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ABSTRACT
Graph Neural Networks (GNNs) have emerged as a series of ef-
fective learning methods for graph-related tasks. However, GNNs
are shown vulnerable to adversarial attacks, where attackers can
fool GNNs into making wrong predictions on adversarial samples
with well-designed perturbations. Specifically, we observe that the
current evasion attacks suffer from two limitations: (1) the attack
strategy based on the reinforcement learning method might not be
transferable when the attack budget changes; (2) the greedy mech-
anism in the vanilla gradient-based method ignores the long-term
benefits of each perturbation operation. In this paper, we propose
a new attack method named projective ranking to overcome the
above limitations. Our idea is to learn a powerful attack strategy
considering the long-term benefits of perturbations, then adjust it
as little as possible to generate adversarial samples under different
budgets. We further employ mutual information to measure the
long-term benefits of each perturbation and rank them accordingly,
so the learned attack strategy has better attack performance. Our
method dramatically reduces the adaptation cost of learning a new
attack strategy by projecting the attack strategy when the attack
budget changes. Our preliminary evaluation results in synthesized
and real-world datasets demonstrate that our method owns power-
ful attack performance and effective transferability.
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1 INTRODUCTION
A graph is an abstract data type with powerful modelling capa-
bilities. It can be obtained by extracting attributes of entities and
relations between them and then explored by graph learning meth-
ods in various real-world applications, such as social networks,
commercial recommendation systems, biological networks, and
traffic congestion prediction [14]. Graph neural networks (GNNs)
have emerged as effective graph learning methods [7] and demon-
strate promising performance on node classification [3, 13], link
prediction [16, 21], and graph classification [22].

While GNNs have attracted considerable attention in various
applications with complex graph-structured data [6], they also raise
urgent security concerns in practice. Recent studies have shown
that GNNs are vulnerable to adversarial attacks. Using the evasion
attack as a representative example, attackers propose generating
adversarial samples to fool the victimmodel by adding unnoticeable
permutations on clean samples. The victim model will give wrong
outputs on the adversarial samples, which are different from that of
clean samples [1]. The evasion attack is notoriously dangerous for
several reasons. First, well-designed slight perturbations will signif-
icantly degrade the performance of the victim model. Additionally,
once the model is deployed, the attacker can launch evasion attacks
at any time, which increases the difficulty and cost of mitigating
them. Finally, this kind of attack is sneaky since the adversarial
samples are similar to the clean samples. To obtain an adversarial
example, attackers may perturb a clean graph by operations like
adding/deleting few edges or modifying the features of some nodes.
To make evasion attacks stealthy, attackers use a specified budget
to restrict the number of these operations.

The current studies of evasion attacks on the GNNmodels mainly
focus on node classification and link prediction, while few are de-
signed for graph classification [4]. In current evasion attack meth-
ods for graph classification, two limitations remain to be solved to
improve the attack practicality. First, some attack methods using re-
inforcement learning are not effective enough to generate powerful
adversarial samples, especially when the budget is more than one
[10]. When the budget changes, they also need to be retrained to
learn an attack strategy suitable for the new budget. The adversary
is eager for a powerful attack method suitable for various perturba-
tion budgets and hopes to use existing attack strategies to reduce
adjustment efforts when the perturbation budget changes. Second,
the gradient-based method 𝐺𝑟𝑎𝑑𝐴𝑟𝑔𝑚𝑎𝑥 [1] is inefficient since it
needs real-time gradient information to complete each step of the
perturbation operations. In 𝐺𝑟𝑎𝑑𝐴𝑟𝑔𝑚𝑎𝑥 , the greedy mechanism
based on the “local” gradient also neglects the “long-term” benefits
of operation at each step, which is inconsistent with the adversary’s
desire to gain insight into the long-term benefits of each operation.
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Motivated by these observations, we summarize the challenges
in building an effective attack against GNNs for graph classification:
(1) how to transfer learned attack strategy to changed perturbation
budget with least effort, and (2) how to measure long-term benefits of
each operation in the generation of powerful adversarial samples.

To address these challenges, we expect to find a suitable metric
that considers the long-term benefits of each operation to rank all
possible operations and then use this ranking directly to generate ad-
versarial samples under different perturbation budgets. Inspired by
the projected gradient descent method, we project a learned attack
strategy into practical attackers’ perturbations with the specified
budget for the first challenge. Through this projection operation,
the adjustment cost of our learned attack strategy is almost zero.
Towards the second challenge, we regard the space composed of
all possible perturbation operations as the perturbation space. We
employ the mutual information between elements of perturbation
space and attackers’ goals as the measure to evaluate the impor-
tance of each possible operation. We regard the perturbation space
ranking based on mutual information as the learned attack strategy.

Our contributions are summarized below:

• We propose the projection operation to reduce the cost of
the strategy adaptation process by considering the transfer-
ability of the attack strategy when the budget changes.

• We employmutual information tomeasure the importance of
a perturbation operation towards strong attack performance.

• We conduct preliminary evaluations on a synthesized dataset
and five real-world datasets, and our method owns powerful
attack performance and effective transferability.

2 RELATEDWORK
According to the intention of attackers, current adversarial attack
methods mainly include evasion attacks, backdoor attacks, and
poisoning attacks. Here we provide a short review of these attacks.

Evasion attacks perturb the inputs of the victim GNNs dur-
ing their inference. In evasion attacks on graph classification, the
attack successful rate of RL-S2V outperforms RandSampling and
GradArgmax on synthetic data [1]. To improve the stealthiness of
attacks, Ma et al. proposed ReWatt to redefine the action space of re-
inforcement learning [10]. In graph classification, there are mainly
two different manners to obtain the expression of a graph. One
way is performing global pooling on expressions of all nodes, such
as the mean-pooling or max-pooling. Another one is introducing
hierarchical pooling in the GNN models. The pooling operation
selects typical nodes to compress the node number and determine
the structure of the coarse graph [9, 18, 19]. Tang et al. proposed to
attack the selecting operation in pooling operation [12], but it may
not be used for attacking models that employ global pooling.

Another two typical adversarial attacks on GNN models are
poisoning attacks and backdoor attacks. The poisoning attacks
[2] suppose the adversary owns the ability to poison the training
data of the victim models. In this way, the performance of the
GNN models trained on poisoned data will degrade dramatically on
clean samples. In backdoor attacks [15, 20], the adversary generally
injects a fixed or adaptive trigger into the clean training data and
changes their labels to the desired labels. As a result, the models
trained on these data perform well on clean samples but predict the
desired labels once the trigger is injected into the clean samples.

3 PROPOSED APPROACH
3.1 Attack Setting and Problem Formulation
Our method is a white-box attack method. Attackers are assumed
to have access to the node embedding and predictive probability
distribution of the victimmodel to obtain a powerful (i.e., high attack
success rate) and transferable (i.e., available to changed perturbation
budget) attack strategy.

Assuming a GNNmodel 𝑓𝜃 is employed to predict the category of
graph data D = {𝐺 𝑗 }𝑀1 . In evasion attacks, an attacker T attempts
to make unnoticeable perturbations on the original𝐺 to degrade
the performance of this victim model 𝑓𝜃 . We use T𝑓 (𝐺) to indicate
the attacker’s perturbation on 𝐺 which is specifically designed for
the classifier 𝑓𝜃 . More precisely, the objective of the attacker is

max
∑𝑀

𝑗=1 I
(
𝑓𝜃 (𝐺 𝑗 ) ≠ 𝑦 𝑗

)
s.t. 𝐺 = T𝑓 (𝐺)

I(𝐺,𝐺) = 1.
(1)

Here 𝐺 is the adversarial sample generated from the clean sample
𝐺 , and I(·) is an indicator function. I(·, ·) is a similarity measure
functionwhose output is 1 when two input samples are semantically
the same and 0 otherwise.

3.2 Perturbation Space
An attacker can perturb a clean sample 𝐺 to obtain an adversarial
sample 𝐺 . We formulate the process of this perturbation on graph
𝐺 as

𝐺 = T𝑓 (𝐺) = 𝐺 + Δ𝐺, (2)

where Δ𝐺 = {Δ𝐴,Δ𝑋 } is the perturbation graph. To be more pre-
cise, the graph structure and node features of 𝐺 are expressed as

{𝐴,𝑋 } = {𝐴 + Δ𝐴,𝑋 + Δ𝑋 },
Δ𝐴 =𝑚𝐴 ⊙ [I(𝑎𝑑𝑑) · (𝐼𝐴 −𝐴) + I(𝑑𝑒𝑙) · (−𝐴)] ,
Δ𝑋 =𝑚𝑋 ⊙ (𝐼𝑋 − 2𝑋 ),

(3)

where 𝐴 ∈ {0, 1} |V |×|V | is adjacency matrix, 𝑋 ∈ {0, 1} |V |×𝑑 is
binary node features matrix, 𝐼𝐴 = 1 |V |×|V | − 𝐼 |V | , 𝐼𝑋 = 1 |V |×𝑑 ,
|V| is the number of nodes in 𝐺 , and 𝑑 is the size of node features.
𝑚𝐴 ∈ {0, 1} |V |×|V | and 𝑚𝑋 ∈ {0, 1} |V |×𝑑 represent the masks
of graph structure and node features respectively. I(𝑎𝑑𝑑)/I(𝑑𝑒𝑙) is
the indicator function to show if adding/deleting edge operation is
allowed in generating adversarial samples. ⊙ is the Hadamard prod-
uct and · is then scalar multiplication. Therefore, the perturbation
graph Δ𝐺 = {Δ𝐴,Δ𝑋 } is actually defined by the combination of
specified structure mask𝑚𝐴 and feature mask𝑚𝑋 . The similarity
measure function in (1) is refined as

I(𝐺,𝐺) = I ( | |𝑚𝐴 | |1 + ||𝑚𝑋 | |1 ≤ 𝑘) , (4)

where | | · | |1 is the L1 Norm, 𝑘 is the budget of perturbations.
The perturbation space T(𝐺) is defined as the set of all possi-

ble perturbation graph Δ𝐺 = {Δ𝐴,Δ𝑋 }. Specially, we define the
perturbation space with budget 𝑘 = 1 as

T1 (𝐺) = {Δ𝐺
�� | |𝑚𝐴 | |1 + ||𝑚𝑋 | |1 = 1}. (5)

We call Δ𝐺 ∈ T1 (𝐺) an element of perturbation space T1 (𝐺).
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Figure 1: Illustration of the projective ranking method.

3.3 Projective Ranking
Now the attacker attempts to rank all elements in perturbation space
T1 (𝐺) and then use the ranking to generate an adversarial sample
𝐺 . In Figure 1, the victim model 𝑓𝜃 can make the correct prediction
“Pentagon” on𝐺 . During the ranking module training, the attacker
T𝑓 employs the mutual information between the perturbation space
T1 (𝐺) and the attacker’s goal 𝑦

𝐺
≠ 𝑦𝐺 to measure and rank the

importance of all elements in T1 (𝐺). In the evaluation phase, the
attacker T𝑓 only needs to access the node embedding to obtain the
ranking of the elements in T1 (𝐺), and then projects the ranking to
generate adversarial sample 𝐺 under the specified budget.

3.3.1 Ranking method. In this paper, the evasion attack strategy is
embedded in the ranking of Δ𝐺 = {Δ𝐴,Δ𝑋 } ∈ T1 (𝐺). Inspired by
the interpretability study of GNNs [17], we measure the importance
of elements in T1 (𝐺) by mutual information MI between modified
graph 𝐺 and the attacker’s goal. It can be expressed as:

maxMI
(
𝑌,𝐺

)
= 𝐻

(
𝑌

)
− 𝐻

(
𝑌
��𝐺)

, (6)

where 𝐻 (·) is entropy, 𝑌 =
(
· · · , 𝑝𝑦𝐺 = 0, · · ·

)
is the expected pre-

diction distribution of 𝐺 , 𝑦𝐺 is the original category of 𝐺 . For a
clean graph𝐺 , the first item in (6) is constant since the victim model
𝑓𝜃 is fixed and 𝑌 is also invariant. So the objective (6) is equal to

min𝐻
(
𝑌
��𝐺)

. (7)

To reduce the computational difficulties caused by the discrete
graph structure, we apply continuous relaxation on Δ𝐺 and assume
it is a graph variable Δ𝐺 ∼ T𝑓 (𝐺). Based on Jensen’s inequality
and 𝐻 (·) is a concave function, we obtain

𝐻

(
𝑌
��𝐺)

= 𝐸Δ𝐺

[
𝐻

(
𝑌
��𝐺 + Δ𝐺

)]
≤ 𝐻

(
𝑌
��𝐺 + 𝐸 [Δ𝐺]

)
, (8)

where 𝐸 [·] is the expectation function. So (7) is equal to

min
T𝑓 (𝐺)

𝐻

(
𝑌
��𝐺 + 𝐸T𝑓 (𝐺) [Δ𝐺]

)
. (9)

To be more specific, given the victim model 𝑓𝜃 , the objective is

min
T𝑓 (𝐺)

−
∑
𝑦

I (𝑦 ≠ 𝑦𝐺 ) log𝑝
(
𝑦
��𝐺)

, (10)

where 𝑝
(
·
��𝐺)

is the predictive probability distribution of 𝑓𝜃 on 𝐺 .

Algorithm 1 Generating Adversarial Samples

1: Input: clean samples D = {𝐺𝑚 = {𝐴𝑚, 𝑋𝑚}}𝑀1 , classifier 𝑓𝜃
2: Output: adversarial samples D̂ = {𝐺𝑚 = {𝐴𝑚, 𝑋𝑚}}𝑀1
3: Func: 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 (D): return {Δ𝐴𝑚𝑐 = (𝐼𝐴 −𝐴) ⊙ 𝑠𝜑 (ℎ𝑚𝑖 , ℎ𝑚

𝑗
)}

4: ℎ = 𝑁𝑜𝑑𝑒𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔
(
D
��𝑓𝜃 ) , 𝐴𝑆𝑅𝑏𝑒𝑠𝑡 = 0, 𝑘 = 1

5: while 𝑁𝑜𝑡𝐸𝑎𝑟𝑙𝑦𝑆𝑡𝑜𝑝 do
6: // Attacker Training
7: {Δ𝐴𝑚𝑐 } = 𝑟𝑎𝑛𝑘𝑖𝑛𝑔 (D)
8: {𝐺𝑚

𝑐 } = {{𝐴𝑚 + Δ𝐴𝑚𝑐 , 𝑋𝑚}};
9: min𝜑 −∑𝑀

𝑚=1
∑

𝑦 I (𝑦 ≠ 𝑦𝐺 ) log 𝑝
(
𝑦
��𝐺𝑚

𝑐

)
10: // Attacker Evaluation
11: {Δ𝐴𝑚

𝑑
} = 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑎𝑛𝑘𝑖𝑛𝑔 (D))

12: {𝐺𝑚
𝑑
} = {{𝐴𝑚 + Δ𝐴𝑚

𝑑
, 𝑋𝑚}};

13: if 𝐴𝑆𝑅(D̂ |𝑓𝜃 ) > 𝐴𝑆𝑅𝑏𝑒𝑠𝑡 then 𝐴𝑆𝑅𝑏𝑒𝑠𝑡 = 𝐴𝑆𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡
14: end while

Weassume the attacker is only able to add edgeswhen generating
𝐺 , which is common in the practical attack setting. So we have

𝐺 = T𝑓 (𝐺) = {𝐴 + Δ𝐴,𝑋 }, (11)

where Δ𝐴 =𝑚𝐴 ⊙ (𝐼𝐴 −𝐴), and the mask𝑚𝐴 is obtained by

𝑚𝐴𝑖,𝑗 = 𝑠
(
ℎ𝑖 , ℎ 𝑗

)
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑀𝐿𝑃 (𝑐𝑜𝑛𝑐𝑎𝑡 (ℎ𝑖 , ℎ 𝑗 ))

)
, (12)

where ℎ𝑖 is the embedding of node 𝑖 , 𝑠 (·, ·) is the scoring function
which measures the importance of elements in T1 (𝐺) with respect
to the attacker’s expectation. Since the value of Δ𝐴 is a real num-
ber rather than a discrete value, we call 𝐺 is generated by adding
continuous structure perturbations Δ𝐺𝑐 = {Δ𝐴𝑐 , 0}.

3.3.2 Perturbation Projection. Although the attacker obtains the
adversarial sample 𝐺 in (11), it is necessary to bridge the gap be-
tween continuous perturbation Δ𝐺𝑐 and discrete modification Δ𝐺𝑑

under limited budgets. This is because the attacker can only operate
one whole edge each time. Inspired by Projected Gradient Descent
(PGD) algorithm, we map Δ𝐺𝑐 to Δ𝐺𝑑 by the projection function

Δ𝐴𝑑 ;𝑖, 𝑗 = I
(
Δ𝐴𝑐 ;𝑖, 𝑗 ∈ 𝑡𝑜𝑝𝑘 (Δ𝐴𝑐 , 𝑘)

)
, (13)

where 𝑘 is the specified budget, 𝐴𝑐 ;𝑖, 𝑗 is the element located at 𝑖-th
row and 𝑗-th column of 𝐴𝑐 , 𝑡𝑜𝑝𝑘 (·, 𝑘) is the set of Δ𝐴𝑐 ;𝑖, 𝑗 with top-
k values. After this projection, the attacker could fool the victim
model 𝑓𝜃 by the adversarial sample 𝐺 = {𝐴 + Δ𝐴𝑑 , 𝑋 }.

Algorithm 1 shows how an attacker generates adversarial sam-
ples from clean samplesD = {𝐺𝑚 = {𝐴𝑚, 𝑋𝑚}}𝑀1 by the proposed
projective ranking method. In line 4, the attacker first needs to
obtain the embedding representations ℎ of all nodes in clean sam-
ples from the victim classifier 𝑓𝜃 . In the training phase (lines 6-9),
the attacker uses the scoring function to obtain the structure mask
𝑚𝐴 , and then Δ𝐴𝑐 by limiting𝑚𝐴 with the expected perturbation
operation type. Next, the attacker uses Δ𝐴𝑐 to obtain 𝐺𝑐 (line 8)
and trains the scoring function to learn the attack strategy (line 9).
Then, the attacker projects the learned ranking (line 11, 𝑘 = 1) to
generate the adversarial sample 𝐺𝑑 (line 12). Finally, the attacker
uses these adversarial samples to attack the victim model 𝑓𝜃 (line
13). The attacker will repeat the above process (lines 6-13) until the
projective ranking method learns a powerful attack strategy.



Table 1: Classification Accuracy of the Victim GCN Model (%).

Dataset BA-2Motifs ENZYMES Mutagenicity

k 1 2 3 1 2 3 1 2 3

Clean 99.63 99.63 99.63 69.17 69.17 69.17 85.25 85.25 85.25

RandomSampling 78.85 54.35 50.09 64.81 56.33 51.23 80.80 75.56 70.75

GradArgmax 60.50 51.13 50.13 64.79 61.46 58.13 68.13 54.50 45.50

RL-S2V 50.00 50.00 50.00 58.54 56.04 55.42 71.88 69.50 63.75

Ours 50.00 50.00 50.00 52.50 44.79 42.92 67.63 59.13 53.63

Dataset PC-3 NCI109 NCI-H23H

k 1 2 3 1 2 3 1 2 3

Clean 67.13 67.13 67.13 76.50 76.50 76.50 64.75 64.75 64.75

RandomSampling 64.60 60.10 57.64 73.83 67.60 63.29 60.06 55.26 53.51

GradArgmax 66.13 65.38 65.25 77.00 74.00 71.00 56.13 53.25 52.63

RL-S2V 57.88 55.88 55.00 66.00 65.00 64.13 54.38 52.88 52.00

Ours 56.13 52.13 49.62 68.38 59.00 56.75 53.13 50.25 50.13

4 EXPERIMENTS
DatasetsWe employ one synthesized dataset BA-2Motifs [8] and
five real-world datasets ENZYMES, Mutagenicity, PC-3, NCI109,
NCI-H23H [11] for graph classification.
Baselines To evaluate the performance of our method, we select
𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔, 𝐺𝑟𝑎𝑑𝐴𝑟𝑔𝑚𝑎𝑥 , and 𝑅𝐿-𝑆2𝑉 [1] as the baselines.
Experimental SetupWe randomly split each dataset into training
data (80%), validation data (10%), and test data (10%) to train the
victim GCN [5] model 𝑓𝜃 . The model has 3 hidden layers with 20 as
the output feature dimension. We concatenate the𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔 and
𝑠𝑢𝑚𝑝𝑜𝑜𝑙𝑖𝑛𝑔 results of the final node embedding to obtain the graph
expression, then use a fully connected layer to predict the category
of the graph. In𝑇𝑓 (·), we use a 2-layers MLP to serve as the scoring
module. To evaluate the transferability of our method, we directly
project the learned ranking under 𝑘 = 1 to generate adversarial
samples under budget 𝑘 = 2, 3. The results of other methods are
obtained by running under a specified budget respectively.
Attack Performance and Transferability Table 1 shows the
classification accuracy of the victim model 𝑓𝜃 on both clean sam-
ples and adversarial samples generated by different evasion attack
methods. The bold numbers indicate the best attack results.

In the table1, our method achieves the best or competitive attack
performance on almost all datasets with 𝑘 = 1, indicating the pro-
jective ranking method owns powerful attack performance. When
𝑘 = 2 or 3, it still holds the best or comparable attack effect, which
shows that our method has learned transferable attack strategy
under budget 𝑘 = 1. 𝐺𝑟𝑎𝑑𝐴𝑟𝑔𝑚𝑎𝑥 generates the adversarial exam-
ples based on the gradient of the victim model and makes a greedy
choice in each step. This greedy mechanism is not effective enough
since ignoring the attacker’s long-term gain. Our observation in
table 1 (𝑘 = 1) shows that it performs worse on some datasets than
𝑅𝐿-𝑆2𝑉 , which considers the long-term gain in the evasion attack.

We also use 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 as a baseline to evaluate other
attack methods. Table1 shows our method always achieves bet-
ter attack performance than 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔. The 𝑖𝑡𝑎𝑙𝑖𝑐 accuracy
showunexpected results in the aspect of attack performance. For𝑅𝐿-
𝑆2𝑉 , its attack performance is worse than 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 on EN-
ZYMES (𝑘 = 3) and NCI109 (𝑘 = 3) datasets. This may be due to the
less effectiveness of the Q-learningmethod in𝑅𝐿-𝑆2𝑉 , especially for
the Markov decision process with long-horizon. For𝐺𝑟𝑎𝑑𝐴𝑟𝑔𝑚𝑎𝑥 ,
its attack performance is worse than 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 on EN-
ZYMES (𝑘 = 2, 3), PC-3 (𝑘 = 1, 2, 3) and NCI109 (𝑘 = 1, 2, 3) datasets.
Particularly, its adversarial samples own negative performance on
NCI109 (𝑘 = 1). Maybe the local gradient information is not a suit-
able enough measure of attack benefits for generating adversarial
samples.

5 CONCLUSION
In this paper, we propose the projective ranking method to make
an evasion attack for graph classification. We argue that existing
evasion methods either do not have sufficient attack performance
due to ignoring the long-term benefits of the perturbations or re-
quire the attacker to adjust the attack strategy when the attack
environment changes. To this end, we formulate the problem and
the perturbation space for the evasion attack on graph classifica-
tion. We first relax perturbation space to rank its elements based
on the mutual information, then project the ranking in a practical
attack with the specified budget. Experimental results show that
our method exhibits strong attack performance, and the learned
attack knowledge can be used to generate adversarial samples when
the perturbation budget changes.
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