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A B S T R A C T

Investigating the dynamics of spreading processes in real-world applications such as pathogen spread pre-
diction, marketing, political events, etc has attracted the attention of researchers from a variety of fields.
Influence-based information diffusion is one convincing attempt to solve the information diffusion problem.
In this regard, most of the attempts suffer from certain drawbacks such as complexity, dependency on
the underlying diffusion model, or low prediction accuracy. We have looked at this problem from a fresh
perspective and come up with an innovative solution for solving it. Our hybrid approach falls at the
intersection of three research areas: feature selection, graph embedding, and information dissemination. To
discover the influential nodes in a network, we develop a method comparable to wrapper methods in feature
selection, in which we employ the strength of graph convolutional neural networks (GCNs). The results of our
implementation in Python on five datasets Cora, Email, Hamster, Router, and CEnew, under the susceptible–
infected–recovered (SIR) model, approved that GCNFusion exceptionally outperforms benchmark methods by
respectively around 3%, 5%, 5%, 2%, and 3%. Furthermore, the proposed method is a decent suit for real-world
applications on complex networks due to its low computational complexity.
1. Introduction

After the COVID-19 pandemic, the necessity of studying information
diffusion is tangible and well-understood. The applications of such stud-
ies vary in the wide range of predicting the spread of pathogens (Chi-
nazzi et al., 2020; Ye et al., 2020), ideas (Rehman, Jiang, Rehman,
Paul, din et al., 2020), or computer viruses (Chenquan et al., 2020),
to diverse applications defined on networks, including link predic-
tion (Singh, Mishra, Kumar, & Biswas, 2020). Information diffusion is
a genuinely interdisciplinary topic to the extent that researchers from
various disciplines, including computer science, social sciences, polit-
ical sciences, and medical sciences, etc have been seriously pursuing
it (Cao, Han, & Zhu, 2021; Chen, Jiang, Zhang, & Chen, 2021; Chen
et al., 2019; Kumar et al., 2021; Moghanian, Saravi, Javidi, & Sheybani,
2020; Qi, Li, Chen, & Xue, 2021; Srinidhi, Ciga, & Martel, 2021; Yao
et al., 2020; Zhang, Jiang, & Li, 2021).

Online social networks (OSNs) have enabled people around the
world to instantaneously share a variety of information. By analyzing

∗ Corresponding author.
E-mail addresses: Bahareh.Fatemi@uib.no (B. Fatemi), soheila.molaei@ut.ac.ir (S. Molaei), shirui.pan@monash.edu (S. Pan), samira.rahimi@mcgill.ca

(S.A. Rahimi).
1 Equal Contribution.

the patterns of the diffused information like «memes» or «tweets» on
the network, one can predict the consumer’s behavior in purchasing
products, just the way companies such as Philips, Microsoft, and HP
do, to identify the «influential nodes» of the network, before releasing
their products (Libai, Muller, & Peres, 2013). Such analytics have the
ability to even predict election outcomes (Cinelli, Cresci, Galeazzi,
Quattrociocchi, & Tesconi, 2020; Hughes & Palen, 2009; Padda, 2020).

Real-world networks are commonly large graphs that represent en-
tities (such as individuals) as the «nodes» and the relationship between
entities (such as friendship) as the «edges» between them. Through
these edges, a piece of information is spread on the graph. In such
a setting, for investigating the characteristics of network dynamics,
instead of leveraging conventional network analytic tasks with their
relatively high computational cost, we can alternatively take advantage
of the most recent and efficient methods proposed for learning on
graphs.
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Predictive diffusion models can broadly be categorized into graph-
based models and non-graph-based ones (Jalili & Perc, 2017). Epidemic
models fall into the former class. In these models, which are inspired by
the models proposed for investigating the spread of pathogens, nodes
can adopt particular statuses over time. Changes in these statuses,
reflect the diffusion process on the network. Adding more statuses
to the model, makes it fits the actual spread better. However, the
speed of diffusion will be changed. Thus, more complicated models are
slower when they reach their stable state (Li, Wang, Gao and Zhang,
2017). Models in the latter category, study the diffusion at the level
of individual nodes. Some piece of information starts propagating from
an initial set of nodes and then based on a cascade model gets spread
through the whole network. Although these methods are effective in
describing the information diffusion, they are greatly dependent on
the underlying diffusion model and are not well suited to cascade
prediction (Chen et al., 2019).

As opposed to previous methods, our proposed one, not only op-
erates independently from any underlying diffusion model but also is
capable of capturing more complex nonlinear structures of the input
graph. Moreover, our method has a high generalization power and
works regardless of different types of networks and cascades. We
propose an innovative graph-based approach that uses the astounding
potential of graph neural networks (GCNs). We present our proposed
method by combining three research areas: Feature Selection, node
Representation Learning, and Information Diffusion. Graph convolu-
tional neural networks are a generalized variant of convolutional neural
networks (CNNs) that operate directly on non-euclidean graph data. In
the literature, GCNs have mainly been employed for graph represen-
tation learning but in this study, we use these networks as a proxy for
classifying graph nodes. On the other hand, feature selection algorithms
select a subset of relevant features based on predefined criteria, to fa-
cilitate the implementation of machine learning algorithms, especially
on massive datasets. Our ultimate goal in this study is to find a set of
network nodes that have the ability to disseminate information vastly.
To this end, by making some changes, we have generalized one of the
most up-to-date methods for feature selection to be used specifically
on graph data. To the best of our knowledge, no research has ever
approached the information diffusion problem in such a framework.

This paper’s main contributions are summarized as follows:

∙ Considering the fact that most graph data in real-world set-
tings is unlabeled, supervised techniques appear to lose their
functionality for most graph-based algorithms, to that end,
we present an unsupervised model for Information Diffusion
on graphs.

∙ Inspired by wrapper approaches on feature selection, we
present a novel method for identifying graph influential
nodes, combining two neural network-based methods pro-
posed for node classification and feature selection.

∙ Eventually by disseminating the information on some real-
world graphs, using the Susceptible–Infected–Recovered (SIR)
simulation model, we conduct several experiments on several
types of real-world graph data to affirm the effectiveness of
our information diffusion proposed method.

The rest of the article is organized as follows. First, in Section 2, we
provide a general overview of the three topics related to this research
and highlight some of the most critical studies performed on each. Later
on, we will define the problem and delineate our proposed influence-
based approach for solving it in Section 3.1. The experimental results
are demonstrated in Sections 4 and 5 includes conclusions and future
works.

2. Related works

There exist broad ranges of related studies on feature selection,
node representation, and information diffusion in the literature. In this
2

section, we take a general overview of each.
Node embedding

Due to the emerging applications of machine learning on graphs as
a result of the huge information amount being produced in the form
of complex networks, Graph embedding, in particular, node embed-
ding has attracted great attention recently since it is the means by
which machine learning applications can make predictions or discover
new patterns (Hamilton, Ying, & Leskovec, 2017). Graph embedding
or graph representation methods can be categorized into three main
categories, (1) Factorization-based models such as Laplacian eigen-
maps (Belkin & Niyogi, 2001), GraRep (Cao, Lu, & Xu, 2015), and
HOPE (Ou, Cui, Pei, Zhang, & Zhu, 2016) which are amongst early
methods in graph learning that are centered around matrix factoriza-
tion. These early methods of representation learning obtain the node
embedding vectors by decomposing the graph’s adjacency information.
Besides their high computational complexity, the main limitation of
these methods is that they fail to use content information. (2) Random-
walk-based methods such as DeepWalk (Perozzi, Al-Rfou, & Skiena,
2014) and node2vec (Grover & Leskovec, 2016) with the main intu-
ition of mapping each node into a space in which the co-occurrence
probability of similar nodes remains preserved. These methods overem-
phasize proximity information and neglect other structural information,
furthermore, they are too dependent on hyperparameters. (3) Deep-
learning-based approaches, in particular graph convolutional networks
(GCNs) which are variants of Convolutional neural networks (CNNs)
and currently are regarded as the most efficient methods. GCN (Kipf
& Welling, 2017) employs an aggregation on the first-order graph
neighborhoods to obtain representation vectors using both topological
and feature information, DGI (Velickovic et al., 2019) uses a mutual in-
formation maximization strategy to learn node representation vectors,
MAPPING (Fatemi, Molaei, Zare, & Pan, 2021) obtains node repre-
sentation vectors aggregating graph neural networks with a manifold
learning algorithm.

Feature selection

Feature selection refers to the task of removing irrelevant and
redundant features of data that leads to a reduction of dimensionality
as well as an improvement in learning performance. This redundancy
elimination can be seen as the intersection of the feature selection
and influential nodes identification in the sense of respectively trying
to determine the most important features and nodes. Various feature
selection approaches in the broad classes of wrapper, filter, embedded,
hybrid, and ensemble methods (Zebari, Abdulazeez, Zeebaree, Zebari,
& Saeed, 2020) have been proposed. Wrapper methods, using a search
algorithm make some subsets of features and then evaluate each set
by some learning algorithm such as a classifier. Filter methods, on
the contrary, work independently from learning algorithms and for
example, take advantage of information theory as a preprocessing to
rank the features. Embedded methods leverage a training process as
a variable selection using a single learner, without splitting. Deep
learning methods have proven their remarkable power in the feature
selection domain. For instance, Chang, Rampasek, and Goldenberg
(2018) leverages the dropout layer as the strategy for feature ranking
purposes. Kasneci and Gottron (2016) estimates a local linear model for
each neuron and then propagates and aggregates these models. Borisov,
Haug, and Kasneci (2019) proposes to add a new specific layer to the
network that can be used for feature ranking and feature selection
purposes.

Information diffusion

The information diffusion analysis problem has been addressed with
various approaches in the literature, in an overall view, two main
branches of the diffusion studies are ‘‘diffusion models’’ and ‘‘identifi-
cation of influential nodes’’ (Zhang, Luo, & Boncella, 2020). The former
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Table 1
Comparison of some research on information diffusion.

Research Category Cascading model Approach

Gomez-Rodriguez, Leskovec, and Schölkopf (2013) Diffusion models IC Survival theory
Lagnier, Denoyer, Gaussier, and Gallinari (2013) Diffusion models LT Probabilistic model
Ohsaka, Sonobe, Fujita, and Kawarabayashi (2017) Influence-based IC –
Zhang, Chen, Dong, and Zhao (2016) Influence-based SIR Node ranking
Molaei, Farahbakhsh, Salehi, and Crespi (2020) Influence-based SI Information entropy
Guo et al. (2020) Influence-based SIR Information entropy
Chen et al. (2019) Deep learning – LSTM+GCN.
Cao et al. (2021) Deep learning – GNN
GCNFusion Hybrid SIR GCN
w

w

a
n

𝐻

w

one includes the first attempts in the field such as Susceptible–Infected–
Susceptible (SIS) or Susceptible–Infected–Recovered (SIR) models that
work independently from the graph topological data (Hethcote, 2000;
Leskovec, McGlohon, Faloutsos, Glance, & Hurst, 2007). On the con-
trarily, the Independent Cascade model (IC) (Goldenberg, Libai, &
Muller, 2001) or Linear Threshold model (LT) (Yang & Leskovec,
2010), which are built on a directed graph with each node having
the ability to be activated or deactivated, leverage graph topological
data. The main strategy of identification of influential nodes, on the
other hand, is to find a set of nodes that have the capability to initiate
vast spreadings due to their advantageous positions in the underlying
networks (Kwak, Lee, Park, & Moon, 2010; Watts & Dodds, 2007).
A tangible example of this strategy is the identification of the super-
spreaders of the coronavirus to be vaccinated first. The spreaders can be
considered as the first top-k ranked nodes of the graph based on various
criteria such as nodes’ local information degree centrality. H-index
assigns importance values based on the second-order proximity, Lo-
calRank considers 4th order degrees of the neighborhood, ClusterRank
takes a combination of degree centrality and clustering coefficient into
consideration. Closeness centrality, Betweenness centrality and Katz
centrality suffer from high computational costs due to their shortest-
path computations. PageRank as a random-walk-based method, has
been also used as ranking criterion. In some studies, information en-
tropy has been used as a criterion of node importance (Chen, Xiao,
Zeng, & Zhang, 2014; Guo et al., 2020; Molaei et al., 2020; Qiao, Shan,
Yu, & Liu, 2018). Some greedy algorithms such as Chen, Wang, and
Yang (2009a) and Kempe, Kleinberg, and Tardos (2003) that suffer
from high computational cost, also have been proposed. Deep-learning-
based methods have also been proposed for solving cascade prediction
problem. Cao, Shen, Cen, Ouyang, and Cheng (2017), Li, Ma, Guo and
Mei (2017) design Recurrent Neural Networks for this purpose. Our
approach falls into a new category defined as hybrid since it employs
deep neural networks and an influence-based strategy jointly. This
approach not only benefits from the power of neural networks, such
as the capacity to capture complex structures of the data and higher
performance, but it also overcomes the drawbacks of prior methods
as we stated in the previous section. Table 1 introduces some more
research conducted on this topic.

3. Proposed method

In this section, we first formulate the problem and then demonstrate
the general framework and components of the proposed technique.

3.1. Problem definition

Input graph G contains 𝑁 nodes 𝑣𝑖 ∈  , {𝑖 = 1…𝑁} indicating
graph entities and (𝑣𝑖, 𝑣𝑗 ) ∈  are the edges modeling the connections
between these entities. 𝐀 ∈ R𝑁×𝑁 denotes the adjacency matrix which
can be either binary or weighted. Our objective would be to obtain the
influential nodes set 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑚} ⊆  from which originating a
cascade of information results in a notable outbreak on the network.
3

3.2. Overall framework

Our goal is to identify the most influential nodes of the graph
in such a way that if the diffusion of a piece of information starts
from these nodes, we can make sure a great percentage of the nodes
will be receiving it. GCNFusion uses a node classification learner to
evaluate the node influence values. We design an augmented neural
network containing a Graph Convolutional Network as the classifier.
The influential nodes are selected in such a way that the classifier
retains its predictive power. The rest of this section contains a detailed
explanation of GCNFusion, our spreading model (SIR), and the com-
plexity analysis of the proposed method. The implementation phase was
carried out via Python programming language and powerful packages
built on it such as PyTorch (Paszke et al., 2019). Fig. 1 illustrates the
flow chart of the proposed method, which will be examined in the next
section more precisely.

3.3. Method

As previously indicated, a graph convolutional neural network can
be thought of as the generalization of convolutional neural networks
on non-euclidean graph-structured data. These networks have been
used in a wide range of graph learning applications on top of which,
node classification has been addressed in Kipf and Welling (2017), thus
we use the concept of GCNs as a node classifier to simulate wrapper
methods in feature selection algorithms. We aim to find a set of most
influential nodes by minimizing error on the entire graph. (For the sake
of simplicity, in case of unfamiliarity with neural networks, GCN (which
is described in the following) can be seen as a black box, responsible
for node classification).

We consider a combinatorial multi-layer neural network with the
following propagation rule motivated by the first-order approxima-
tion of localized spectral filters on graphs (Defferrard, Bresson, &
Vandergheynst, 2016):

𝐻 (𝑙+1) = 𝜎(�̃�
−1
2 �̃��̃�

−1
2 𝐻 (𝑙)𝑊 (𝑙)), (1)

here�̃� ∈ R𝑁×𝑁 is the adjacency matrix included self-loops, �̃� ∈ R𝑁×𝑁

is the diagonal degree matrix whose non-zero elements are the degree
of the relative node, and 𝜎 denotes a ReLU activation function. 𝐻 (𝑙) is
the matrix containing integrated node representation vectors in the 𝑙th
layer. We want the output of the network to be a 𝑁 ×𝑘 matrix (k being
the number of node classes) on which applying a row-wise 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(.)
activation function simulates a node classifier. 𝑊 (𝑙) is the learnable

eight matrix parameter that is trained using gradient descent.
We define the input of the network as (2), which can be interpreted

s an extra layer inspired by Borisov et al. (2019), added to the
etwork:
(0) = �̃� ⊙ 𝜎(𝑊 𝑐𝑜), (2)

here𝑊 𝑐𝑜 ∈ R𝑁 is a learnable vector parameter that is practically
responsible for canceling out the less important nodes’ effect on the
classification task. In other words, 𝑊 𝑐𝑜 contains node influence ranking

values. 𝜎 denotes sigmoid activation function. Putting (1) and (2)
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Fig. 1. Flow chart of GCNFusion.
Fig. 2. A high-level overview of the influential node identification by GCNFusion. To simulate wrapper methods in feature selection, The input graph’s adjacency matrix is passed
through a neural network consisting of two contiguous sections corresponding to the influential node identification (Cancelout Layer) and Node Classification (GCN Layer). Different
shades of gray color in the output indicate different class labels.
together, the propagation rule of a three layer GCNFusion network
takes the simple form:

𝑍 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
[

�̃�𝑅𝑒𝐿𝑈
[

�̃�𝐻 (0)𝑊 (1)]𝑊 (2)], (3)

The overall model is schematically illustrated in Fig. 2. The intuition
behind the cancelout layer is as follows: if for instance, 𝑤𝑐𝑜

𝑖 is a negative
number, then 𝜎(𝑤𝑐𝑜

𝑖 ) is equal to 0, then the corresponding node in the
graph does not affect the output of the network. In other words, the first
layer is simulating an influential node identification process. So once
the network is trained by optimizing a cross-entropy loss function using
gradient descent and training the parameters, the cancelout weights are
set in a way that the nodes are well-classified and the 𝑚 influential
nodes are the ones corresponding to the 𝑚 highest values of 𝑊 𝑐𝑜. Fig. 3
illustrates a toy example of the intuition behind the cancelout layer, in
which the darker colors correspond to higher importance values. As can
be seen in the figure, node 4, which has a more important value, also
has a higher degree. It can be interpreted that the GCNFusion has the
ability to include the degree of nodes in calculating their importance.
Algorithm 1 shows the overall steps of GCNFusion.

 = −
𝐹
∑

𝑓=1
𝑌𝑓 ln𝑍𝑓 + 𝜆1𝑣𝑎𝑟

(

𝑊 𝑐𝑜

𝑁

)

+ 𝜆2
‖

‖

‖

‖

𝑊 𝑐𝑜

𝑁
|

|

|

|

|

|

|

|1
, (4)

Eq. (4) shows the loss function of GCNFusion, with 𝐹 being the number
of clusters, 𝑌 being the set of labels, and 𝑍 being the output of
the neural network. Since real-world data is commonly unlabeled,
data labels can be constructed using a clustering approach on node
representation vectors that are produced by the GCN. In this regard,
in our experiments, we perform the Kmeans algorithm to generate 𝑌 .

The first term is associated with the node classification task per-
formed by GCN. The regularization term 𝑣𝑎𝑟(𝑊

𝑐𝑜
) is added to preserve
4

𝑁

Algorithm 1 GCNFusion

Input: adjacency matrix 𝐀, depth 𝑙, weight matrices 𝑊 (1),𝑊 (2),𝑊 (𝑐𝑜)

Output: node influence values 𝑤(𝑐𝑜) ,
1: Set 𝐻 (0) = �̃� ⊙ 𝜎(𝑊 𝑐𝑜), as shown in 2
2: Get predictions by forward propagation rule: 𝐻 (𝑙+1) =

𝜎(�̃�
−1
2 �̃��̃�

−1
2 𝐻 (𝑙)𝑊 (𝑙)),

3: Back propagate error values and update parameters by SGD,
4: Return node influence values 𝑤(𝑐𝑜).

the diversity over the 𝑊 𝑐𝑜’s elements, and the term ‖

𝑊 𝑐𝑜

𝑁 ‖1 is used to
keep the 𝑊 𝑐𝑜 sparse and its elements small as possible.

3.4. Spreading model

In the end, for the evaluation purpose, having the influential nodes
detected, we defuse the information using the SIR model which has
been widely used in the literature to analyze the spreading process
and influential nodes identification methods (e.g. Guo et al. (2020) and
Zhang et al. (2016)). This model has the highest capability to capture
the dynamics of information diffusion compared to other spreading
models. The SIR model divides the population into three categories:
Susceptible (nodes that are exposed to the information), Infected (nodes
that have received the information), and Removed or Recovered (nodes
that for whatever reason will not participate in disseminating infor-
mation, e.g. they forget or refuse to spread it). At each time step,
each infected node randomly infects one of its direct neighbors with
probability 𝜇. Meanwhile, an infected node gets recovered with the
probability of 𝛽 and will not be infected again. We set 𝜆 = 𝜇 as
𝛽
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Fig. 3. A toy example of how the CancelOut layer determines the nodes’ importance.
c

he infected rate, of which the crucial effect on the spreading ability
f source spreaders is usually investigated in the literature. In our
xperiments, according to Castellano and Pastor-Satorras (2010) we set
= 1.5𝜇𝑐 , where 𝜇 = ⟨𝑘⟩

⟨𝑘⟩2−⟨𝑘⟩
. Since 𝜇 < 𝜇𝑐 , leads to a poor propagation

and on the other hand, for 𝜇 ≫ 𝜇𝑐 , the information reaches almost
the whole network and does not make sense in evaluating a spreading
process either.

3.5. Computational complexity analysis

The computational complexity of GCNFusion is restricted to the
node classifier and the complexity of the CancelOut layer is (𝑛) and
an be ignored. The node classifier module (GCN), we leveraged in
ur proposed method does not impose much computational load on
he model. For instance, our one-layer GCN-based model GCNFusion
as the overall time complexity (𝑚𝑑 + 𝑛𝑑2) where 𝑑 is the dimension
f a node adjacency vector. By making several approximations and
implifications this complexity can be reduced to (𝑚). The space
omplexity is similarly equal to (𝑛𝑑 + 𝑑2).

. Experiments

As previously indicated, using the SIR model, we diffuse the infor-
ation through the network. We set the influential nodes generated

y GCNFusion as the initial spreaders of the SIR model and evaluate
everal measurements to evaluate our performance on determining the
uality of the influential nodes set. We will go through the performance
etrics, datasets we utilized, and the final results in this section.

.1. Datasets

To demonstrate the efficiency of our proposed method, we con-
ucted experiments on five datasets in different research areas ranging
rom biology to social networks: Cora (Sen et al., 2008) is a citation
etwork containing edges that represent citation relationship between
uthors, Email (Kunegis, 2013) is a communication network containing
dges that represent individual messages between users, Hamster (Rossi

Ahmed, 2015) contains edges representing the hamsterster.com’s
sers family and friendship relationships, Router (Spring, Mahajan, &
etherall, 2002) is a router level internet topology network, and CE-

ew (Jeong, Tombor, Albert, Oltvai, & Barabási, 2000) is the metabolic
etwork of the C.elegans worm. Table 2 contains the statistics of each
etwork.

.2. Performance metrics

The diffusion process can be evaluated by the following measure-
ents which are commonly used in the Literature (Zhang et al., 2016):

∙ Infected scale 𝐹 (𝑡):

𝐹 (𝑡) =
𝑛𝐼(𝑡) + 𝑛𝑅(𝑡)

𝑛
, (5)

where𝑛𝐼(𝑡) and 𝑛𝑅(𝑡) are respectively the number of infected
and removed nodes at time 𝑡. 𝐹 (𝑡) indicates the diffusion
speed.
5

Table 2
Dataset statistics. ⟨𝑘⟩ and ⟨𝑐⟩ are respectively average degree and average clustering
oefficient.
Dataset Type #Nodes #Edges ⟨𝑘⟩ ⟨𝑐⟩

Cora Citation network 2708 5429 4 0.24
Email Communication network 1133 5451 9.6 0.22
Hamster Social network 2426 16 631 13.7 0.53
Router Internet network 5022 6258 2.4 0.01
CEnew Metabolic network 453 2025 8.9 0.39

∙ Final affected scale 𝐹(𝑡𝑐 ):

𝐹(𝑡𝑐 ) =
𝑛𝑅(𝑡𝑐 )
𝑛

, (6)

where𝑡𝑐 is the time SIR has reached its stable state, and 𝑛𝑅(𝑡𝑐 )
is the number of removed nodes at 𝑡𝑐 . 𝐹(𝑡𝑐 ) indicates the final
diffusion ability of the initial spreaders.

∙ Average shortest path length 𝐿𝑠:

𝐿𝑠 =
1

|𝑆|(|𝑆| − 1)
∑

𝑢,𝑣∈𝑆
𝑢≠𝑣

𝐿𝑢,𝑣, (7)

where𝑆 denotes the initial spreaders and 𝐿𝑢,𝑣 is the average
shortest path between nodes 𝑢, 𝑣. Larger values of 𝐿𝑠 indicate
more scattered and thus more diffusive spreaders.

4.3. Results

In this section, we intend to examine the impact of various fac-
tors on the diffusion phenomenon including the set of initial nodes,
the number of initial nodes, the infected rate (𝜆), and the nature
and structure of the network. For the evaluation purpose, we select
diffusion methods Adaptive Degree (Chen, Wang, & Yang, 2009b),
VoteRank (Zhang et al., 2016), k-shell (Kitsak et al., 2010), EnRe-
new (Guo et al., 2020), Entropy Rank Method (Molaei et al., 2020) and
DIL (Liu, Xiong, Shi, Shi, & Wang, 2016) to compare with GCNFusion.

In Fig. 4 the final affected scales 𝐹(𝑡𝑐 ) on five datasets are compared.
For each dataset, in each iteration, we started the information diffusion
with an increasing portion of the influential nodes as the initial spread-
ers in the SIR model with 𝜆 = 1.5. The horizontal axis 𝑃 is the ratio of
the initial spreaders in the whole network. Larger values of 𝐹(𝑡𝑐 ) proves
that when the spreading process reaches its stable state, the initial
spreaders have been more capable of diffusing. As illustrated in this
figure, the proposed method, in comparison with other methods, has
a higher final affected scale for nearly all values of 𝑃 , on all datasets.
Characteristically, the larger portion of initial spreaders on all baseline
methods leads to a broader diffusion, but the fact that the blue line,
corresponding to DGNFusion, works as an upper bound indicates its
notable performance on all five datasets.

Fig. 5 shows the diffusion speed or infected scale 𝐹 (𝑡) varying with
time. The spreading model is SIR with 𝜆 = 1.5. It can be seen that
GCNFusion, not only outperforms baseline methods but also is faster,
which means our influential nodes can spread the information through
the network much faster. Naturally, for all benchmark methods, over
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Fig. 4. Comparison of the average final affected scale (𝐹(𝑡𝑐 )) of 10 runs, with respect to the ratio of the initial spreaders 𝑃 .
e

ime, the number of infected and consequently recovered nodes are
ncreasing, however, the position of the blue line, relative to other lines,
ndicates its notable diffusion speed on all five datasets.
6

W

We also conducted some experiments in order to investigate the
ffect of 𝜆 on the diffusion process. The results can be seen in Fig. 6.
e examined the final affected scale in the range 1 ≤ 𝜆 ≤ 2 to gain
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Fig. 5. The infected scale (𝐹(𝑡)) of 10 runs, with respect to time 𝑡.
G
o

i

meaningful insight of the methods since smaller values, regardless
f initial nodes, are not effective enough in the spreading process
nd larger values accelerate the diffusion of information too much. As
hown in the figure, on all datasets, almost for all 𝜆 values, GCNFusion
7

urpasses all other methods. In this experiment, the superiority of b
CNFusion compared to other methods suggests its robustness in terms
f infected rate.

As mentioned before, larger values of 𝐿𝑠 indicate more scattered
nitial spreaders and thus a more diffusive set of spreaders, which can

e seen as a metric for measuring the «goodness » of an algorithm. The
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Fig. 6. The effect of parameter infected rate (𝜆) on final affected scale 𝐹(𝑡𝑐 ).
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Fig. 7. Average shortest path length (𝐿𝑠) of different portions of initial spreaders. The spreading model is SIR with 𝜆 = 1.5.
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results of the investigation on this property, are shown in Fig. 7. On all
datasets, GCNFusion performs as an upper bound, far better than the
other methods.

5. Conclusions and future works

5.1. Conclusions

In this paper, we introduced a novel approach for solving the prob-
lem of influence-based information diffusion. We borrowed intuition
from three cutting-edge research areas: graph representation learning,
feature selection, and information diffusion. To each node of the input
graph, an influence value is assigned using a graph neural network
augmented by a variant of a feature selection layer. These values can
be leveraged to control the spreading process on networks such as
infectious diseases, rumors, etc. To evaluate the algorithm we adopted
the SIR model and proved that the proposed method significantly
outperforms benchmark approaches on information diffusion. In sum-
mary, the results of the experiments on five datasets of Cora, Email,
Hamster, Router, and CEnew, indicated that for different portions of
initial spreaders, our proposed method is respectively 3%, 5%, 5%, 2%,
3% more superior in information diffusion compared to the benchmark
methods. GCNFusion is easily implemented and computationally effi-
cient and can be used for either labeled or unlabeled graphs of any
kind, topology, and size.

5.2. Limitations and future works

Our proposed method of disseminating information has shown sat-
isfactory results on homogeneous networks. However, it is not yet
applicable to heterogeneous networks. This will be achievable by mak-
ing some modifications. In the continuation of this research, we intend
to address this issue. On the other hand, we anticipate that having
a macroscopic view of a network, in addition to a microscopic one
can aid the diffusion process. Therefore, in future work, we intend
to provide a method that, while preserving the local information of
the input graph, also takes the global information into consideration.
Although GCN networks have proved their strength, they still can have
a deficiency. For more dense input graphs, these networks may show
some disruption. However, we do not see this as a very significant
weakness because of the sparse nature of most real-world networks.
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