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ABSTRACT
Anomaly detection on graphs plays a significant role in various
domains, including cybersecurity, e-commerce, and financial fraud
detection. However, existing methods on graph anomaly detection
usually consider the view in a single scale of graphs, which results
in their limited capability to capture the anomalous patterns from
different perspectives. Towards this end, we introduce a novel graph
anomaly detection framework, namely ANEMONE, to simultane-
ously identify the anomalies in multiple graph scales. Concretely,
ANEMONE first leverages a graph neural network backbone en-
coder with multi-scale contrastive learning objectives to capture the
pattern distribution of graph data by learning the agreements be-
tween instances at the patch and context levels concurrently. Then,
our method employs a statistical anomaly estimator to evaluate
the abnormality of each node according to the degree of agree-
ment from multiple perspectives. Experiments on three benchmark
datasets demonstrate the superiority of our method.
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1 INTRODUCTION
Recently, anomaly detection on graphs has received increasing
attention in the community of data mining [9] due to the wide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482057

applications of graph-structured data in modeling real-world sys-
tems, including e-commerce, and finance [16]. Taking e-commerce
fraud detection as an example, an anomaly detection algorithm can
help to identify fraudulent sellers by analysing the properties (i.e.,
attributes) and connection (i.e., structure) of users.

Unlike conventional anomaly detection methods which merely
consider the attributive information of each sample and ignore their
underlying correlations, graph anomaly detection, on the other
hand, takes sample (i.e., node) attributes as well as the topological
information (i.e., node adjacency) into consideration simultaneously
[5]. Earlier methods leverage shallowmechanisms like ego-network
analysis [11], residual analysis [4] or CUR decomposition [10] to
detect anomalous nodes, which fail to learn informative knowledge
from high-dimensional attributes. Recently proposed methods [1, 5]
exploit deep graph autoencoder to anomaly detection and make sig-
nificant performance improvements. Very recently, by introducing
graph self-supervised learning [7], CoLA [6] integrates contrastive
learning into graph neural network (GNN) [14] to detect graph
anomalies effectively.

Despite their success, these methods mainly detect anomalies
from the perspective of a single scale, ignoring the fact that node
anomalies in graphs often occur in different scales. For instance,
some e-commence cheaters may directly trade with a small number
of unrelated items/users (i.e., local anomalies), while other cheaters
tend to hide themselves in large communities of underground in-
dustry (i.e., global anomalies). Such heterogeneity of scales leads to
the sub-optimal performance of existing methods.

To bridge this gap, we propose a graph ANomaly dEtection
framework with Multi-scale cONtrastive lEarning (ANEMONE
for abbreviation) to detect anomalous nodes in graphs. First, to
capture anomalous patterns in different scales, our proposed frame-
work simultaneously performs patch- and context-level contrastive
learning via two GNN-based models. Moreover, ANEMONE em-
ploys a novel anomaly estimator to predict the abnormality of each
node by leveraging the statistics of multi-round contrastive scores.
The main contributions of this work are summarized as follows:
• We propose a multi-scale contrastive learning framework,
ANEMONE, for graph anomaly detection, which captures
the anomalous patterns in different scales.
• Wedesign a novel statistics-based algorithm to estimate node
abnormality with the proposed contrastive schema.
• We conduct extensive experiments on three benchmark datasets
to demonstrate the superiority of ANEMONE in detecting
node-level anomalies on graphs.
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2 PROBLEM STATEMENT
In this paper, we focus on the anomaly detection problem for attrib-
uted graph. Let G = (A,X) be an attributed graph with a node set
V = {𝑣1, · · · , 𝑣𝑛}. A ∈ R𝑛×𝑛 denotes the binary adjacency matrix
where A𝑖, 𝑗 = 1 indicates that there is a link between 𝑣𝑖 and 𝑣 𝑗
otherwise A𝑖, 𝑗 = 0. X ∈ R𝑛×𝑓 denotes the attribute matrix where
the 𝑖-th row X[𝑖, :] ∈ R𝑓 indicates the attribute vector of 𝑣𝑖 . With
the aforementioned notations, we formalize the graph anomaly
detection problem as follows:

Definition 2.1 (Graph Anomaly Detection). Given an attributed
graph G = (A,X), the target is to learn a function Y(·) : R𝑛×𝑛 ×
R𝑛×𝑓 → R𝑛 , which takes the graph as input data and outputs a
vector of anomaly scores y to measure the degree of abnormality of
each node. Specifically, the 𝑖-th element 𝑦 (𝑖) in the output scoring
vector y expresses the abnormality of the 𝑣𝑖 , where a larger score
means a higher abnormality.

It is worth noticing that the graph anomaly detection is per-
formed under an unsupervised scenario, meaning that the ground-
truth labels are inaccessible during the training stage.

3 PROPOSED ANEMONE FRAMEWORK
We present a framework, namely ANEMONE, based on the multi-
scale contrastive learning [2] for graph anomaly detection. The over-
all pipeline of our method is illustrated in Figure 1. For a selected
target node , ANEMONE calculates the anomaly score of this node
by capitalizing on two main components: multi-scale contrastive
learning model and statistical anomaly estimator. In multi-scale con-
trastive learning model, two GNN-based contrastive networks learn
the patch-level (i.e., node versus node) agreement and context-level
(i.e., node versus ego-net) agreement respectively. After that, sta-
tistical anomaly estimator aggregates the patch- and context- level
scores acquired by multiple augmented ego-nets and calculates the
final anomaly score of the target node via statistical estimation. We
introduce the two components in the following sections.

3.1 Multi-Scale Contrastive Learning Model
3.1.1 Augmented Ego-nets Generation. In multi-scale contrastive
learning model, we first generate two ego-nets of the target node
with data augmentation as the networks’ input. The motivation
behind ego-nets generation is to capture the surrounding substruc-
tures of the target node (which is proved to be highly related to
the node’s abnormality [6, 8]) as well as provide sufficient diversity
of input data for model training and statistical estimator. Taking
the above into consideration, we employ a random walk-based
algorithm, RWR [12], as our data augmentation strategy. To be
concrete, taking a target node 𝑣𝑖 as center, we sample two ego-nets
with a fix size 𝐾 which are denoted as G (𝑖)𝑝 = (A(𝑖)𝑝 ,X(𝑖)𝑝 ) and
G (𝑖)𝑐 = (A(𝑖)𝑐 ,X(𝑖)𝑐 ). In each ego-net, we set the first node in the
node set as the center (target) node.

To prevent information leakage in the following contrastive
learning step, a pre-processing named target node masking should
be implemented in the ego-nets before we feed them into the con-
trastive networks. Concretely, we replace the attribute vector of
target node with a zero vector: X(𝑖)𝑝 [1, :] ← ®0,X

(𝑖)
𝑐 [1, :] ← ®0.

3.1.2 Patch-level Contrastive Network. The target of patch-level
contrastive network is to learn the agreement between the embed-
ding of masked target node within ego-net G (𝑖)𝑝 and embedding of

original target node 𝑣𝑖 . Firstly, the node embeddings H(𝑖)𝑝 of ego-net
are obtained by the GNN module:

H(𝑖)𝑝 = 𝐺𝑁𝑁𝜃

(
G (𝑖)𝑝

)
= 𝐺𝐶𝑁

(
A(𝑖)𝑝 ,X(𝑖)𝑝 ; Θ

)
= 𝜎

(
D̃(𝑖)𝑝

− 1
2
Ã(𝑖)𝑝 D̃(𝑖)𝑝

− 1
2
X(𝑖)𝑝 Θ

)
,

(1)

where 𝜃 is the parameter set of GNN. For simplicity, here we directly

adopt a one-layer GCN [3] , where Ã(𝑖)𝑝 = A(𝑖)𝑝 + I is the adjacency

matrix added self-loop, D̃(𝑖)𝑝 is the degree matrix of the ego-net

G (𝑖)𝑝 , Θ ∈ R𝑓 ×𝑑 is the weight matrix of the GCN layer, 𝑑 is the
dimension of embedding, and 𝜎 (·) is the ReLU activation function.
Here GCN can be replaced by other types of GNN alternatively.
For patch-level contrastive learning, we pick the embedding of
masked target node by letting h(𝑖)𝑝 = H(𝑖)𝑝 [1, :]. It is worth noting

that, although the corresponding input X(𝑖)𝑝 [1, :] is a zero vector,

the embedding H(𝑖)𝑝 [1, :] becomes informative by aggregating the
attributes of other nodes in the ego-net via GNN.

Then, ANEMONE computes the embedding of target node 𝑣𝑖 by
a MLP module. We denote the attribute vector of 𝑣𝑖 as x(𝑖) = X[𝑖, :],
and the target node embedding z(𝑖)𝑝 is given as follows:

z(𝑖)𝑝 = 𝑀𝐿𝑃𝜃

(
x(𝑖)

)
= 𝜎

(
x(𝑖)Θ

)
. (2)

Here the weight is shared with the GNN in Eq. (1), which ensures
that h(𝑖)𝑝 and z(𝑖)𝑝 are projected into the same embedding space.

After that, a contrastive learning module is built to learn the
agreement between h(𝑖)𝑝 and z(𝑖)𝑝 . Specifically, we utilize a bilinear
layer to calculate their similarity score:

𝑠
(𝑖)
𝑝 = 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟

(
h(𝑖)𝑝 , z(𝑖)𝑝

)
= 𝜎

(
h(𝑖)𝑝 W𝑝z(𝑖)𝑝

⊤)
, (3)

where W𝑝 is a trainable matrix, and 𝜎 (·) is Sigmoid function.
To learn a discriminative contrastive network, we introduce a

negative sampling strategy for model training. That is, for a given
score 𝑠 (𝑖)𝑝 (to distinguish, we denote it as "positive score"), we cal-

culate the negative score 𝑠 (𝑖)𝑝 by:

𝑠
(𝑖)
𝑝 = 𝐵𝑖𝑙𝑖𝑛𝑒𝑎𝑟

(
h( 𝑗)𝑝 , z(𝑖)𝑝

)
= 𝜎

(
h( 𝑗)𝑝 W𝑝z(𝑖)𝑝

⊤)
, (4)

where h( 𝑗)𝑝 is acquired from the ego-net centered at another node
𝑣 𝑗 ensuring that 𝑖 ≠ 𝑗 . In practice, our contrastive learning model
is trained in a mini-batch manner. Therefore, h( 𝑗)𝑝 can be easily

obtained from other target nodes in the same batch. With 𝑠 (𝑖)𝑝 and

𝑠
(𝑖)
𝑝 , the patch-level contrastive network is trained with a Jensen-
Shannon divergence [13] objective function:

L𝑝 = − 1
2𝑛

𝑛∑
𝑖=1

(
𝑙𝑜𝑔

(
𝑠
(𝑖)
𝑝

)
+ 𝑙𝑜𝑔

(
1 − 𝑠 (𝑖)𝑝

))
. (5)
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Figure 1: The overall pipeline of ANEMONE. The target is to predict the anomaly score of a selected target node 𝑣𝑖 (the yellow
node in (a)). In multi-scale contrastive learning model (b), the “node v.s. node” agreement and “node v.s. ego-net” agreement
are learned by the patch- and context- level contrastive network respectively. In statistical anomaly estimator, the anomaly
score is estimated with a statistical algorithm according to the multi-round predicted scores by contrastive learning model.

3.1.3 Context-level Contrastive Network. Symmetrically, the context-
level contrastive network has a similar architecture with the patch-
level one. Firstly, in analogy to Eq. (1), a siamese GNN module with
parameter set 𝜙 generate the node embeddings H(𝑖)𝑐 from the input
ego-net G (𝑖)𝑐 , which is formulated by:

H(𝑖)𝑐 = 𝐺𝑁𝑁𝜙

(
G (𝑖)𝑐

)
= 𝜎

(
D̃(𝑖)𝑐

− 1
2
Ã(𝑖)𝑐 D̃(𝑖)𝑐

− 1
2
X(𝑖)𝑐 Φ

)
. (6)

Note that context-level contrastive network has a different parameter
set from the patch-level one, since the contrasts in two scales should
be carried out in different embedding spaces.

The main distinction between patch- and context- level contrast
is that, the latter tries to learn the agreement between the target
node embedding and the ego-net embedding, which is obtained via
a readout module:

h(𝑖)𝑐 = 𝑟𝑒𝑎𝑑𝑜𝑢𝑡

(
H(𝑖)𝑐

)
=

1
𝐾

𝐾∑
𝑗=1

H(𝑖)𝑐 [ 𝑗, :] . (7)

In this paper, we adopt average pooling as our readout function.
To project the target node’s attribute to the same embedding

space, a MLP module (similar to Eq. (2)) with parameter 𝜃 is lever-
aged to compute z(𝑖)𝑐 . Subsequently, the context-level score 𝑠 (𝑖)𝑐 is
estimated by a bilinear function with scoring matrix W𝑐 . Finally,
the context-level network is trained by the objective function:

L𝑐 = −
1

2𝑛

𝑛∑
𝑖=1

(
𝑙𝑜𝑔

(
𝑠
(𝑖)
𝑐

)
+ 𝑙𝑜𝑔

(
1 − 𝑠 (𝑖)𝑐

))
. (8)

3.1.4 Joint Training. In the training stage, we learn the two con-
trastive networks jointly. The overall objective function is:

L = 𝛼L𝑐 + (1 − 𝛼)L𝑝 , (9)

where 𝛼 ∈ [0, 1] is a trade-off parameter to balance the importance
between two components.

3.2 Statistical Anomaly Estimator
After the multi-scale contrastive learning model is well trained,
ANEMONE utilizes a statistical anomaly estimator to calculate the
anomaly scores for each node in the inference stage. First, for a

given target node 𝑣𝑖 , we generate 𝑅 ego-nets for patch- and context-
level contrastive networks respectively. Meanwhile, negative sam-
ples with an equal number are sampled. Feeding them into corre-
sponding contrastive network, we obtain a total of 4𝑅 scores, which
is: [𝑠 (𝑖)

𝑝,1, · · · , 𝑠
(𝑖)
𝑝,𝑅
, 𝑠
(𝑖)
𝑐,1 , · · · , 𝑠

(𝑖)
𝑐,𝑅
, 𝑠
(𝑖)
𝑝,1, · · · , 𝑠

(𝑖)
𝑝,𝑅
, 𝑠
(𝑖)
𝑐,1 , · · · , 𝑠

(𝑖)
𝑐,𝑅
]. We as-

sume that an anomalous node has a smaller agreement with its
adjacent structure and contexts. Therefore, we denote the base
score as the difference between negative and positive scores:

𝑏
(𝑖)
𝑣𝑖𝑒𝑤,𝑗

= 𝑠
(𝑖)
𝑣𝑖𝑒𝑤,𝑗

− 𝑠 (𝑖)
𝑣𝑖𝑒𝑤,𝑗

, (10)

where the subscript “view” represents “p” or “c” and 𝑗 ∈ [1, · · · , 𝑅].
Then, we consider a statistical method for abnormality estima-

tion. The behind intuition is that: 1) an anomalous node has rela-
tively large base scores; 2) an anomalous node has unstable base
scores under multiple ego-net sampling. Accordingly, we define
the statistical anomaly scores 𝑦 (𝑖)𝑝 and 𝑦 (𝑖)𝑐 as the sum of mean and
standard deviation for base scores:

𝑏
(𝑖)
𝑣𝑖𝑒𝑤

=

𝑅∑
𝑗=1

𝑏
(𝑖)
𝑣𝑖𝑒𝑤,𝑗

/𝑅,

𝑦
(𝑖)
𝑣𝑖𝑒𝑤

= 𝑏
(𝑖)
𝑣𝑖𝑒𝑤
+

√√√√ 𝑅∑
𝑗=1

(
𝑏
(𝑖)
𝑣𝑖𝑒𝑤,𝑗

− 𝑏 (𝑖)
𝑣𝑖𝑒𝑤

)2
/𝑅,

(11)

where the subscript “view” represents “p” or “c”. Finally, we combine
𝑦
(𝑖)
𝑝 and 𝑦 (𝑖)𝑐 into the final anomaly score 𝑦 (𝑖) for 𝑣𝑖 , where the
parameter 𝛼 in Eq. (9) serves as a trade-off term:

𝑦 (𝑖) = 𝛼𝑦 (𝑖)𝑐 + (1 − 𝛼)𝑦
(𝑖)
𝑝 . (12)

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Datasets. We conduct extensive experiments on three well-
known citation network datasets, i.e. Cora, CiteSeer and PubMed.
The statistics of the datasets are summarized in Table 1. Since these
citation datasets have no anomalies by default and to evaluate our
method in detecting different types of anomalies, we follow previ-
ous work [1, 6] to manually inject an equal number of attributive
and structural anomalous nodes.
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(a) ROC curve of Cora.
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(b) ROC curve of CiteSeer.
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(c) ROC curve of PubMed.
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Figure 2: ROC curves and the analysis for trade-off parameter 𝛼 on three datasets.

Table 1: Basic statistics of the three datasets.

Datasets # Nodes # Edges # Attributes # Anomalies

Cora 2,708 5,429 1,433 150
CiteSeer 3,327 4,732 3,703 150
PubMed 19,717 44,338 500 600

Table 2: AUC of ANEMONE, its competitors and variants.

Methods Cora CiteSeer PubMed

AMEN 0.6266 0.6154 0.7713
Radar 0.6587 0.6709 0.6233
ANOMALOUS 0.5770 0.6307 0.7316

DOMINANT 0.8155 0.8251 0.8081
CoLA 0.8779 0.8968 0.9512
CoLA𝑠𝑡𝑎𝑡 0.8869 0.9047 0.9532

ANEMONE𝑚𝑒𝑎𝑛 0.8963 0.9066 0.9524
ANEMONE𝑠𝑡𝑑 0.5402 0.7077 0.7440
ANEMONE 0.9057 0.9189 0.9548

4.1.2 Baselines. We compare ANEMONE with the following meth-
ods: AMEN [11], Radar [4], ANOMALOUS [10], DOMINANT [1]
and CoLA [6]. We add a variant of CoLA, CoLA𝑠𝑡𝑎𝑡 , which inte-
grates the proposed statistical anomaly estimator into CoLA. Our
code is made available on GitHub 1, including the hyperparameter
setting.

4.1.3 Metric. A widely applied metric, ROC-AUC, is employed to
evaluate the performance of anomaly detection. The ROC curve
represents the plot of true positive rate against false positive rate,
while AUC is the area under the ROC curve. The value of AUC is
within [0, 1], and a larger one indicates a better performance.

4.2 Effectiveness Evaluation
The ROC curves are demonstrated in Figure 2(a)-(c), while the
comparison of AUC is given in Table 2. We make the following
observations:

1https://github.com/GRAND-Lab/ANEMONE

• In general, ANEMONE always outperforms all baseline meth-
ods on three benchmark datasets, which illustrates that the
combination of the multi-scale contrastive learning tech-
nique and the statistical anomaly estimator significantly
benefits the node-level anomaly detection.
• The deep learning-based approaches, i.e., DOMINANT, CoLA,
and ANEMONE, outperform the shallow methods signifi-
cantly, indicating that shallow mechanisms fail to capture
anomalous patterns from high-dimensional attributes and
complex underlying graph structure.
• CoLA𝑠𝑡𝑎𝑡 shows a performance gain over CoLA, verifying
the effectiveness of the proposed statistic anomaly estimator.

4.3 Ablation Study and Parameter Analysis
We further compare the results of ANEMONE and its variants,
i.e., ANEMONE𝑚𝑒𝑎𝑛 and ANEMONE𝑠𝑡𝑑 , which only consider the
mean value or standard deviation when estimating the anomaly
score. As we can see in Table 2, both components in the anomaly
estimator make a contribution to detecting anomalies, and the
mean value of base scores has a greater correlation with node-level
abnormality. Furthermore, the best performance is achieved by
ANEMONE which combines both terms together.

The results of the effectiveness analysis for two contrastive scales
are shown in Figure 2(d). We observe that the optimal performance
is acquired when 𝛼 is equal to 0.8 for Cora, 0.6 for CiteSeer and
0.8 for PubMed. Either larger or small values will lead to perfor-
mance degradation. We conclude that both patch- and context-
level contrastiveness can expose the exclusive anomalies in the
corresponding scale. By jointly considering two perspectives, we
can obtain the best results.

5 CONCLUSION
In this paper, we introduce a general framework named ANEMONE
for graph anomaly detection. ANEMONE leverages a multi-scale
contrastive learning technique to capture graph anomalies in multi-
ple scales. A novel statistical estimation strategy is also included in
ANEMONE for abnormality prediction. Extensive experiments on
three benchmark datasets demonstrate the effectiveness of our pro-
posed framework. For future work, we plan to investigate automatic
learning approaches [15] to detect graph anomalies.
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