and classical challenge in
natural language processing, has raised continuous attention
over the past decades. Many algorithms have been developed
to automatically organize texts using the classifiers well trained
from a large number of training samples. In practice, it may be
time-consuming and expensive to collect sufficiently labeled
data in a specific domain of interest, whereas a large number of
labeled data from a related but different domain might exist to
support the learning [1]. It has motivated many cross-domain
text classification research efforts in recent years, which aims
to borrow knowledge from domains with abundant labeled data

*Corresponding author.

Fig. 1: Examples of converting documents to graphs. Nodes
represent words, and edges denote co-occurrences between
words within the same context of the document. Solid lines
indicate direct relationships between two words, and dashed
lines represent long range semantic relations.

to train a classifier for correct classification of documents from
a target domain [2].

To date, the existing cross-domain text classification meth-
ods can be grouped into four categories — instance re-
weighting based approaches [3], co-training methods [4],
kernel methods [5], and feature-representation based methods
[6], [7], among which the feature representation based ap-
proaches are the most common ones. The key idea of feature-
representation based methods is to find a latent feature space
to contract the distributions of different domains. For example,
Spectral Feature Alignment (SFA) [8] aims to model the rela-
tionship between word features to bridge domains for cross-
domain sentiment classification; Topic Correlation Analysis
(TCA) [1] extracts both shared and domain-specific features
to facilitate the text classification knowledge transfer between
domains. For all these traditional methods, they represent text
using hand-craft features, which need to manually extract and
identify the latent feature representations across domains.

Recently, deep neural networks, as a great tool to automat-
ically learn feature representations, have been used for cross-
domain learning. For example, marginalized SDA (mSDA) [9]
uses auto-encoders to learn latent high-level feature repre-
sentations for cross domain sentiment analysis. Meanwhile, a

l1,2-norm stacked robust autoencoders (l1,2-SRA) for domain
adaptation [10] uses learned features to train a classifier, using
samples from the source domain, and applies the trained
classifier directly to the target domain. Furthermore, Recur-
rent Neural Networks (RNNs) [11] and convolutional neural
networks (CNNs) [12] in particular, have been widely used for
text representation and classification, thanks to their impressive
ability to capture local semantic features in small sliding win-
dows (short messages or word-level syntactics or semantics)
and flexibility to deal with sequential information. However,
the above methods cannot capture the long range semantic
relations among words in feature representation, because they
ignore the structural information of documents which is a very
important aspect for cross-domain text classification.

In order to capture structural dependency between words,
there are several proposals to model documents as graphs [13],
where each document corresponds to a graph with nodes
representing words and edges denoting the dependency be-
tween words, as shown in Fig. 1. Although graph represented
documents can accurately capture word dependency, obtaining
features for graph classification is a challenging task, and
common approaches such as gSpan [14] often result in a large
number of subgraph features while representing documents for
classification.

Instead of relying on subgraph features, the recently de-
veloped graph neural networks (GCNs) [15] have shown to
be a powerful tool to leverage the content and structure
of graph objects and represent them as feature vectors for
classification. The superb feature learning capability of GCNs
provides an alternative solution to capture the long-distance
dependency between word objects for document classification.
Accordingly, a recent paper [16] uses information about the
predicate-argument structure of source sentences and uses
GCNs to inject a semantic bias into sentence encoders for
machine translation. TextGCN [17] builds a single text graph
for a corpus based on word co-occurrence and document-word
relations, and it subsequently learns a text graph convolutional
network for the corpus to obtain word and document em-
beddings. Although GNNs have been successfully used for
structure data to learn feature representations, to the best of
our knowledge, no existing work has explored using GNNs to
handle texts originated from multiple domains.

Advancing graph neural networks for cross-domain classi-
fication is, however, a nontrivial task, and has the following
three major challenges:

Instance level challenge: Existing RNNs or CNNs based text
classification use sequence of words to represent a document,
they only capture local semantic features in small sliding win-
dows (short messages or word-level syntactics or semantics).
We need to find a new way to represent document and preserve
non-consecutive and long-distance dependency between words
for classification.

Feature level challenge: Because each document has hierar-
chical structures from words, key phrases, paragraphs, etc., we
need to learn the hierarchical features to accurately reflect such

structures. Existing GNN methods only focus on word-level
relationships, they can not obtain the hierarchical features,
which may result in the degraded performance when source
and target domains only have few overlapping content. Cap-
turing hierarchical information is important for cross domain
text classification, because documents from different domains
often share coarse-grained structures.

Cross-domain learning challenge: At the learning level, we
need to leverage information from different domains to jointly
learn a classifier for the target domain. While traditional
cross-domain learning methods mainly focus on reducing the
feature distribution discrepancy across different domains, they
essentially ignore to consider domain a valuable source of
supervision. Recently, an adversarial adaptation method [18]
was proposed to train domain classifier to discern whether
a sample is from the source domain or the target domain.
We propose to advance this adversarial learning paradigm to
a domain-adversarial learning principle, where cross-domain
learning aims to find features not only optimally classify
documents into classes, but also differentiate domains (or
minimize the domain confusion loss).

To address the above limitations, we propose an end-to-
end Domain-Adversarial Graph Neural Networks (DAGNN)
for cross-domain text classification by modeling documents as
graphs data structure, and combining the hierarchical structure
and domain labels into a unified deep model. (1) At the
instance level, in order to accurately capture word relations, we
use a graph to represent each document. A novel graph neural
network is utilized to effectively deal with rich relational
structure and catch long-distance semantics in texts; (2) At the
feature level, we propose a novel hierarchical graph pooling
layer to extract the high-level feature representations of input
graph; (3) At the learning level, the domain classification loss
is utilized to guide the feature extractor to learn domain-
shared representations via the Gradient Reversal Layer for
effective cross-domain text classification. Empirical results on
two public real datasets demonstrate that DAGNN outperforms
the state-of-the-art cross-domain text classification methods.
Our contributions are summarized below:

• We propose an end-to-end Domain-Adversarial Graph
Neural Network (DAGNN) for cross-domain text classi-
fication by jointly modeling word relations, hierarchical
graph structure, and domain labels as a unified learning
framework. To the best of our knowledge, this is the first
work to model the three kinds of information jointly in
a deep model for cross-domain text classification.

• We model documents as graphs in classification tasks,
which can capture non-consecutive and long-distance
semantics. Moreover, a well-designed hierarchical graph
pooling network is proposed to capture the hierarchical
high-level document representations of the source and
target domains.

• We evaluate our method on real-world datasets, and the
results demonstrate that the proposed model outperforms
the baseline methods.

II. RELATED WORK

A. Cross-domain classification

Existing cross-domain classification algorithms can be
roughly categorized into four groups: (1) Instance re-weighting
approaches aim to identify the training samples in the source
domain that are most relevant to the target domain by in-
stance re-weighting and importance sampling. Then the re-
weighted source instances are used for training a target domain
model [3]. (2) Co-training methods bridge the gap between
the source domain and the target domain by slowly adding
target features and the most reliable examples of the current
algorithm in the training set [4]. (3) Kernel methods explore
multiple kernels to induce an optimal learning space and
learn a kernel function and a robust classifier by minimizing
the distribution mismatch between the labeled and unlabeled
samples from the source and target domains [5]. (4) Feature
representation based methods are designed to map different
domains into a common shared space and contract their feature
distributions as close as possible [6], [19].

Recently, deep learning has been regarded as a powerful way
of learning feature representations for cross-domain classifica-
tion. Stacked Denoising Auto-encoder (SDA) [20] is proposed
to learn intermediate high-level feature representations for
cross-domain sentiment analysis.

For cross-domain learning, many methods use an adversarial
objective to reduce domain discrepancy [21], [22]. Among
which, the domain adversarial neural network (DANN) [18]
learns domain invariant features by a minimax game between
the domain classifier and the feature extractor, using a gradient
reversal layer to back-propagate the gradients computed from
the domain classifier. Our proposed DAGNN model also
adopts the adversarial adaptation. However, the difference is
that our model can model word relations, hierarchical graph
structure, and domain labels as a unified learning framework.

B. Graph Neural Networks (GNN)

Graph Neural Networks are designed to use deep learning
architectures on graph-structured data. Many solutions are
proposed to generalize well-established neural network models
(such as CNN) that work on regular grid structure to deal with
graphs with arbitrary structures [23]–[27]. A recent pioneer
work [15] proposes a simplified graph convolutional networks
(GCNs), which has been applied to many NLP tasks to
learn text representations. A GCNs based framework [28]
incorporates the syntactic structure into neural attention-based
encoder-decoder models for machine translation.

In order to capture word correlations, TextGCN [17] built
a single text graph for a corpus based on word co-occurrence
and document word relations, then learned a Text Graph
Convolutional Network for the corpus to learn word and
document embeddings. Peng et al. [29] proposed a GCN-
based deep learning model to first convert texts into graph-of-
words, and then used graph convolution operations to convolve
the word graph for text classification. In order to capture
structural dependency between words, we model documents

as graphs, which are are ubiquitous in the real world and
widely used to model the inter-dependence among data in
many applications [30]. Then, a novel Graph neural networks
(GNNs) [15] is utilized to effectively deal with rich relational
structure and catch long-distance semantics. Furthermore, a
novel hierarchical graph pooling network is proposed to extract
hierarchical high-level feature representations of input data,
which can help capture coarse-grained structures of words of
each document for complex scenes.

III. PROBLEM DEFINITION AND OVERALL FRAMEWORK

This section defines the problem to be addressed and then
presents our overall framework for the problem.

A. Problem Statement

Text Classification in Target Domains In this paper, we
focus on text classification. Given a set of documents from a
target domain IDt = {D1

t , ...,DN
t

t }, where Dit is a document
consisting of a set of words. We need to learn a model
ft : IDt → Y , to classify each document Dit into a number of
predefined categories Y = {C1, · · · , C|C|}. Unlike traditional
text classification, the class label for each document Dit in IDt
is not available, therefore, we could not directly build a model
ft for text classification in this domain.
Source Domain Knowledge We are also given documents in
the source domain IDs = {(D1

s , y
1
s), ..., (DN

s

s , yN
s

s)}, where
each document Dis is associated with a class label yis ∈ Y . As
the class labels information is available in IDs, we can easily
build a supervised model fs : IDs → Y .
Cross-Domain Text Classification. Given a target do-
main IDt = {D1

t , ...,DN
t

t } and a source domain IDs =
{(D1

s , y
1
s), ..., (DN

s

s , yN
s

s)}, the cross-domain text classifica-
tion aims to build a classifier f : (IDs, IDt) → Y to predict
the class labels of unlabeled examples in the target domain.
However, this is a very challenging task due to the lack of
labels for IDt. In this paper, we advocate a domain-adversarial
learning framework for this task, with the objective function
being formulated as follows:

minLC(fs(Zs), Ys) + λLDC(Zs, Zt) (1)

where LC(fs(Zs), Ys) =
∑Ns
i=1 Loss(fs(z

i
s), y

i
s) is the clas-

sification loss in the source domain with the classifier model
fs, and zis ∈ Zs is the feature representation of document
Dis. LDC(Zs, Zt) measures the similarity between the feature
representation Zs from documents from IDs and Zt from
IDt. λ is the balance parameter during the learning process.
Basically, our models will target three goals simultaneously:
1) learn a good feature representation zi for each document
Di, 2) build a robust (deep) model from the source domain by
minimizing the classification loss LC(Zs, Ys), and 3) align the
representation from the source domain and the target domain
to a similar space. By this way, the model fs built from IDs
can be used to predict the documents in the target domain.

Notations We develop a graph neural network based algo-
rithm to enable the domain-adversarial training framework.

Fig. 2: The overall architecture of the proposed Domain-Adversarial Graph Neural Network (DAGNN) model for cross-domain
text classification. The input consists of documents from source and target domains. (1) DAGNN first converts each document
as a graph; (2) Then, a hierarchical graph pooling network is used to capture the hierarchical document-level representation
based on training graphs; (3) Finally, after extracting document representations from the hierarchical Graph Pooling Network,
we introduce two loss functions for training the label predictor of the source domain and the domain classifier of the source
domain and the target domain, respectively. Please refer to the content in Section IV for detailed descriptions.

Formally, given an undirected graph G = (V,E), where V
is the set of vertices and E is the set of edges. We use |V | to
denote the number of vertices. Each vertex is associated with
a feature vector which has the dimension of d(0). A feature
matrix X ∈ R|V |×d(0) is used to represent the features of all
vertices, where the i-th row corresponds to the feature vector
of the i-th vertex. The edge set E is commonly indicated by
an adjacency matrix A ∈ R|V |×|V |, in which Aij is the weight
of the edge between the i-th and the j-th vertex. The degree
matrix D ∈ R|V |×|V | is an important concept in GCN models,
where D is a diagonal matrix and Dij =

∑
j Aij .

B. Overall Framework

In order to leverage cross-domain documents to learn a clas-
sifier for text classification, we propose a domain-adversarial
graph neural networks (DAGNN) to reduce the distribution gap
and induce a low-dimensional feature representation shared
across domains. Our framework, as shown in Figure 2, mainly
consists of the following three components:

• Graph Representation for Documents. We will first
represent each document as a graph, so that the non-
consecutive and long distance dependency between words
can be captured.

• Hierarchical Graph Pooling Network. Based on the
graph representation, a hierarchical graph pooling net-
work is developed to obtain hierarchical feature rep-
resentations: (1) The network employs a special GCN
model which combines graphs from source and target
domains to train parameters-shared GCN model to learn
representations; (2) With the GCN model, each graph
pooling module in the network can learn latent document-
based cluster representations at a document level; and

(3) multiple modules are stacked to build a hierarchical
document representation model.

• Domain-Adversarial Learning for Cross-Domain
Classification. To enable cross-domain classification, we
advocate a domain-adversarial learning to train two clas-
sifiers. The first one aims to minimize the classification
loss on the source domain data, and the other one
enforces the differentiation between the source and target
domains. By doing so, the domain-adversarial learning
can maximally utilize the domain information to train
classifiers for cross-domain classification.

IV. METHODOLOGY

This section presents our domain adversarial graph neural
network approach for text classification.

A. Graph Representation for Documents

Our model creates an undirected graph for each document
to model its content information. Given a document, the
content words are taken as the graph vertices. We employ the
point-wise mutual information (PMI) to calculate the weights
of edges, which preserves the global word co-occurrence
information [17]. In detail, we employ a fixed-size sliding
window on all documents in the source and target domains to
collect word co-occurrence statistics. Note that statistics are
based on global corpus rather than a specific document.

We calculate the PMI of word pairs as follows:

p(wi) =
W (wi)

|W |
, (2)

p(wi, wj) =
W (wi, wj)

|W |
, (3)

PMI(wi, wj) = log
p(wi, wj)

p(wi)p(wj)
, (4)

where W (wi) is the number of sliding windows that contain
the word wi, W (wi, wj) is the number of sliding windows
that contain both words wi and wj , and |W | is the total
number of sliding windows. The PMI score can reflect the
correlation between words, and a higher PMI score reflects
stronger semantic correlation. Therefore, we only preserve the
edges with positive PMI scores, while exclude the edges with
non-positive PMI scores:

aij =

{
PMI(wi, wj) PMI(wi, wj) > 0

0 PMI(wi, wj) ≤ 0,
(5)

where aij is the relation between the word wi and wj . After
this process, we obtain the word relations A over the global
corpus, and the adjacent matrix A is the subset of A for each
document Di.

To produce the feature matrix X for each document, we
use the pre-trained fastText word embedding vectors [31],
which contains more than 2 million pre-trained word vectors.
Compared to other pre-trained word embedding vectors such
as GloVe [32], using the fastText helps us to avoid massive
unknown words.

B. Hierarchical Graph Pooling Network

With graph representation, we are able to capture more
complex semantic and long distance relation between words.
However, the challenges for extracting graph features are also
increased. In this paper, we develop an effective hierarchical
graph pooling network for graph representation learning. Our
framework consists of two key components, 1) node level
graph embedding which aims to embed each node into a single
vector, and 2) graph level embedding which summarizes all
embedding in a graph into a fixed length vector, so that graph
level classification can be performed. All the embedding is
done in an end-to-end fashion with graph neural networks.

1) Node Embedding with Graph Convolutional Network:
GCN is an effective approach to embed the node in a graph
into a vector. A GCN [15] is a multilayer neural model that
takes an undirected graph as input and outputs embedding
vectors for vertices based on vertex features and relations.

Based on the adjacency matrix and the degree matrix,
each GCN layer transforms the input feature matrix Z(j) ∈
R|V |×l(j) (the raw feature matrix or the output of the previ-
ous GCN layer) and generates a higher-order feature matrix
Z(j+1) ∈ R|V |×l(j+1)

for vertices as follows:

Z(0) = X, (6)

Z(j+1) = σ(D−
1
2 (I +A)D−

1
2Z(j)θ), (7)

where θ ∈ Rl(j)×l(j+1)

is a transformation matrix and σ is an
activation function which adds nonlinearity to the GCN layer.

One problem of the GCN model [15] is that it only considers
the vertices that are a few propagation steps away and the size

of this utilized neighborhood is hard to extend, since too many
layers lead to oversmoothing. Motivated by [33], we employ
an approximate personalized propagation based algorithm to
address the issue. Our GCN model can achieve linear computa-
tional complexity by approximating topic-sensitive PageRank
[34] via power iteration, as shown in Fig. 3 (a).
GCN Update Formula Our GCN module, defined as
GCN(A,X), takes in a node feature matrix X and and
adjacency matrix A, and then generates a new representation
Z for all nodes. This can be formulated as follows :

Z(0) = H = fMLP(X), (8)

Z(j+1) = (1− α)D− 1
2 (I +A)D−

1
2Z(j) + αH, (9)

where fMLP denotes a multilayer perceptron and α is the
restart probability. By introducing the restart probability α,
our GCN component can have many layers and leverage the
information from far more propagation steps without leading
to oversmoothing.

2) Graph Level Embedding via Pooling: As each graph has
a different number of nodes with variable node embedding,
we need to summarize them into a single vector to facilitate
graph level classification. In our framework, we advance
a differentiate pooling approach [35], which hierarchically
clusters the nodes in a graph into a set of clusters. As the
original graph is coarsened more and more during iterations,
we finally get a single cluster, then we can learn a graph level
embedding with a single vector. In this way, our model is able
to capture the hierarchical information of any input graph after
training.

The core of the our graph pooling (GP) module is to learn
an assignment matrix to assign the words in each document
to a set of clusters. We first describe how the module pools
words in each document when giving an assignment matrix,
then discuss how we learn the assignment matrix.

Here we use the superscript k (k ≥ 1) to denote the
module index. At the k-th GP module, we denote the input
embedding matrix as H(k−1), the node embedding matrix as
Z(k−1) , the cluster assignment matrix as S(k−1) and the
adjacency matrix as A(k−1). The first module takes the afore-
mentioned constructed graph (H(0), A(0)) as input, where the
vertex feature matrix H(0) ∈ R|V |×d uses the corresponding
word embeddings as features. The word embeddings are d-
dimensional vectors, which will be optimized in the training
step. Note that when k > 1, the input graph of the kth module
is dynamically generated by the (k− 1)th module, which will
be discussed later.

Update the embedding and adjacency matrix. Assuming
that the assignment matrix S(k) ∈ Rv

k×d and the node
embedding matrix Z(k) ∈ Rvk×vk+1

of the k-th GP module
have been computed, the GP module (H(k+1), A(k+1)) =
GP(Z(k), A(k)) will generate a new coarsened adjacency ma-
trix A(k+1) and a new input embedding matrix H(k+1), which
can form a coarsened graph for next GP module. The H(k+1)

and A(k+1) are calculated as follows:

H(k+1) = S(k)TZ(k) ∈ Rv
k+1×d, (10)

(a) The architecture of graph convolutional network with ap-
proximate Personalized propagation. (b) Graph pooling module

Fig. 3: The illustration of the proposed graph convolution network and graph pooling module. (a) Given the input (X denotes
the feature matrix and A is the adjacent matrix), the graph convolution network first generated from each node’s own features
(X denotes the feature matrix) by a multilayer perceptron and then propagated using an adaptation of personalized pagerank.
The iteration process follows Eq.(8) and Eq.(9), in which α is the restart probability to give the GCN the ability to have many
layers and leverage the information from far more propagation steps without leading to oversmoothing. (b) Graph pooling
module is combined with two proposed graph convolution network. The input to the k-th module are the adjacency matrix
A(k) and input embedding matrix H(k). We first run the GCNk,embed to learn the node embedding Z(k) and the GCNk,pool to
output the cluster assignment matrix S(k). Then we generate the new adjacency matrix A(k+1) and input embedding matrix
H(k+1) according to S(k).

A(k+1) = S(k)TA(k)S(k) ∈ Rv
k+1×vk+1

, (11)

where d is the output feature dimension and vk is the number
of nodes (words) in the k-th GP module. The input embedding
matrix H(k+1) at the (k + 1)-th GP module is computed
by aggregating the node embedding matrix Z(k) according
to the assignment matrix S(k) at the k-th module. A(k+1)

is calculated in a similar way. Through the GP module, the
graph is coarsened. The adjacency matrix A(k+1) represents a
coarsened graph with vk+1 cluster nodes, where each individ-
ual cluster node in the new coarsened graph corresponds to a
cluster of nodes in the graph at the layer k.

Learn the assignment matrix. We learn the assignment
matrix S(k) and node embedding matrix Z(k) via our graph
neural networks (Eqs. 8 and 9). Specifically, we generate these
two matrices by applying the matrix A(k) and H(k) to separate
GCN modules as follows:

Z(k) = GCNk,embed(A
(k), H(k)), (12)

S(k) = softmax(GCNk,pool(A
(k), H(k))), (13)

where the softmax operation is applied in a row-wise fashion.
Although these two GCN modules use the same input, their
parameters are different and they have different meanings. The
embedding GCN module generates the node embeddings and
the pooling GCN module generates a probabilistic assignment
to vk+1 clusters at the layer k, and we use C(k) to denote the
number of semantic clusters.

The visualization of the GP module is illustrated in
Fig. 3(b). Our trainable GP module can extract the complex
hierarchical structures of a graph by mapping nodes (words) of
each document to a set of clusters according to the assignment
matrix. Our model stacks K graph pooling modules together
to form a hierarchical domain shared feature extractor that
contribute to text classification.

C. Domain-Adversarial Learning for Cross-Domain Classifi-
cation

We propose a domain-adversarial graph neural network
(DAGNN) to learn the domain shared feature that contribute
to text classification. As shown in Eq.(1), our loss function
consists of two parts: the classification loss in the source
domain LC(fs(Zs), Ys) and the domain classification loss
LDC(Zs, Zt).

Document Classification The classification loss
LC(fs(Zs), Ys) is to minimize the cross-entropy for the
labeled data Ds in the source domain:

LC(fs(Zs), Ys) = −
1

Ns

Ns∑
i=1

yilog(ŷi), (14)

where yi denotes the label of the i-th document in the souce
domain, ŷi are the groundtruth and classification prediction
for the i-th source labeled sample Dis, respectively.

Domain Classification The domain classification loss
LDC(Zs, Zt) enforces that the document feature representa-
tion after hierarchical graph pooling networks from source
domain IDs and target domain IDt are similar. To achieve this,
we learn a domain classifier f(Qλ(Zs, Zt); θD) parameterized
by θD with an adversarial training scheme, which tries to
disciminative if a document is from IDt or IDs. On the one
hand, we would like our document classifier fs can classify
each document into the correct class via minimizing Eq.
(14). On the other hand, we would like that features from
different domains are similar, so that the domain classifier
cannot differentiate if the document comes from IDt or IDs.

In our paper, we use Gradient Reversal Layer (GRL) [18]
for adversarial training. Mathematically, we define the GRL as
Qλ(x) = x with a reversal gradient ∂Qλ(x)

∂x = −λI . Learning
a GRL is adversarial in such a way that: on the one side,
the reversal gradient enforces fs(Zs) to be maximized; on the

other side, θD is optimized by minimizing the cross-entropy
domain classification loss:

LDC = − 1

Ns +Nt

Ns+Nt∑
i=1

milog(m̂i)+(1−mi)log(1−m̂i) (15)

where mi ∈ {0, 1} denotes the groundtruth, and m̂i denotes
the domain prediction for the i-th document in the source
domain and target domain, respectively.
LC(fs(Zs), Ys) and LDC are jointly optimized via our

objective function in Eq. (1), and all parameters are optimized
using the standard backpropagation algorithms.

V. EXPERIMENTS

A. Benchmark Datasets

20Newsgroups. The 20Newsgroups dataset has been widely
used for evaluating the performance of cross-domain text clas-
sification algorithms. It is a collection of 18,774 newsgroup
documents across 6 top categories and 20 subcategories in a
hierarchical structure. Following the setting of TCA [1], we
generate six cross-domain text datasets from 20Newsgroups,
which are Comp vs. Rec, Comp vs. Sci, Comp vs. Talk, Rec
vs. Sci, Rec vs. Talk, Sci vs. Talk. The details of the generated
datasets are shown in Table I, in which one top-category (e.g.,
Comp) is the positive class and another top-category (e.g., Rec)
is the negative class and under each top-category, there are
some subcategories (e.g., comp.graphics and rec.motorcycles).

Reuters-21578. The Reuters-21578 is another widely used
dataset for evaluating the performance of text classification,
which is also organized with a hierarchical structure as
20Newsgroups. Following the work [6], three cross-domain
datasets are generated from the Reuters-21578. Table II shows
the detailed information.

B. Baselines

We compare our baselines with both state-of-the-art cross-
domain text classification models as well as deep learning
models with the necessary domain adaption.
State-of-the-art cross-domain text classification models:
• Single Domain Support Vector Machine (SD-SVM) [1]:

The SVM classifier is trained with the labeled documents
in the source domain to predict the class labels of
unlabeled documents in the target domain.

• Single Domain Logistic Regression (SD-LG) [1]: The LG
classifier is also trained with the labeled documents from
the source domain and used to predict the class labels of
unlabeled documents in the target domain.

• Spectral Feature Alignment (SFA) [36]: The spectral
clustering algorithm of SFA is adapted to co-cluster all
words into the shared clusters for domain adaptation.

• Topic-bridge PLSA (TPLSA) [7]: TPLSA is a topic
model method where all topics are assumed to be shared
by different domains and used to represent documents.

• Collaborative Dual-PLSA (CDPLSA) [19]: CDPLSA is
also a topic model. It jointly models different domains
by assuming that the associations between the topics and
the document categories are stable across domains.

TABLE I: Cross-domain tasks in 20Newsgroups.

Domain tasks Source Domain Ds Target Domain Dt

Comp vs Rec

comp.graphics
comp.sys.ibm.pc.hardware

rec.motorcycles
rec.sport.baseball

comp.os.ms-windows.misc
comp.sys.mac.hardware

rec.autos
rec.sport.hockey

Comp vs Sci

comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware

sci.electronics
sci.space

comp.graphics
comp.sys.mac.hardware

sci.crypt
sci.med

Comp vs Talk

comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware

talk.politics.mideast
talk.politics.misc

comp.graphics
comp.sys.mac.hardware

talk.politics.guns
talk.religion.misc

Rec vs Sci

rec.autos
rec.sport.baseball

sci.crypt
sci.med

rec.motorcycles
rec.sport.hockey
sci.electronics

sci.space

Rec vs Talk

rec.autos
rec.sport.baseball

talk.politics.mideast
talk.politics.misc

rec.motorcycles
rec.sport.hockey
talk.politics.guns
talk.religion.misc

Sci vs Talk

sci.crypt
sci.med

talk.politics.misc
talk.religion.misc

sci.electronics
sci.space

talk.politics.guns
talk.politics.mideast

TABLE II: Cross-domain tasks in Reuters-21578.

Domain tasks Source Domain Ds Target Domain Dt

Orgs vs People Orgs.{...}, People.{...} Orgs.{...}, People.{...}
Orgs vs Places Orgs.{...}, Places.{...} orgs.{...}, Places.{...}

People vs Places People.{...}, Places.{...} People.{...}, Places.{...}

• Topic Correlation Analysis (TCA) [1]: TCA extracts both
the shared and the domain-specific latent features to
facilitate effective knowledge transfer.

Deep learning models with adaption:
• mSDA [9]: mSDA utilizes a marginalized Stacked De-

noising AutoEncoder to learn the latent high-level feature
representation.

• l2,1-SRA [10]: l2,1-SRA utilizes a l2,1-norm Stacked
Robust AutoEncoder learn effective representations.

• MLP + GRL [18]: The feature generator is a 3-layer
perceptron and a max-pooling layer to obtain the repre-
sentation of a document. A gradient reverse layer (GRL)
is added for domain classification.

• TextCNN + GRL [18]: The feature generator is a
TextCNN architecture and a gradient reverse layer (GRL)
is added to train a domain classifier.

• LSTM + GRL [18]: The feature generator is a LSTM
layer and a gradient reverse layer (GRL) is added for
domain classification.

C. Experimental Settings

All deep learning algorithms are implemented in Tensor-
Flow and are trained with Adam optimizer. We follow the
evaluation protocol in [1] and evaluate all approaches through
grid search on the hyperparameter space and report the best
results of each approach. For each deep approach, we use a

TABLE III: Classification accuracy comparisons on six cross-domain tasks generated from 20Newsgroups.

Domains SVM LG SFA TPLSA CDPLSA TCA mSDA l2,1-SRA MLP+GRL TextCNN+GRL LSTM+GRL DAGNN

Comp vs. Rec 89.5 90.6 93.9 91.0 91.4 94.0 91.2 92.1 96.8 96.9 96.3 97.5
Comp vs. Sci 71.9 75.9 83.0 80.2 87.7 89.1 82.1 83.3 91.2 91.4 91.1 91.7
Comp vs. Talk 89.8 91.1 97.1 93.8 95.5 96.7 91.2 92.7 97.1 97.5 94.3 97.9

Rec vs. Sci 69.6 71.9 88.5 92.8 89.5 87.9 71.0 79.6 94.0 94.1 90.4 95.1
Rec vs. Talk 82.7 84.8 93.5 84.9 89.9 96.2 84.0 87.3 96.4 96.4 94.6 97.3
Sci vs. Talk 74.7 78.0 85.4 89.0 86.2 94.0 82.0 84.5 93.2 93.3 88.9 93.9

Average 79.7 82.1 90.2 88.6 90.0 93.0 83.6 86.6 94.8 94.9 92.6 95.6

TABLE IV: Classification accuracy comparisons on three cross-domain tasks from Reuters-21578.

Domains SVM LG SFA TPLSA CDPLSA TCA mSDA l2,1-SRA MLP+GRL TextCNN+GRL LSTM+GRL DAGNN

Orgs vs. People 67.0 68.1 67.1 74.6 80.8 79.2 77.1 78.0 80.6 81.0 78.7 82.3
Orgs vs. Places 66.9 69.2 68.3 71.9 71.4 73.0 71.2 71.5 76.7 77.8 72.5 78.9

People vs. Places 52.0 51.3 50.6 62.3 54.8 62.6 65.3 65.5 65.6 65.7 57.7 66.7
Average 62.0 62.9 62.0 69.6 69.0 71.6 71.2 71.7 74.3 74.8 69.6 76.0

batch size of 128 samples, and a fixed learning rate 1e−4. We
set the embedding size of words to 150 and set the dimension
of document feature to 150 for all approaches. The adaptation
rate λ is the following schedule: λ=min(2

1+exp(−10p)−1, 0.1),
and the p is changing from 0 to 1 within the training process
as in [18]. We use 2 graph pooling blocks in our model and
set C(0) = 20, C(1) = 5, d(0) = d(1) = d = 150, α = 0.1. The
window size is set to 10.

D. Cross-Domain Classification Results

Tables III and IV list the accuracy of different methods on
cross-domain classification tasks. From the results, we have
the following observations:
(1) The SD-SVM and SD-LG methods obtain worse per-

formance than the other methods. This is because the
traditional shallow methods do not consider the concept
of domains to make the knowledge gap smaller.

(2) Deep learning baselines mSDA and l2,1-SRA do not have
domain classifiers, and their performance is inferior to
the MLP+GRL methods, confirming the superiority of
domain-loss in cross-domain text classification.

(3) The deep learning approaches (MLP+GRL,
TextCNN+GRL) have better performance than the
traditional cross-domain text classification methods,
which shows that the deep learning method has
competitive advantages than traditional models. We also
observe that the LSTM+GRL shows weaker performance
than other deep learning baselines and our proposed
model. This may because that the RNN-based methods
are good at dealing with sequential information, but
they are unable to model non-consecutive phrases and
long-distance word dependency information to obtain
the key relationship in long documents, which is very
important in cross-domain text classification.

(4) The proposed DAGNN model consistently beats all the
baselines on both datasets. It demonstrates that the pro-
posed hierarchical graph neural network can better cap-
ture the underlying representation of the documents and
reduce the distribution gap across domains by integrating

the feature generator and the cross-domain mechanism
into a unified framework.

E. Analysis of DAGNN Components

Because the proposed DAGNN contains multiple key com-
ponents, in this section, we compare variants of DAGNN with
respect to the following aspects to demonstrate the effective-
ness of DAGNN — (1) the impact of domain-adversarial loss,
(2) the effect of the graph neural network module, and (3) the
impact of the number of graph pooling module. The following
DAGNN variants are designed for comparison.
• DAGNN¬g: A variant of DAGNN with the gradient

reverse layer of DAGNN (i.e., domain classifier) being
removed.

• DAGNN¬p: A variant of DAGNN with the pooling
module of DAGNN being removed.

• DAGNN¬h: A variant of DAGNN with the hierarchical
structure of DAGNN being removed, and only using one
graph pooling module instead of two.

In addition, we also compare our DAGNN model with the
original GCN model (2-layer GCN and a max-pooling layer).
For fairness of comparisons, we also add the gradient reverse
layer to the original GCN model, which is GCN+GRL in our
paper. The results are shown in Tables V and VI.

1) Impact of domain-adversarial loss: In order to verify
the effectiveness of the domain-adversarial loss, we compare
DAGNN model and DAGNN¬g. From Tables V and VI, we
can easily observe the DAGNN model performs significantly
better than DAGNN¬g. This confirms that the usage of
domain-adversarial loss can learn a superior representation for
texts from different domains.

2) Effects of the graph neural network module: We com-
pare DAGNN with DAGNN¬p to investigate the effectiveness
of the novel GNN approach employed in our paper. From
the result, we find that DAGNN¬p performs better than the
GCN+GRL model, which confirms the superiority of the novel
approximate personalized propagation scheme of our graph
neural network in highlighting the inherent document-level
connections. In the progress of the experiment, we also find

TABLE V: Classification accuracy comparisons between DAGNN variants on 20Newsgroups.

Domains GCN+GRL DAGNN¬p DAGNN¬h DAGNN¬g DAGNN

Comp vs. Rec 96.7 97.0 95.9 90.0 97.5
Comp vs. Sci 88.9 89.2 90.0 80.6 91.7
Comp vs. Talk 97.5 97.7 97.4 92.1 97.9

Rec vs. Sci 92.8 93.8 93.3 67.5 95.1
Rec vs. Talk 97.0 97.1 95.5 86.0 97.3
Sci vs. Talk 91.1 92.4 92.5 80.2 93.9

Average 94.0 94.5 94.1 82.7 95.6

TABLE VI: Classification accuracy comparisons between DAGNN variants on Reuters-21578.

Domains GCN+GRL DAGNN¬p DAGNN¬h DAGNN¬g DAGNN

Orgs vs. People 79.9 81.2 80 72.9 82.3
Orgs vs. Places 74.6 76.4 78.1 70.3 78.9

People vs. Places 65.1 66.2 65.3 58.8 66.7
Average 73.2 74.6 74.5 67.3 76.0

50 100 150 200 250 300
80

82

84

86

88

90

92

94

96

98

100

Number of Feature Dimentions

Te
st

in
g

A
cc

ur
ac

y

Comp vs. Rec
Comp vs. Sci
Comp vs. Talk
Rec vs. Sci
Rec vs. Talk
Sci vs. Talk

(a) Testing accuracy on 20Newsgroups.

50 100 150 200 250 300
40

50

60

70

80

90

100

Number of Feature Dimentions

Te
st

in
g

A
cc

ur
ac

y

Orgs vs. People

Orgs vs. Places

People vs. Places

(b) Testing accuracy on Reuters-21578.

Fig. 4: Classification results with different feature dimensions.

1 2 3 4 5
80

82

84

86

88

90

92

94

96

98

100

Number of Iterations

Te
st

in
g

A
cc

ur
ac

y

Comp vs. Rec
Comp vs. Sci
Comp vs. Talk
Rec vs. Sci
Rec vs. Talk
Sci vs. Talk

(a) Testing accuracy on 20Newsgroups.

1 2 3 4 5
40

50

60

70

80

90

100

Number of Iterations

Te
st

in
g

A
cc

ur
ac

y

Orgs vs. People

Orgs vs. Places

People vs. Places

(b) Testing accuracy on Reuters-21578.

Fig. 5: Classification results with different iteration numbers of the proposed graph convolution network.

that the performance of GCN+GRL decreases quickly when
we use the number of layers of GCN exceeding 2, while the
DAGNN¬p can maintain the good performance. This indicates
that the novel graph neural network model can ensure the
stability of the GCN and avoid oversmoothing.

3) Impact of the number of graph pooling module: DAGNN
uses two graph pooling modules to obtain hierarchical latent
features of documents for classification. In order to show the
superiority of the hierarchical graph pooling model, we design
a variant model DAGNN¬h. The only difference between
DAGNN¬h and DAGNN is that DAGNN¬h uses only one
graph pooling module instead of two graph pooling modules.

The results in Tables V and VI show the performances of
each classification task on both datasets are improved when
two stacked graph pooling modules are used, indicating the
effectiveness of the hierarchical graph pooling model.

F. Parameter Analysis

1) Impact of feature dimensions d: We set the number of
feature dimensions of document representations as the same
as that of word embeddings. That is, the word embeddings
and the document representations are all d-dimensional feature
vectors. We vary d from 50 to 300 and report the results of
two classification tasks on two datasets respectively in Figure

4. When d increases from 50 to 150, the testing accuracy is
improved on both datasets. Furthermore, only slight differ-
ences can be observed with different d and the increase of d
does not necessarily result in performance improvements. The
results show that with sufficient feature dimensions (d ≥ 200),
DAGNN is stable with the number of feature dimensions.

2) Impact of iteration numbers: In order to explore the
effect of the number (j) of propagation steps of the GCN
module, we set the number of iteration j from 1 to 5. Figure
5 shows how the accuracy of DAGNN depends on the number
of iterations. From the result, we can observe only slight
differences with different j and with the increase of the
iteration number, the accuracy increases and converges in a
stable condition.

VI. CONCLUSIONS

In this paper, we propose a DAGNN algorithm which uses
domain-adversarial graph neural networks for cross-domain
text classification. We argued that existing methods mainly
model texts as word sequences, hard to capture semantics
of long-distance word dependency and hierarchical structure
of documents. In addition, existing cross-domain learning
methods mainly focus on using other domains to improve
the estimation of feature distributions, failing to use domains
as extra source of supervisions. To address the challenges,
our domain-adversarial graph neural networks propose to use
three technical innovations: (1) using a graph to represent
a document to capture non-consecutive and long-distance
semantics, (2) using hierarchical graph neural networks to
preserve structure of documents for feature learning, and (3)
using domain-adversarial learning to jointly learn document
classifier, as well as domain separation. The three approaches
are combined to form an optimization framework, which uses
gradient reverse layer [18] to learn domain-shared feature
representations for cross-domain classification. Experiments
and comparisons on real-world datasets demonstrate the ef-
fectiveness of our algorithm.

ACKNOWLEDGMENT

This work was supported by the US National Science Foun-
dation (NSF) through Grants IIS-1763452 and CNS-1828181,
and by the NSFC (No. 61872360), the Youth Innovation
Promotion Association CAS (No. 2017210).

REFERENCES

[1] L. Li, X. Jin, and M. Long, “Topic correlation analysis for cross-domain
text classification,” in AAAI, 2012, pp. 998–1004.

[2] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE TNN, vol. 22, no. 2, pp. 199–210,
2010.

[3] J. Jiang and C. Zhai, “Instance weighting for domain adaptation in nlp,”
in ACL, 2007, pp. 264–271.

[4] M. Chen, K. Q. Weinberger, and J. Blitzer, “Co-training for domain
adaptation,” in NIPS, 2011, pp. 2456–2464.

[5] L. Duan, I. W. Tsang, and D. Xu, “Domain transfer multiple kernel
learning,” IEEE TPAMI, vol. 34, no. 3, pp. 465–479, 2012.

[6] W. Dai, G.-R. Xue, Q. Yang, and Y. Yu, “Co-clustering based classifi-
cation for out-of-domain documents,” in SIGKDD, 2007, pp. 210–219.

[7] G.-R. Xue, W. Dai, Q. Yang, and Y. Yu, “Topic-bridged plsa for cross-
domain text classification,” in SIGIR, 2008, pp. 627–634.

[8] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE TKDE,
vol. 22, no. 10, pp. 1345–1359, 2010.

[9] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized denoising
autoencoders for domain adaptation,” arXiv:1206.4683, 2012.

[10] W. Jiang, H. Gao, F.-l. Chung, and H. Huang, “The l2, 1-norm stacked
robust autoencoders for domain adaptation,” in AAAI, 2016, pp. 1723–
1729.

[11] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural proba-
bilistic language model,” JMLR, vol. 3, no. Feb, pp. 1137–1155, 2003.

[12] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[13] F. Rousseau, E. Kiagias, and M. Vazirgiannis, “Text categorization as a
graph classification problem,” in ACL, 2015, pp. 1702–1712.

[14] X. Yan and J. Han, “gspan: Graph-based substructure pattern mining,”
in ICDM, 2002, pp. 721–724.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv:1609.02907, 2016.

[16] D. Marcheggiani, J. Bastings, and I. Titov, “Exploiting semantics
in neural machine translation with graph convolutional networks,”
arXiv:1804.08313, 2018.

[17] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text
classification,” arXiv:1809.05679, 2018.

[18] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” JMLR, vol. 17, no. 1, pp. 2096–2030, 2016.

[19] F. Zhuang, P. Luo, Z. Shen, Q. He, Y. Xiong, Z. Shi, and H. Xiong,
“Collaborative dual-plsa: mining distinction and commonality across
multiple domains for text classification,” in CIKM, 2010, pp. 359–368.

[20] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale
sentiment classification: A deep learning approach,” in ICML, 2011, pp.
513–520.

[21] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by
backpropagation,” arXiv:1409.7495, 2014.

[22] M. Long, Y. Cao, J. Wang, and M. I. Jordan, “Learning transferable
features with deep adaptation networks,” arXiv:1502.02791, 2015.

[23] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” arXiv:1901.00596,
2019.

[24] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for
deep spatial-temporal graph modeling,” in IJCAI, 2019, pp. 1907–1913.

[25] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang, “Attributed
graph clustering: A deep attentional embedding approach,” in IJCAI,
2019, pp. 3670–3676.

[26] S. Pan, R. Hu, S.-f. Fung, G. Long, J. Jiang, and C. Zhang, “Learning
graph embedding with adversarial training methods,” IEEE Transactions
on Cybernetics, 2019.

[27] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “Mgae: Marginalized
graph autoencoder for graph clustering,” in CIKM. ACM, 2017, pp.
889–898.

[28] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph
convolutional encoders for syntax-aware neural machine translation,”
arXiv:1704.04675, 2017.

[29] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang,
“Large-scale hierarchical text classification with recursively regularized
deep graph-cnn,” in WWW, 2018, pp. 1063–1072.

[30] A. Rahimi, T. Cohn, and T. Baldwin, “Semi-supervised user geolocation
via graph convolutional networks,” arXiv:1804.08049, 2018.

[31] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for
efficient text classification,” arXiv:1607.01759, 2016.

[32] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in EMNLP 2014, 2014, pp. 1532–1543.

[33] J. Klicpera, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” in ICLR, 2019.

[34] T. H. Haveliwala, “Topic-sensitive pagerank,” in WWW, 2002, pp. 517–
526.

[35] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec,
“Hierarchical graph representation learning with differentiable pooling,”
in NIPS, 2018, pp. 4800–4810.

[36] S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen, “Cross-domain
sentiment classification via spectral feature alignment,” in WWW, 2010,
pp. 751–760.

