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Co-Clustering Networked Data
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Abstract—Networked data are common in domains where instances are characterized by both feature values and inter-dependency
relationships. Finding cluster structures for networked instances and discovering representative features for each cluster represent a
special co-clustering task usefully for many real-world applications, such as automatic categorization of scientific publications and
finding representative key-words for each cluster. To date, although co-clustering has been commonly used for finding clusters for both
instances and features, all existing methods are focused on instance-feature values, without leveraging valuable topology relationships
between instances to help boost co-clustering performance. In this paper, we propose CFOND, a consensus factorization based
framework for co-clustering networked data. We argue that feature values and linkages provide useful information from different
perspectives, yet they are not always consistent and therefore need to be carefully aligned for best clustering results. In the paper, we
advocate a consensus factorization principle, which simultaneously factorizes information from three aspects: network topology
structures, instance-feature content relationships, and feature-feature correlations. The consensus factorization ensures that the final
cluster structures are consistent across information from the three aspects with minimum errors. Experimental results on real-life
networks validate the performance of our algorithm.

Index Terms—Networked data, Networks, Co-clustering, Topology, Nonnegative Matrix Factorization.
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1 INTRODUCTION

R ECENT advancements in networking and communica-
tion systems has witnessed an increasing number of

domains with networked data representation [1], [2], [3], [4],
[5], where instances are characterized by using (1) feature
values to represent content of the instances; and (2) linkages
to denote dependency relationships between instances. For
example, in a citation network, nodes can denote publica-
tions and linkages represent citation relationships between
papers. One can use bag-of-words as features to represent
the content of each paper. It would be very useful if a
tool exists to automatically separate papers into different
groups, and also help identify representative key-words for
each group of papers. For many other types of networks,
such as human disease networks [6], protein interaction net-
works [7], [8], terrorist networks [9], [10] etc., finding clus-
ters and identifying representative features for each cluster
can be very helpful for discovering nodes sharing similar
content and structure information, as well as uncovering
most representative features for each node group, so users
or domain experts can understand the essential difference of
the node clusters by comparing their representative features.

Existing research has shown that simultaneously cluster-
ing instances and features can be beneficial for discovering
patterns from data with tabular instance-feature represen-
tations. Research in this field, commonly referred to as

• T. Guo, S. Pan and C. Zhang are with the Centre for Artifi-
cial Intelligence, Faculty of Engineering and Information Technol-
ogy, University of Technology Sydney, Sydney, New South Wales,
Australia. E-mail: tng.guoi-1@student.uts.edu.au, shirui.pan@uts.edu.au,
and chengqi.zhang@uts.edu.au.

• X. Zhu is with the Department of Computer & Electrical Engineering and
Computer Science, Florida Atlantic University, Boca Raton, FL 33431,
USA. E-mail: xqzhu@cse.fau.edu.

Manuscript received December xx, 2014.

co-clustering (or bi-clustering), can be roughly categorized
into two groups: (1) iterative partitioning or merging, and
(2) factorization. For iterative partitioning or merging, co-
clustering starts by partitioning (or merging) instances into
groups, and then validate the utility of the clusters with
respect to the features’ values and then iteratively partition
(or merge) instances and features to form co-clusters [11],
[12], [13]. Such a partitioning or merging process is typically
heuristic driven without considering a global objective, so
may be stuck to local maximum and result in subopti-
mal results. Alternatively, factorization based approaches
intend to factorize an instance-feature tabular matrix into
instance and feature groups, respectively [14], [15]. Such a
co-clustering process is guided by a well-defined objective
function with sound theoretical foundations. In addition,
the factorization results also directly specify the likeli-
hood/probability of each instance (or feature) belonging
to a specific cluster, so one can easily form fuzzy clusters
without exclusively assigning instances and features into
clusters (i.e., hard membership assignments). As a result,
factorization based methods have recently been used in co-
clustering. This includes efforts to improve the robustness
of factorization based co-clustering methods w.r.t. noise and
outliers [16].

In networked settings, linkages provide useful informa-
tion. A commonly observed phenomenon [17] is that nodes
close to each other in the network topology structure space
tend to share common content information. For example,
friends in the same cohort group are likely to share similar
experiences. In a citation network where nodes denote pa-
pers and edges represent their citation relationships, a paper
belonging to the data mining field will have its content
directly related to data mining, and majority references cited
in the paper should also belong to the data mining field as
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Fig. 1. An example of co-clustering on a citation network. The upper
panel denotes a citation network, where each node represents a publi-
cation and green lines represent their citation relationships (each paper
contains bag-of-words to represent the paper content). The lower panel
shows co-clustering results on publications and keywords, respectively.
Co-clustering on the citation network can help discover good node
clusters (i.e. papers in different categories), and identify representative
features (keywords) for each node group (i.e. keywords for a spe-
cific category of papers). Citation relationships are beneficial for inter-
relationship finding and therefore help achieve more accurate clustering
results.

well. As a result, linkage can help identify clusters which
are incapable of being detected by using tabular instance-
feature content matrix alone (e.g. Fig. (1)). Unfortunately,
to date, all existing methods carry out co-clustering by
exploring instance-feature relationships, without utilizing
network topology structures to help find clusters from net-
worked data. This observation raises a concern on what
type of additional information linkages can provide for co-
clustering, and how to leverage linkages to improve co-
clustering results.

Indeed, using instance-instance graph relationships for
co-clustering have been addressed in a number of studies,
particularly in the context of manifold or k-NN graphs [18],
[19]. For example, some works have proposed to build
an instance-instance nearest neighbour graph by using k-
NN relationships, and later enforce the k-NN graph in the
objective function to discover cluster structures in a lower
dimensional feature space (i.e., manifold). In this context, the
algorithm works on artificially created synthetic networked
data. Intuitively, one can replace the synthetic instance-
instance k-NN graph by using topology structure of the
networks, and then apply existing co-clustering methods for
networked data. However, as our experiments in Section 5
will soon demonstrate that existing k-NN graph based
methods [18], [19] are ineffective in handling real-world net-
works. This is mainly because that instance-instance graphs
created from the feature space are fundamentally different
from real-world networks, in terms of the network charac-
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Fig. 2. The difference between real-world network topology structures
vs. synthetic k-NN graph (affinity graph) on CiteSeer data set. Left
figures show node degrees with logarithmic scale (y-axis) w.r.t. nodes
indexed by the x-axis. Lower panel shows node degrees for genuine
CiteSeer networks and the upper panel shows node degrees for the
5-NN graph. Results show that instances (nodes) with high degrees
are different in real network vs. the 5-NN graph. Right figure shows
that real network follows power-law distribution whereas the 5-NN graph
follows geometric distribution, where the colored lines show the fitted
functions. The results confirm that a k-NN graph does not capture real-
world network distributions.

teristics and the consistency between network topology and
node content. More specifically,
Scale-free vs. Geometric: One fundamental difference be-
tween a k-NN graph and a real-world network is that
the former is built based on geometric distribution [20]
whereas the latter usually follows Scale-free distribution [21],
as shown in Fig. (2). For real-world networks with scale-
free distributions (P (d) ∼ d−γ , where P (d) denotes node
degree distributions and γ is a parameter (typically within
the range 2 < γ < 3), majority nodes have very few
connections. In comparison, each node in a k-NN graph (i.e.
a random geometric graph) has at least k neighbors (assume
using k-NN graphs) and some nodes have an extremely
large number of node degree as shown in Fig. (2). This
means that synthetic k-NN graphs are more smooth and
have denser connections than real-world networks whereas
real-world networks are more sparse and have severely bi-
ased node degree distributions. Therefore, directly replacing
a smooth graph by using a network topology structure is
ineffective, because all existing methods [18], [19] are based
on k-NN graphs where majority nodes have similar node
degree distributions.
Topology Structures vs. Node Content: The k-NN graphs
used in existing co-clustering methods are often constructed
by using feature based similarity between instances, under
assumption that k-NN graph structure should be consistent
with the instance feature values (i.e., instances similar to
each other in feature space are subject to a connection).
In reality, network topology structures are, however, not
always consistent with the node content, and nodes can
be connected even if they do not share similar content. In
Fig. (2), we build an 5-NN graph from CiteSeer data set
by using feature values and compare 5-NN graph with
the real CiteSeer citation network. The results show that
instances (nodes) with high degrees are largely different
between real CiteSeer network vs. 5-NN graph (Detailed
information about CiteSeer is given in Experiments Section).
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Therefore, directly utilizing linkage relationships to regu-
larize the objective function, as most existing methods do
(GNMF [22], DRCC [18], and LP-NMTF [23]), will propagate
the inconsistency into the objective function and lead to
deteriorated clustering results for networked data.

The above observations motivate our new co-clustering
framework for networked data. To take special care of
network topology structures, we advocate a consensus fac-
torization principle to simultaneously factorize three types of
relationships: network topology structures, feature-instance
correspondences, feature-feature correlations, and further
enforce the consensus of the factorized results for best
clustering outcomes.

Compared to existing k-NN graph regularization based
approaches, such as using regularization terms [18], our
multi-relationship based factorization approach has two
major advantages. First, simultaneously carrying out factor-
ization for each relationship ensures that each factorization
can best capture data distribution w.r.t. the underlying rela-
tionships, while a regularization can only restrict a solution
but cannot discover new solutions. Second, our model uses
a consensus approach to find the optimization factorization
results which are consistent to all three types of relation-
ships. This will eventually help solve the inconsistency
between network topology structure and the node contents.

The key contribution of the paper is twofold:

• Co-clustering for networked data: We formulate a
novel co-clustering research problem to simultane-
ously explore cluster structures for networked in-
stances and features. Our solutions will help develop
interesting approaches to find clusters and their re-
spective features values under a network setting.
Our research indicates that existing k-NN affinity
graph based approaches cannot be directly utilized
for networked data, mainly because they do not
comply with real-world network characteristics. This
observation will help interested readers design their
own co-clustering methods by taking networked
data distributions into consideration.

• Consensus factorization: We propose a consensus
factorization model to factorize different types of
relationships, and further explore their consensus
for best clustering outcomes. Our consensus factor-
ization approach can be extended to many other
applications with a rich set of relationships in the
data. Although some existing co-clustering methods
have also considered instance and feature manifold
(like DRCC and LP-FNMTF), these methods use
strong constraints to force co-clustering results to be
strictly consistent to the manifold. When topology
structures and feature distributions are inconsistent,
the results of these methods are severely inferior to
our consensus factorization based approach.

The remainder of the paper is structured as follows.
Notations and problem formulation are given in Sec. 2.
Sec. 3 introduces the proposed CFOND algorithm and the
derivation of the optimal solutions. The convergence analy-
sis is reported in Sec. 4. Experiments are reported in Sec. 5,
followed by literature review and related work in Sec. 6. We
conclude the paper in Sec. 7.

2 NOTATIONS AND PROBLEM FORMALIZATION

In networked data setting, we are given a network G =
{V,E}, where each node (or instance) vi ∈ V is represented
by a feature vector x·i ∈ Rd+, and each edge {vi, vj} ⊆ E
encodes the relationship between nodes vi and vj . Typi-
cally, network G can be formulated by using two matrices
X ∈ Rd×n+ and Ws ∈ Rn×n+ . X = [x·1, x·2, · · · , x·n] =
[x>1·, · · · , x>d·]> is a Feature-instance Adjacency Matrix repre-
senting the content of each node, and Ws is a Topology
Matrix which encodes the linkages between all nodes (i.e.,
[Ws]ij = 1, if {vi, vj} ⊆ E otherwise [Ws]ij = 0).

In the context of clustering, the goal is to cluster in-
stances into different groups, with similar instances being
assigned in one group. An instance may be exclusively
assigned to only one cluster (i.e. hard clustering) or multiple
clusters (i.e. soft clustering). We use an indicator matrix
G = [g>1·, · · · , g>n·] ∈ Rn×c+ to represent potential clustering
result of instances. gij is the cluster membership of the ith
node corresponding to cluster Cj . By using indicator matrix
G, the final clustering results can be obtained by choosing
the cluster to which each node has the highest membership
value. Similarly, we use another indicator matrix F ∈ Rd×k+

to represent clustering membership values of features.
The aim of co-clustering for networked data is to

optimally group all nodes (instances) {x·1, · · · , x·n} into
c clusters {Cj}cj=1, and simultaneously group features
{x1·, · · · , xd·} into k clusters {Kj}kj=1 (c � n and k � d),
such that the clusters have the best quality with respect to
certain assessment criteria (we use clustering accuracy and
normalized mutual information NMI in our experiments).

3 CFOND ALGORITHM

For networked data, information can be obtained from
two major channels: network node content and topology
structures. Network nodes provide detailed feature val-
ues to characterize node content information. We can col-
lect all nodes as independent tabular instance-feature ma-
trix (denoted by X), named Instance-feature Content Matrix,
to characterize network node content. Many existing co-
clustering methods [18], [22], [23] can be applied to explore
co-clustering results by factorizing X. Meanwhile, network
topology structures characterize dependency relationships
between nodes in networks, and such relationships can be
explicitly captured by using as an n× n matrix (denoted by
Ws), named Network Topology Structure Matrix.

Although some works have considered k-NN similarity
based relationships between instances [24], [25], they cannot
reveal the characteristic of each group but can only pro-
vide one-side clustering result on instances rather than co-
clustering for both instances and features. More importantly,
since we are trying to explore cluster structures for both
instances and features, it is necessary to explicitly cap-
ture correlations between features (denoted by Wf ), named
Feature-feature Correlation Matrix, and further integrate such
relationships into the co-clustering process.

In this paper, we propose a consensus factorization
method, CFOND, to incorporate all three types of informa-
tion, node content (X), network topology structures (Ws),
and feature-feature correlations Wf , into consideration for
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Fig. 3. An overview of the proposed CFOND Framework. CFOND carries out co-clustering by considering information from three aspects: network
topology structures, feature-instance content relationships, and feature-feature correlations. CFOND factorizes each of them and then explores the
consensus of their factorized results by using squared error terms to achieve optimal co-clustering results.

co-clustering. CFOND employs a factorization based ap-
proach to factorize X, Ws, and Wf separately, and further
enforces constrains to ensure the consensus of their fac-
torization results. This is essentially different from existing
factorization based approaches [24], [25], which only factor-
ize instance-feature matrix X and add other information as
regularization terms to filter factorized results from X.

In the following, we will introduce individual factor-
ization components of CFOND and address its consensus
factorization process. The overall framework of CFOND is
shown in Fig. (3).
Instance-feature Content Matrix Factorization: Instance-
feature content matrix (X) provides tabular relationships be-
tween instances (nodes) and features. We can use Nonnega-
tive Matrix Factorization (NMF) to factorize X into two non-
negative matrices F and G, with the objective of minimizing
squared errors between X and its approximation,

argmin
F,G

J1 = ||X− FG>||2F , s.t. F ≥ 0 and G ≥ 0, (1)

Where ||A||F is the Frobenius norm of the matrix A [26].
In reality, because two-factor NMF in Eq. (1) is restrictive,
in which the cluster numbers c and k have to be equal, one
can introduce an additional factor S ∈ Rc×k to absorb the
different scales of X, F and G. This leads to an extension of
NMF, named NMTF [14], [15]:

argmin
F,G

J2 = ||X− FSG>||2F , s.t. F ≥ 0 and G ≥ 0, (2)

In Eq. (2), latent matrix S provides increased degrees
of freedom such that the low-rank matrix representation
remains accurate, while c and m can have different values.

Our factorization process is different from a previous
orthogonal NMF [14]. In [14], the encoding matrix needs to
satisfy both orthogonality and non-negativity constraints,
so their encoding matrix has a form of a cluster indicator
matrix, with only one non-zero element existing in each
row. This results in hard-clustering and has been further
improved for k-NN method [15]. However, our method is
a soft-clustering method that gives the confidence degree of
a node belonging each cluster, so we can further discover
intra-relationships between different clusters.

Network Topology Structure Matrix Factorization: Net-
work topology structure matrix Ws contains pairwise node
topology relationships in the structure space, which offers
additional information for characterizing similarity between
nodes for co-clustering. Accordingly, we can factorize ma-
trix Ws as an n × c matrix Gs, where Gs ∈ Rn×c+ is
an indicator matrix showing potential clustering results of
network nodes by only using topology structures:

argmin
Gs

J3 = ||Ws −GsG>s ||2F , s.t. Gs ≥ 0, (3)

It is noteworthy that G ∈ Rn×c in J2 and Gs ∈ Rn×c in J3
each contains separated factorization results for all network
nodes. By using this approach, we allow factorization for X
and Ws to have maximum freedom to explore its optimal
results, respectively. The consensus factorization process
will latter enforce these two sets of results to be consistent
for optimal outcomes.

Feature-feature Correlation Matrix Factorization: Similarly,
to enhance feature clustering results, CFOND also uses a
feature-feature correlation matrix Wf ∈ Rd×d+ to capture
pair-wise feature correlations. Intuitively, if features xi· and
xj· are highly correlated (e.g. two keywords always co-
occur), they should be more likely being clustered to the
same feature cluster. Therefore, we can use correlation
measures, such as heat Kernels [27] or Neighbor-based
method [18], to construct Wf . For simplicity, we use linear
kernel [Wf ]ij =< xi·, xj· > in our experiments, where xi·
is a vector representation of the ith feature across all nodes,
and < xi·, xj· > is the similarity degree of xi· and xj·.

Similar to Eq. (3), the factorization of feature matrix Wf

is as follows,

argmin
Ff

J4 = ||Wf − FfF>f ||2F , s.t. Ff ≥ 0, (4)

Consensus Factorization: In the above factorization pro-
cesses, the objective functions J2, J3 and J4 each pro-
vides clustering results from different aspects (node content,
topology structures, and feature correlations). To ensure that
final results are consistent, CFOND proposes a consensus
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factorization objective function to jointly formulate J2, J3
and J4 into a unified objective function:

J5 = ||X− FSG>||2F + α||Ws −GsG>s ||2F + β||Wf − FfF>f ||2F
+ ρ(||G−Gs||2F + ||F− Ff ||2F ),

s.t. F ≥ 0,G ≥ 0,Gs ≥ 0, and Ff ≥ 0,
(5)

The objective function in Eq.(5) is to factorize X, Wg , and Wf

separately, and enforce the factorization consensus among
all three aspects: node content, network structures, and fea-
ture correlations. For instance, G and Gs provide clustering
results from instance-feature and topology structures, re-
spectively. ||G−Gs||2F enforces that G should be maximally
consistent with Gs. Similarly, ||F − Ff ||2F makes F and Ff
close to each other. α and β in Eq.(5) are regularization
parameters to balance each factorization part. ρ trade-offs
the consistent degree. Intuitively, a very large ρ value will
make G = Gs and F = Ff , while a small ρ would make
G and Gs totally independent (e.g., ρ = 0). As a result, our
method provides increased degrees of freedom to exploit
different information encoded in networked data.

Latent matrix S not only absorbs the different scales of
X, F and G, but also reveals the corresponding relationships
between the node clustering and feature clustering results.
Sij uncovers the relative weight between feature cluster i
and node cluster j. In the experiments, we will report the
detailed analysis of S.

3.1 CFOND Optimal Solutions
Minimizing Eq.(5) is with respect to G, Gs, F, Ff , and S,
and the function is not convex in all variables together. We
will present an alternating scheme to optimize the objective.
In other words, we will optimize the objective w.r.t. one
variable while fixing the other variables. This procedure
repeats until convergence.

To optimize Eq.(5) w.r.t. G, Gs, F, Ff , and S, five La-
grangian multipliers are introduced as follows:

λG ∈ Rn×c, λG? ∈ Rn×c, λF ∈ Rd×k, λF? ∈ Rd×k,
and λS ∈ Rk×c,

(6)

Then the Kuhn-Tucker condition (KKT condition) [28] char-
acterizes the necessary and sufficient condition that the
optimal solutions need to satisfy:

λG �G = 0; λG?
�Gs = 0; λF � F = 0;

λF?
� Ff = 0; λS � S = 0

(7)

and “�” is the Hadamard product operator (as the
operator “.*” in matlab), i.e. [A � B]ij = Aij · Bij . Thus
the Lagrangian function is

L = J5 − tr(λGG)− tr(λG?Gs)− tr(λFF)
− tr(λF?Ff )− tr(λSS)

= tr((X− FSG>)>(X− FSG>))

+ αtr((Ws −GsG>s )
>(Ws −GsG>s ))

+ βtr((Wf − FfF>f )
>(Wf − FfF>f ))

+ ρtr((G−Gs)
>(G−Gs))

+ ρtr((F− Ff )>(F− Ff ))
− tr(λGG)− tr(λG?Gs)

− tr(λFF)− tr(λF?Ff )
− tr(λSS)

(8)

Setting partial derivatives of G, Gs, F and Ff to zero, we
have

∂L

∂G
= −2X>FS + 2GS>F>FS + 2ρG− 2ρGs − λG = 0

∂L

∂F
= −2XGS> + 2FSG>GS> + 2ρF− 2ρFf − λF = 0

∂L

∂Gs
= −2αW>s Gs − 2αWsGs + 4αGsG>s Gs

− 2ρG + 2ρGs − λG? = 0

∂L

∂Ff
= −2βW>s Ff − 2βWsFf + 4βFfF>f Ff

− 2ρF + 2ρFf − λF? = 0

∂L

∂S
= −2F>XG + 2F>FSG>G− λS = 0

(9)

To eliminate Lagrangian multipliers by using Eq. (7), we
have

(X>FS + ρGs)�G = (GS>F>FS + ρG)�G

(XGS> + ρFf )� F = (FSG>GS> + ρF)� F

(ρG + 2αW>s Gs)�Gs = (2αGsG>s Gs + ρGs)�Gs

(ρF + 2βW>s Ff )� Ff = (2βFfF>f Ff + ρFf )� Ff
F>XG� S = F>FSG>G� S

(10)

Eq. (10) leads to the following updating formulas

G← G� X>FS + ρGs

GS>F>FS + ρG
; F← F� XGS> + ρFf

FSG>GS> + ρF

Gs ← Gs �
ρG + 2αW>s Gs

2αGsG>s Gs + ρGs

j

Ff ← Ff �
ρF + 2βW>s Ff

2βFfF>f Ff + ρFf
; S← S� F>XG

F>FSG>G

(11)

After updating, the final clustering indicator matrices are
the results of consensus factorizations, i.e. GFinal = G+Gs

and FFinal = F + Ff , respectively. In summary, we present
the alternating iterative algorithm for optimizing Eq. (5) in
Algorithm 1. The convergence analysis of Algorithm 1 is in
Section 4.

Algorithm 1 CFOND

Require: Data Matrix X = [x·1, · · · , x···n] ∈ Rd×n+ , Structure
Matrix Ws ∈ Rn×n+ , and Clustering number c and k.

1: Constructed Wf , i.e., [Wf ]ij =< xi·, xj· >
2: Initialize G and F using K-means on X and X>, respectively;
3: Initialize Gs = G and Ff = F;
4: repeat
5: G← G� X>FS+ρGs

GS>F>FS+ρG ;

6: F← F� XGS>+ρFf
FSG>GS>+ρF ;

7: Gs ← Gs � ρG+2αW>
s Gs

2αGsG>
s Gs+ρGs

;

8: Ff ← Ff �
ρF+2βW>

s Ff
2βFf F>

f
Ff+ρFf

;

9: S← S� F>XG
F>FSG>G ;

10: until Converges;
11: GFinal = G + Gs;
12: FFinal = F + Ff ;
13: Output: Cluster indicator matrices G, Gs, F and Ff for

instance and feature clustering tasks, respectively.
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3.2 Differentiation from other NMF/NMTF Objectives

In Table 1, we summarize the objective functions of three
state-of-the-art NMF/NMTF based co-clustering methods:
GNMF [22], DRCC [18], and LP-NMTF [23]. It is clear
that GNMF is an extension of the NMF method [14], with
one additional constraint enforcing the feature clustering
indicator matrix F to be consistent to the network topology
structures (Ws). For DRCC method, it factorizes instance-
feature content matrix X , and also enforces the consistency
between feature partitioning matrix G and feature affinity
matrix (LG), as well as the consistency between instance
partitioning matrix F and instance affinity matrix (LF ). LP-
NMTF has a similar objective function as DRCC but uses a
locality preserved way to make it computationally efficient.

Compared to GNMF, DRCC, and LP-NMTF, CFOND
has the following noticeable differences. First, the factoriza-
tion of CFOND is explicitly carried out on three sources:
instance-feature content relationships (X), network topol-
ogy structures (Ws), and feature-feature correlations (Wf ),
whereas the other three methods’ factorization is only
limited to the instance-feature content matrix X . Second,
GNMF, DRCC, and LP-NMTF have all considered instance
(or feature) correlations in their regularization, which are
captured in the second and/or the third terms of their
objective functions. However, their instance correlations are
based on affinity matrix derived k-NN graphs. As we have
explained in Sec. 1, k-NN graphs are synthetic, and are fun-
damentally different from real-world networks. Therefore
these methods cannot effectively accommodate network
topology structure matrixWs as regularizations to co-cluster
networked data (the restrictions of real-world networks will
be too strong for them to discover suitable solutions). As a
result, the consensus factorization of multiple relationship
matrices allows CFOND to maximally consider both con-
tent and structure information in networked data for best
clustering results.

TABLE 1
Objective Functions of GNMF, DRCC and LP-NMTF

Method Objective Function

GNMF O1 = ||X −GF>||2F + λTr(F>LF )
where Djj =

∑
l (Ws)jl, L = D −Ws

DRCC O2 = ||X −GSF>||2F + λTr(F>LFF )
+µTr(G>LGG)

LP-NMTF O3 = ||X − FSGT ||2F + α||G−BdQd||2F
+β||F −BfQf ||2F

s.t. Q>d Qd = I,Q>f Qf = I

4 CFOND CONVERGENCE ANALYSIS

In the following, we will use the auxiliary function ap-
proach [29] to analyze the convergence of the updating rule
in Eq.(11).

Definition 1. Z(h, h′) is an auxiliary function for P (h) if the
following conditions are satisfied.

Z(h, h′) ≥ P (h), Z(h, h) = P (h)

The auxiliary function is a useful concept because of the
following lemma, which is also graphically illustrated in
Fig. 4.

Lemma 1. If Z is an auxiliary function for P , then P is non-
increasing under the update

h(t+1) = argmin
h
Z(h, ht)

Proof.

P (h(t+1)) ≤ Z(h(t+1), h(t)) ≤ Z(h(t), h(t)) = P (ht)

We will show that by defining the appropriate auxiliary
functions Z(h, ht) for J5, the update rules in Eq. (11) easily
follow from Lemma 1. The objective value J5 in Eq. (5) will
monotonically decreasing during iterations. Take the update
rule of Gs for instance, for any element gs(ij) in Gs, We use
Pij to indicate the part of L which is relevant to gs(ij). The
first and second order of derivatives of Pij are computed as

P ′ij = ( ∂L∂Gs
)ij

P ′′ij = −2α(Ws + W>s )jj + 4α(G>s Gs)jj + 2ρ

= 4α(G>s Gs)jj + 2ρ

The last equation holds because the topological proxim-
ity matrix [Ws]jj = 0 as there is no link for a node to itself.

Lemma 2. Function

Z(g, g
(t)
s(ij)) = Pij(g

(t)
s(ij)) + P ′ij(g

(t)
s(ij))(g − g

(t)
s(ij))

+
(2αGsG>

s Gs+ρGs)ij

g
(t)

s(ij)

(g − g(t)s(ij))
2

is a proper auxiliary function for Pij(g).

Proof. It is straight-forward that Z(g, g) = Pij(g), and thus
we only need to verify that Z(g, g(t)s(ij)) ≥ Pij(g). Using
Taylor series,

Pij(g) = Pij(g
(t)
s(ij)) + P ′ij(g

(t)
s(ij))(g − g

(t)
s(ij))

+(2α(WT
s Ws)jj + ρ)(g − g(t)s(ij))

2

Because,

(2αGsG>s Gs + ρGs)ij ≥ g(t)s(ij)(2α(W
>
s Ws)jj + ρ)

Thus Z(g, g(t)s(ij)) ≥ Pij(g), and Lemma 2 holds.

Theorem 1. The objective value J5 in Eq. (5) is nonincreasing
under the updated rules of Eq. (11).

Proof. Replacing the auxiliary function in Lemma 2 into
Lemma 1, we can get g by minimizing Z(g, g(t)s(ij)). Setting

the derivative
∂Z(g,g

(t)

s(ij)
)

∂g = 0, we have:

g = g
(t+1)
s(ij) = g

(t)
s(ij) −

g
(t)

s(ij)
P ′

ij

4αGsG>
s Gs+2ρGs

= g
(t)
s(ij)

(ρG+2αW>
s Gs)ij

(2αGsG>
s Gs+ρGs)ij

Since Lemma 2 is an auxiliary function, J5 is nonin-
creasing under this update rule, according to Lemma 1.
This updating rule is essentially consistent with Eq. (11).
Similarly, J5 can be shown to be nonincreasing under the



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2846555, IEEE
Transactions on Knowledge and Data Engineering

TING ET AL.: CONSENSUS FACTORIZATION FOR CO-CLUSTERING NETWORKED DATA 7

Z

P

Fig. 4. Minimizing the auxiliary function Z(h, ht) ≥ P (h) guarantees
that P (ht+1) ≤ P (ht) for hn+1 = argminhZ(h, ht).

updating rule for G, F, Fs, and S in Eq. (11). As the objective
function is lower bounded by 0, the convergence aspect is
proved.

It is worthy noting that our multiplicative update rules
in Eq. (11) follow the similar ideas of Lee and Seung’s proof
in the original NMF paper [29] and GNMF in [22]. A recent
study [30] shows that Lee and Seung’s multiplicative algo-
rithm [29] cannot guarantee the convergence to a stationary
point. Particularly, Lin [30] suggests minor modifications
on Lee and Seung’s algorithm which can converge. Our
updating rules in Eq. (11) are essentially similar to the
updating rules for NMF and therefore Lin’s modifications
can also be applied.

5 EXPERIMENTS

Benchmark Methods: We compare CFOND with the fol-
lowing state-of-the-art co-clustering methods: GNMF [22],
DRCC [18], LP-NMTF [23], and iTopicModel [31]. Mean-
while, we also report the clustering results from k-means
and NMF [29] (although they are not co-clustering methods,
but they are used as baseline to justify the performance of
all co-clustering methods).

- k-means is a method of vector quantization, orig-
inally from signal processing, popularly used as a
baseline for clustering analysis [32]. k-means aims
to partition n instances into k clusters with each
instance being assigned to the cluster whose center
has the smallest distance to the instance.

- NMF is a relaxation technique for clustering. It has
shown remarkable progress in the past decade [15],
[29], [33]. NMF finds a low-rank approximating ma-
trix to the input non-negative data matrix, where the
most popular approximation criterion or divergence
in NMF is the Least Square Error (LSE).

- GNMF is a graph based approach for parts-based
data representation in order to overcome the limita-
tion that NMF fails to consider geometric structures
in the data. GNMF constructs an affinity graph to
encode geometrical information and seeks a matrix
factorization consistent to the graph structures [22].

- DRCC is a Dual Regularized Co-Clustering method
based on semi-nonnegative matrix tri-factorization. It
constructs two synthetic graphs, data graph and fea-
ture graph, to explore the geometric structure of data
manifold and feature manifold. By using two graph
regularizers, DRCC formulates a semi-nonnegative

matrix tri-factorization objective function, requiring
that cluster labels of data points are smooth with
respect to the data manifold, while the cluster labels
of features are smooth with respect to the feature
manifold [18].

- LP-NMTF is a Locality Preserved Fast Nonnegative
Matrix Tri-Factorization approach to constrain the
factor matrices of NMF to be cluster indicator ma-
trices. As a result, the optimization problem can be
decoupled, which results in much smaller size sub-
problems requiring much less matrix multiplications.
This approach was claimed to work well for large-
scale input data [23].

- iTopicModel follows the traditional topic model to
characterize the generation of text for each docu-
ment, by formulating a joint distribution function
which considers texts and inter-connection relation-
ships between documents. iTopicModel seeks to
maximize the log-likelihood of the joint probability
in order to estimate topic models [31].

Performance Metrics: In order to assess the performance of
different algorithms, we employ two commonly used clus-
tering performance metrics: clustering accuracy and nor-
malized mutual information (NMI) [22]. More specifically,
each node of our benchmark data sets (networks) has a
ground truth label (because they are built for classification
purposes). In our experiments, we set the number of clusters
as the same number of classes of the network. For each
node cluster, we will find majority class label of nodes
in this cluster, and divide the number of nodes with the
majority class label by the cluster size, which will result
in a clustering accuracy. The total clustering accuracy is
based on the average clustering accuracy across all clusters.
Meanwhile, NMI = MI(C, P )/

√
H(C)H(P ), where the

random variables C and P denote the cluster and class sizes,
respectively. The value of NMI is in the interval: [0, 1], and
a larger value indicates a better clustering result.

TABLE 2
Description of benchmark data

Data Sets # instance # feature # edge # class

Cora 2,708 1,433 5,429 7
CiteSeer 3,312 3,703 4,732 6
PubMed 19,717 500 44,338 3
Attack1 1,293 106 3,172 6
Attack2 1,293 106 571 6

Synthetic 4,000 8 3,057 4

Benchmark Networks: In our experiments, we use five real-
world networks and one synthetic network to evaluate
the algorithm performance. Table 2 summarizes their data
characteristics.

Synthetic Network: In order to visually examine the co-
clustering quality, we design a synthetic network with 4000
nodes. We equally divide instances into four clusters, so
each cluster has 1000 nodes (the four clusters are shown
in Fig. 5). In addition, each instance has eight features,
which are also equally divided into four parts with each
part containing two features. For each feature part, the two
features are unique for one instance cluster but randomly
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Fig. 5. The genuine clusters of the synthetic network (best viewed in color). (a) The distribution of features 1 and 2 is a circle; (b) The distribution of
features 3 and 4 is a sine function; (c) The distribution of features 5 and 6 is a star function, and (d) The distribution of features 7 and 8 is a absolute
value function.
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Fig. 6. Co-clustering results from iTopicModel, DRCC, GNMF, LP-FNMTF, and CFOND on the synthetic network. The genuine clusters are a circle
function, a sine function, a star function, and a absolute value function showing in Fig. 5. Each column shows co-clustering results of one method.

appearing in other three clusters (we refer to the two unique
features as the effective features of the instance cluster).

For each instance cluster Ci, the values of the allocated
two effective features of the cluster form a specific shape
(which defines the underlying cluster). In other words, the
two features’ values in the instances in cluster Ci follow
a given distribution, including a circle function, a sine
function, a star function, and an absolute value function,
respectively, which are shown in Fig. 5). Meanwhile, we
also add white Gaussian noise with the signal-to-noise ratio
snr = 25 dB to gently perturb the data distributions in
the effective features, which will make the clustering tasks
more challenging. The appearances of the two features in
the instances with other clusters Cj , where j 6= i, follow a

random distribution. For example, (a) and (b) in Fig. 5 show
the genuine cluster structures corresponding to features 1
& 2, and features 3 & 4, respectively. By doing so, we can
visually show the clustering results in a two-dimensional
space to compare the performance of different methods.

The topology structures of the synthetic network follow
a scale-free distribution. The probability P (m) of nodes
(instances) in the network having m connections follow
a power-law distribution P (m) ∼ m−γ , where γ is the
dependency parameter (we set γ = 2.5 in our experiments).
More specifically, we randomly set the fraction P (m) of
nodes having m connections to other nodes in the synthetic
network, where 1 ≤ m ≤ 10. For each node with m edges,
we set the fraction 0.7 of its edges connecting to the nodes
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within the same class and 0.3 of its edges being connected to
the nodes in other classes, randomly. By doing so, the edge
connections will ensure majority nodes within the same
class to have a better chance of being connected to nodes
within the same class, and the random connects to nodes
from other classes will simulate the real-world scenario
where edges are not always consistent with the node content
and therefore complicate the clustering tasks.

Real-world Networks: The Cora1, CiteSeer1 and PubMed1

networks consist of scientific publications from different
domains. For Cora and CiteSeer, each publication in the
networks is described by a 0/1-valued word vector indicat-
ing the absence/presence of the corresponding word from
the dictionary. For pubMed, each publication in the dataset
is described by a TF/IDF weighted word vector from the
dictionary. The citation relations are used to construct the
network structures. Attack11 and Attack21 data sets contain
two types of information related to terrorism attack entities:
the attributes of the entities and the links that connect
various entities together to form a graph structure. Attack1
is based on co-located attacks and Attack2 is based on co-
located attacks organized by the same terrorist organization.

For all benchmark networks, each instance/node has a
true class label, which is used for validation only. In other
words, the class labels are unseen (not exposed) for all co-
clustering methods (including parameter tuning process).
When validating the clustering accuracy, we compare the
clustering results with the instance labels and validate the
algorithm performance.
Parameters Setting: Each clustering algorithm has one or
more parameters to be tuned. In order to make fair compar-
isons, we run these algorithms under different parameter
settings and select the best average result for comparisons
(using normalized mutual information NMI). For all clus-
tering methods, we set the number of clusters equal to the
true number of classes for all the data sets. We construct
nearest-neighbor graph following [18], where the neighbor-
hood size for graph construction is set by searching the
grid of {1, 2, · · · , 10}, and the regularization parameters
(i.e., α, β and ρ in Eq.(5)) are set by searching the grid
of {0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000}. For iteration-based
method, we set the iteration number to 80 in order to
make sure all the compared methods can fully reach their
convergence.

For each method (including CFOND), clustering is re-
peated multiple times by using all assortments of parame-
ters with the values of {0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000},
and report the best NMI result (Similar to the experimental
setting in [23]). We also report the co-clustering results of
CFOND by changing parameters on real-world networks.

GNMF, DRCC and LP-NMTF deal with co-clustering
on manifold, so we use the same Ws and Wf as the data
manifold and feature manifold, respectively.

For co-clustering methods, including GNMF, DRCC, LP-
NMTF, and our CFOND methods, the number of feature
clusters is set to be the same as that of the data clusters,
i.e., c = k. The same constrain is applied to iTopicModel
method as well.

1. http://linqs.cs.umd.edu/projects//projects/lbc/index.html

All experiments are conducted on a cluster machine with
16GB RAM and Intel CoreTM i7 3.20 GHZ CPU.

5.1 Experimental Comparisons on Synthetic Network
In Fig. 6, we visually report the results of major com-
pared methods: iTopicModel, DRCC, GNMF, LP-FNMTF
and CFOND on Synthetic Data (Each column in Fig. 6
corresponds to one method). Fig. 6 shows that CFOND
and iTopicModel have the best clustering results, and their
outputs are mostly close to the true distributions. iTopic-
Model is a Bayesian-based method and has shown good
performance on the synthetic network. Indeed, the synthetic
networks and the noise in the network are generated fol-
lowing given distributions which can be better fitted by
Bayesian-based methods. In Section 5.5, we will further
compare CFOND and iTopicModel on real-world networks.

Because GNMF does not consider feature-feature corre-
lations, its clustering results are mainly influenced by the
structure information (or data manifold). For DRCC and
LP-FNMTF, although both methods are claimed to consider
data and feature manifold, they use strong constraints to
force co-clustering results to be consistent with the mani-
folds. Their results are severely deteriorated when topology
structures and feature distributions are inconsistent (which
are common for real-world networks).

5.2 Experimental Results on Real Networks
Node Clustering Results: For each comparison method (in-
cluding CFOND), we repeat clustering 50 times for each
data set, and calculate the average clustering results. We
report the best average result with optimal parameters for
each method on six data sets in Table 3.

The results in Table 3 show that CFOND consistently
outperforms other methods, with noticeable performance
gain, which demonstrate its advantage in terms of clustering
performance. A more careful examination on the results
shows that, the co-clustering methods, including GNMF,
DDRC, and LP-FNMTF methods, somehow exploit the ge-
ometric structures in data or feature spaces and generally
achieve better clustering results comparing with traditional
clustering methods, like k-means and NMF, in some data
sets. In addition, we observed that iTopicModel performs
very well on Synthetic and Cora data, but its performance
on other data is inferior to GNMF, DRCC, LP-FNMTF,
and CFOND with quite significant loss. This suggests that
iTopicModel is likely sensitive to feature distributions and
noise distributions. In Section 5.5, we will further investigate
iTopicModel’s performance w.r.t. different network charac-
teristics.

Indeed, CFOND considers instance-feature, instance-
instance, feature-feature as three separated relationships,
and simultaneously carries out factorization on each rela-
tionship to ensure that factorization can best capture data
distributions w.r.t. the underlying relationship. This is essen-
tially better than using regularization terms (such as GNMF,
DRCC, and LP-FNMTF do), because a regularization can
only restrict a solution but cannot discover new solutions.
Feature Clustering Results: Because there is no feature
cluster ground truth, we list Top-20 keywords of each topics
of our results on PubMed data set and compared them with
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TABLE 3
Clustering results on instances measured by accuracy/NMI of the compared methods.

Kmeans NMF iTopicModel GNMF DRCC LP-FNMTF CFOND
Data Sets (ACC-NMI) (ACC-NMI) (ACC-NMI) (ACC-NMI) (ACC-NMI) (ACC-NMI) (ACC-NMI)

Attack1 45.33%-0.2185 44.03%-0.2055 41.05%-0.1796 47.07%-0.2371 49.60%-0.2508 49.65%-0.2176 68.36%-0.4693
Attack2 45.42%-0.2243 43.45%-0.2036 40.10%-0.1627 47.85%-0.2339 49.71%-0.2541 45.63%-0.2191 70.07%-0.5046

Cora 34.90%-0.1609 33.56%-0.1351 47.33%-0.3014 39.07%-0.1719 42.71%-0.2198 28.61%-0.0261 54.91%-0.3425
CiteSeer 47.15%-0.2289 40.10%-0.1567 48.59%-0.2302 49.93%-0.2471 55.12%-0.2852 23.27%-0.0143 56.34%-0.3696
PubMed 56.99%-0.2451 60.17%-0.2506 55.78%-0.2367 53.90%-0.1531 61.75%-0.2618 54.37%-0.1532 64.14%-0.4550
Synthetic 49.55%-0.3599 49.37%-0.3479 66.38%-0.3927 50.85%-0.4025 50.48%-0.3516 55.12%-0.3756 68.65%-0.4103
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Fig. 7. Clustering results of using CFOND on five real-world data sets respect to changing parameter values.

TABLE 4
The comparisons of Top-20 features (words) for each topic in the PubMed network using CFOND, NMI, and RELIEF, respectively.

Topic a Topic b Topic c

CFOND NMI RELIEF CFOND NMI RELIEF CFOND NMI RELIEF

Patient syndrom develop rat cell glucose group group group
type Patient type cell glucose insulin children children male
iddm type Patient mice acid inhibit subject male subject
gene develop mass glucose rat acid niddm min plasma

develop care syndrom islet beta antibodies plasma subject correl
disease associate age control increase nod rate year factor

associate import care active impair mice compar fat sex
age low active increase express resist year factor year
risk mellitus risk nod mice hyperglycemia dure higher ml

factor data low express produce kidney nondiabetic heart rate
differ marker associate protein transport depress serum ratio similar
use clinic direct animal animal liver albuminuria baselin excret

mellitus detect insulindepend effect antibodies increase weight index mean
function high data antibodies depress data heart ml albumin

excret gene marker kidney resist pathway albumin preval niddm
clinic provid gene reduce nod year hyperglycemia bmi children
relate risk aim significant year active ratio similar detect
studi direct screen inhibit active transport adolesc mm reduce
high aim iddm human significant rat cpeptid sex bmi
data studi inject response inject cell baselin excret heart

intervention differ provid insulin data express mass rate onset

the Top-20 words selected by using Normalized Mutual
Information (NMI) and RELIEF algorithm in Table 4.

NMI is a commonly used measure to compare fea-
ture selection methods [34]. In our case, the normalized
mutual information of two discrete random variables: the
distribution of feature (keyword) i among nodes (instances)
x·i ∈ Rd+ and the one-against-all ground-truth labelling of
group k, y·k ∈ {0, 1}d+, is defined as follows:

NMI(x·i, y·k) =
I(x·i, y·k)

[H(x·i),H(y·k)]/2
, (12)

where I is the mutual information function and H is
the entropy function. Because y·k denotes the ground-truth

labels of topic k, for each topic, the Top-20 keywords listed
in Table 4 represent the most distinguished features selected
by using NMI.

RELIEF is a feature selection algorithm used in binary
classification (applicable to polynomial classification by de-
composition into a number of binary problems) [35]. Similar
to NMI method in our case, RELIEF repetitively calculates
the weights of features. At each iteration, it considers the
feature vector X of one random instance, and the feature
vectors of the instance closest to X (by Euclidean distance)
from each class. The closest same-class instance is called
’near-hit’, and the closest different-class instance is called
’near-miss’. The weight vector of the feature is updated as
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follows:

Wi = Wi − (x·i − nearHiti)2 + (x·i − nearMissi)2 (13)

Table 4 shows that there are a fair share of overlapping
(colored words) between top features selected by using
CFOND and NMI (12/20 for Topic a, 11/20 for Topic b and
8/20 for Topic c), which means clustering tasks carried on
the data and features are strongly correlated and clearly
not independent. In addition, feature clustering results
also match to the three instance clusters with very good
correspondence. Similarly, the overlapping of top features
selected by using CFOND and RELIEF is high as well: 9/20
for Topic a, 12/20 for Topic b and 9/20 for Topic c.
Parameter Analysis: For our CFOND method, we have
three parameters in Eq. (5), where α and β are regularization
parameters to balance each factorization part, and ρ trade-
offs the consistent degree. Fig. (7) shows that parameter
values have different effect on real-world data sets. For
Attack data set, a relatively larger constraint on (G, Gs) and
(F, Fs) is needed, G should be close to Gs, and F should be
close to Fs in Eq. (5) to achieve high clustering performance.
While for CiteSeer data set, the constraint should not be
too strong. This is because the nodes’ feature distances are
not always consistent with the topology distances. Because
CFOND is an iterative co-clustering method using feature
and node cluster results in each iteration to improve the
co-clustering results on the next iteration, the regularisation
parameters α and β also effect algorithm performance. The
choose of regularisation parameters are based on users’
preference on whether to focus on node clustering results
or feature clustering results.

5.3 Convergence and efficiency Analysis

We also report the convergence analysis by setting the
number of iterations to 80 for each method, with optimal
parameter setting for each data set.

Because the updating rules of minimizing the objective
function for CFOND are iterative, we need to show that
these rules are indeed empirically convergent. In order to
investigate the actual convergence performance of these
rules, we report the convergence curves of all state-of-the-
art co-clustering methods (CFOND, DRCC, GNMF and LP-
FNMTF) and one topic model method (iTopicModel) on all
the five real-world data sets in Fig. (8), where the y-axis is
the normalized value of the objective function and the x-axis
denotes the iteration number. The results in Fig. (8) show
that the multiplicative updating rules for both CFOND and
LP-FNMTF converge very fast, usually within 20 iterations.

In addition, we also report the average convergence time
of the compared iteration-based methods on real-world data
sets in Fig. 9. From the results, we can observe that CFOND
is only slightly slower than LP-FNMTF, but is much faster
than all other state-of-the-art co-clustering methods. This
is mainly because LP-FNMTF constrains factor matrices of
NMF to be cluster indicator matrices, therefore requires
much less matrix multiplications. GNMF and DRCC require
much more iterations in order to reach convergence, and are
therefore more time-consuming. If we take the clustering
results in Table 3 and the runtime performance in Fig. 9

into consideration, CFOND demonstrates clear advantage
for co-clustering on large-scale data.

The runtime performance in Fig. 9 shows that iTopic-
Model is the most time-consuming method, and its conver-
gence curves on real-world data are not as smooth as others.
This is because iTopicModel is an EM-based method which
requires the more iterative times, and much more space-time
consumption for each iteration. As a result, its execution
speed and convergence spped are slow as shown in Fig. 8,
comparing to other NMF/NMTF based methods.

5.4 The Relationship Between Node Clusters and Fea-
ture Clusters
An inherent advantage of CFOND is that the latent matrix
S in consensus factorisation function Eq. 5 can also reveal
the corresponding relationship between the node clustering
and feature clustering results. In this subsection, we report
the results of latent matrix S on PubMed dataset (Table 5)
and Synthetic network (Table 6).

As we have described in Section 2, Sij represents the
relative weight between feature cluster i and node cluster
j. In Tables 5 and 6, we use best matching method to
evaluate the accuracy results. Based on the best matching
principle, for PubMed dataset, node clusters 1, 2, 3 by
using CFOND are corresponding with real classes “Diabetes
Mellitus Type 1”, “Diabetes Mellitus Type 2”, and “Diabetes
Mellitus, Experimental”, respectively. Feature clusters 1, 2, 3
are shown as Topics (a), (b), (c) in Table 4.

From Table 5, we can see that node cluster 1 is most
related to feature cluster 2 (S12), node cluster 2 is the closest
to feature cluster 1 (S21), and node cluster 3 is most related
to feature cluster 3. This is, in fact, consistent with the data
domain characteristics. For example, “Diabetes Mellitus, Ex-
perimental” studies wet lab diabetes mellitus models used
for different experiments, such as the type of procedures
used to cause a lab animal, such as a mice, becoming a
diabetes test bed. Because this category is closely related
to the lab and experiments, the words “plasma” and “non-
diabet(ic)” etc. are representative words to this cluster, so
Topic c is matched to the “Diabetes Mellitus, Experimental”.
Therefore, the larger the Sij value, the higher the correlation
between node cluster i and feature cluster j is. Similar
conclusion can also be derived from synthetic network in
Table 6.

TABLE 5
The latent matrix S on PubMed Network (S ∈ Rc×k where c = 3 and
k = 3 representing the number of node clusters (rows) and the number

of feature clusters (columns), respectively).

5.67E-03 0.008456 0.000812
0.028237 1.70E-05 0.001195
0.000415 0.000826 0.031455

TABLE 6
The latent matrix S on Synthetic Network (S ∈ Rc×k where c = 4 and
k = 4 representing the number of node clusters (rows) and the number

of feature clusters (columns), respectively).

0.64732 0.00273 0.02784 0.00673
0.03654 0.00876 0.59272 0.00219
0.00145 0.29562 0.07365 0.00227
0.03497 0.01162 0.00758 0.39654
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Fig. 8. Convergence comparisons of different co-clustering methods on real-world data sets. The x−axis denotes the number of iterations, and the
y−axis denotes the normalized residue of the objective function.

Fig. 9. Runtime comparisons of different co-clustering methods on real-world data sets.
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Fig. 10. Case study of CFOND vs. iTopicModel on networks with various degree of consistency between node content and topology structures (a)
and (b), and networks with different degree of edge density (c) and (d).

5.5 Case Study

In this section, we further compare Bayesian-based method
(iTopicModel) and NMF/NMTF based method (CFOND) on
the Cora data set, by varying the network characteristics.
Our purpose is to observe how do iTopicModel and CFOND
behave (1) for networks with different edge density, and (2)
for networks with various degree of consistency between
node content and topology structures.

To generate networks with various consistency between
node content and topology structures, we sort all node fea-
tures in a descending order according to their Information
Gain (IG) scores. In Fig. 10(a), we continuously remove
features based on their IG scores from high to small and
generate networks whose node content is less and less
consistent to structures. In comparison, we also randomly
remove the same number of node features and report the
results in Fig. 10(b).

To generate networks with different edge density, we
gradually reduce edges between nodes in the same class,
followed by removing edges between nodes in different
classes, and report the results in Fig. 10(c). This will help
generate networks with less and less edge density (so topol-
ogy structures is playing less and less important role). In
comparison, we also randomly remove the same number of
edges and report the results in Fig. 10(d).

The results from Fig. 10 show that with the reduction
of node features and edges, iTopicModel’s performance
deteriorate dramatically. It is more sensitive to node fea-
tures rather than edges, because comparing to feature re-

duction vs. edge reduction, the former results in a larger
performance loss. In comparison, CFOND’s performance is
relatively balanced between features and edges.

6 RELATED WORK

In traditional clustering, the aim is to divide an unlabeled
data set into groups of similar data points. This can be
achieved by comparing feature based similarities/distances
between instance pairs, and assigning each instance to
the group mostly similar to. k-means [36] is the classical
clustering method which follows the traditional clustering
principle. From a geometrical point of view, a data set can be
seen as a set of nodes connected with structure relationships,
and clustering aims to finding intrinsic groups of the data.
Spectral clustering [37], [38], [39] and Non-negative Matrix
Factorization(NMF) [29] are typical methods which carry
out clustering from the geometrical point of view. Some
studies have also been proposed to combine traditional clus-
tering and geometrical relationships between instances for
better clustering results (commonly referred to as attributed
graph clustering [40], [41], [42]).

The above clustering methods mainly focus on one-
side clustering. In other words, clustering is based on the
similarities along either the feature or the structure relation-
ships, respectively. Motivated by the duality between data
points (e.g. documents) and features (e.g. words), several co-
clustering algorithms have been proposed to cluster data
based on their distributions in the feature space, as well as
cluster features into groups by using their distributions in
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the sample space. Such two-side co-clustering approaches
have demonstrated better performance than traditional one-
side clustering. For example, [43] employs a bipartite spec-
tral graph partition approach to co-cluster words and doc-
uments, which requires that each document cluster is as-
sociated to a word cluster (which is a rather restrictive
constraint). To overcome this drawback, [13] presents a co-
clustering algorithm that monotonically increases the pre-
served mutual information by intertwining both the row
and column clusterings at all stages, which is an information
theoretic method and can be seen as the extension of infor-
mation bottleneck method [44] to two-side clustering. Al-
ternatively, factorization based approaches are also used to
factorize an instance-feature matrix into instance and feature
groups respectively [15], [16]. [14] proposed an orthogonal
nonnegative matrix tri-factorization (ONMTF) to co-cluster
words and documents, with sound mathematical form and
encouraging performance.

Recently, several studies have shown that many real-
world data are actually sampled from an intrinsic network
structure [1], [45], [46], in which linkages provide useful in-
formation for clustering. Co-clustering algorithms [18], [19]
try to build instance-instance nearest neighbours graph and
enforce the k-NN graph in the objective function to discover
cluster structures with respect to low dimensional feature
space (i.e., manifold). However, as we have elaborated in
Section 1, these methods are ineffective for co-clustering
networked data, mainly because k-NN graphs have differ-
ent characteristics from real-world networks, and the topol-
ogy of k-NN graphs are consistent with the node similarity
assessed in the feature space. The unique characteristics
of real-world networks and the inconsistency of the node
content and topology structure of the networks suggest that
existing manifold based co-clustering methods [18], [19] are
ineffective for networked data.

Our work is also related to relational topic models.
Jonathan and David developed a relational topic model
(RTM) which is a model of documents and links between
them [47], with a hierarchical model of links and node at-
tributes. However, RTM models nodes and links separately
and therefore results in information loss. In [31] and [48],
the inter-dependence of a set of high-level topics and the
documents are considered to develop a Bayesian hierarchi-
cal approach. Unfortunately, Bayesian-based methods are
too sensitive to samples selected and therefore often lead
to sensitive result as shown in Section 5.

Although the factorization framework employed in
CFOND is similar to the factorization approach in [18], [19],
the differences between CFOND and existing works are
fundamental: (1) CFOND considers three-factor relationship
matrices, instance-feature, instance-instance, and feature-
feature, in the factorization framework, whereas existing
methods [18], [19] only consider two-factor relationships
(instance-feature and instance-instance relationships). The
integration of feature-feature matrix in the factorization
allows CFOND to explicitly capture feature-to-feature re-
lationships for finding optimal feature clustering results;
and (2) CFOND employs a consensus factorization principle
where three relationship matrices are factorized simulta-
neously, conditioned by the consensus objective function,
whereas existing methods [18], [19] only factorizes one

(instance-feature) matrix and uses other relationships as
hard constraints. The three independent factorizations in
CFOND provide maximum degree of freedom for CFOND
to explore solutions best fit for each individual relationship
matrix, and the consensus factorization further ensures that
the solutions are consistent across all relationship matrices
for optimal clustering results.

7 CONCLUSION

In this paper, we proposed a consensus factorization based
method, CFOND, to simultaneously cluster networked in-
stances (nodes) and features which represent node content
in the network. CFOND is rooted on NMF/NMTF based
co-clustering, but has its uniqueness in (1) leveraging aux-
iliary information in networked data for simultaneous fac-
torization of three types of relationships: Instance-feature,
instance-instance, feature-feature; and (2) enforcing the con-
sensus of the factorized results for optimal clustering re-
sults. Compared to existing proximity graph regularization
based methods, the consensus factorization ensures that
the final cluster structures are consistent across information
from different types of relationships, and therefore results
in minimum errors. Theoretical analysis confirms the con-
vergence of the solutions derived from CFOND. Exten-
sive experiments and comparisons on benchmark data sets
demonstrate that CFOND consistently outperforms baseline
approaches for co-clustering networked data.
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