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Abstract
Graph Neural Networks (GNNs) have achieved state-of-the-
art performance in many graph data analysis tasks. Howev-
er, they still suffer from two limitations for graph represen-
tation learning. First, they exploit non-smoothing node fea-
tures which may result in suboptimal embedding and degen-
erated performance for graph classification. Second, they on-
ly exploit neighbor information but ignore global topological
knowledge. Aiming to overcome these limitations simultane-
ously, in this paper, we propose a novel, flexible, and end-to-
end framework, Graph Smoothing Splines Neural Networks
(GSSNN), for graph classification. By exploiting the smooth-
ing splines, which are widely used to learn smoothing fit-
ting function in regression, we develop an effective feature
smoothing and enhancement module Scaled Smoothing S-
plines (S3) to learn graph embedding. To integrate global
topological information, we design a novel scoring module,
which exploits closeness, degree, as well as self-attention val-
ues, to select important node features as knots for smoothing
splines. These knots can be potentially used for interpreting
classification results. In extensive experiments on biological
and social datasets, we demonstrate that our model achieves
state-of-the-arts and GSSNN is superior in learning more ro-
bust graph representations. Furthermore, we show that S3

module is easily plugged into existing GNNs to improve their
performance.

Introduction
Deep learning on graphs is an important and ubiquitous task
with a broad set of domains ranging from social networks
to biological networks (Zhou et al. 2018; Qiu et al. 2018;
Duvenaud et al. 2015; Shi et al. 2019). Graph Neural Net-
works (GNNs) is a general type of deep-learning architec-
tures that can be directly applied to structured data (Battagli-
a et al. 2018). The success of GNNs in node representation
learning has inspired many deep-learning-based approach-
es to leverage on node embeddings extracted from GNNs
to generate graph embeddings for graph-based applications
(Zhang et al. 2018; Xu et al. 2019).

The key to many graph neural networks (Kipf and Welling
2017; Klicpera, Bojchevski, and Günnemann 2019) is to
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define an aggregation operation, which propagates the
neighbor information to a target node in an iterative man-
ner. This aggregation operation can be further interpreted as
two sequential steps, 1) applying a feature fitting function
g(X) = XW on the node feature matrix X with a learnable
parameter matrix W , then 2) propagating the new represen-
tation on the graph adjacency matrix A by using A · g(X)
before fitting it into a nonlinear activation function. While
being mathematically simple and easy to implement, these
GNNs may result in degenerated node embedding due to the
non-smooth feature fitting function g(X) employed in the
first step, particularly in graphs with noisy features. What is
more, when the resulted node embedding is further used to
perform downstream graph classification via summarization
or pooling operation, the over-fitting of nodes features and
spread of noise features will render the entire graph vulner-
able, leading to suboptimal results. This problem, unfortu-
nately, has not been studied in all existing GNNs.

The second limitation of current GNN-based approach-
es in the graph classification task is that they only exploit
local information via convolution or neighbor aggregation,
but have largely ignored the global topological information.
They either summarize the embedding for all the nodes via
a simple readout function, or apply a pooling operation se-
quentially in the GNNs frameworks. The former approaches
such as GIN (Xu et al. 2019) can not distinguish the im-
portance of different nodes, while the latter methods, such
as DiffPool (Ying et al. 2018) and SAGPool (Lee, Lee, and
Kang 2019), coarsen the graph structure progressively and
thus will lose important information for nodes. How to in-
corporate the global information in GNNs to improve the
graph representation learning is less studied in the literature.

Motivated by the above observations, in this paper, we
propose a novel framework, Graph Smoothing Splines Neu-
ral Networks (GSSNN), to address both limitations in an
end-to-end framework. To address the first problem, we
develop a feature smoothing component which applies s-
moothing splines to enhance the node features. Specifically,
we construct a natural cubic splines function with two con-
tinuous derivatives to minimize the penalized residual sum
of squares. Fig. 1 illustrates the effectiveness of smoothing
splines. This feature smoothing operation will dramatically



reduce the noisy effect that may exist in graph data, enabling
a high-quality and more robust graph representation.

To capture the global topological information for the
graph classification (problem 2), we develop a node feature
scoring function, which selects important node features as
knots, based on which a set of basis functions are defined to
expand each node feature for graph representation learning.
Specifically, we combine the global information, closeness
centrality, as well as the degree of each node with a self-
attention module, to score the importance of each node, so
that both local and global information are maximumly ex-
ploited in our unified framework.

Our novel design enjoys a number of benefits. First, the n-
ode feature scoring function provides interpretability for the
classification results. This is because when we utilize knot
features to enhance each node, the amount of information
generated by the enhancement process is personalized by d-
ifferent nodes. In other words, each node has a unique de-
scription of the characteristics and sub-structure of impor-
tant nodes. Second, the feature smoothing module, called
Scaled Smoothing Splines (S3), can be easily inserted into
existing graph neural networks like GCN (Kipf and Welling
2017) and GAT (Veličković et al. 2018) to improve their
performance. Third, the node feature scoring, node feature
smoothing, and graph convolution components can be inte-
grated in an end-to-end framework, enabling effective graph
classification.

Figure 1: An example of the smoothing splines in two-
dimensional space, where the fitted curve without Smooth-
ing Splines (SS) in blue and the fitted curve with SS in green.
The blue curve try to fit all the data including exact and noise
data, while the green curve with SS is smoother and gener-
alized to fit the trend of exact data.

Our extensive evaluations demonstrate that GSSNN out-
performs the SOTA methods on six biological and social
datasets on graph classification. The major contributions of
this paper are summarized as follows.

• We propose a novel Scaled Smoothing Splines (S3) mod-
ule to smooth each propagation layer for graph neural net-
works, which can be inserted into existing graph neural
networks to improve their performance.

• We propose an end-to-end model Graph Smoothing S-
plines Neural Networks (GSSNN) that flexibly smooth

and enhance node features, jointly exploit local and global
information, and easily provide interpretability for graph
classification.

• Extensive experimental results have verified the effective-
ness of our model for graph classification on benchmark
datasets.

Related Works
In this section, we briefly summarize two main kinds of
methods of graph classification: kernel-based methods and
GNN-based methods.

Kernel-based methods
Typically, kernel-based algorithms first decompose graph-
s into sub-components based on the kernel definition, then
build graph embeddings in a feature-based manner. Lastly,
some machine learning algorithms (i.e., SVM) are applied
to perform graph classification. The representative meth-
ods include Weisfeiler-Lehman subtree kernel (WL) (Sher-
vashidze et al. 2011), the graphlet count kernel (GK) (Sher-
vashidze et al. 2009) and the Random Walk (RW) (Vish-
wanathan et al. 2010).

GNN-based methods
With the powerful capabilities of GNN in non-Euclidean da-
ta, the GNN-based approach for graph representation learn-
ing has also spawned some representative works, including
GCAPS-CNN (Verma and Zhang 2019), CapsGNN (Xinyi
and Chen 2019) and GIN (Xu et al. 2019). The intuition of
these methods is to collect all nodes features through GNNs
to generate graph representation. Graph pooling method-
s based on GNNs also have achieved good results, includ-
ing global pooling methods Set2Set (Vinyals, Bengio, and
Kudlur 2015), SortPool (Zhang et al. 2018), and hierarchi-
cal pooling methods DiffPool (Ying et al. 2018), SAGPool
(Lee, Lee, and Kang 2019). The key of graph pooling meth-
ods is to reduce the size of nodes through learning topology-
based node assignments. For instance, SAGPool method e-
valuates the importance of each node, then retains the top K
important nodes and discards the remaining nodes to gen-
erate graph representation. In contrast, we will use all node
embedding for graph classification.

Our work is focused on GNN-based method. Differen-
t from existing methods, we propose a novel model GSSNN
that not only keeps the overall structure but highlights im-
portant nodes features through S3 module.

Notation and Preliminaries
In this section, we introduce the notation and problem defi-
nition, as well as backgrounds on smoothing splines.

Notation and Problem Definition
We introduce some basic concepts and formalize the prob-
lem of graph embedding. For easy retrieval, we summarize
the commonly used notations in Table 1.

Definition 1. Node Importance Estimation. Given a graph
G = (V, E), in which V are the set of nodes, E are edges



Table 1: Commonly used notations.

Notations Descriptions

G = {Gi}ti=1 a set of graphs
G = (V, E) A graph
V The set of nodes in graph G
E The set of edges in graph G
v,w The nodes v, w ∈ V
N The number of nodes in graph G, N = |V|
D(v) The degree centrality of node v
C(v) The closeness centrality of node v
Sv The self-attention importance score of node v
P (v) The final importance score of node v
ξjk The kth knot for the jth feature
K The number of knots for one feature dimension

between them. The goal of node importance estimation is
to learn a mapping function: V → RN×1 that estimates the
importance score of each node v in graph.

Definition 2. Graph-level Representation Learning. Given
a set of graphs G = {Gi}ti=1 with adjacency matrix Ai ∈
RNi×Ni and node featuresXi ∈ RNi×d, where t denotes the
number of graphs, Ni := |Gi| denotes the number of nodes
in graphGi, d denotes the dimension of nodes features, each
graph Gi belongs to one category labeli. The goal of graph-
level representation learning is to learn a mapping function
: G → Rn that project each graph Gi into low dimensional
vectors in spaces Rn, where n� t.

Smoothing Splines
Smoothing Splines (SS) is a kind of regression skill, similar
to regularization methods like ridge and lasso regression. SS
aims to solve the following problem: among all functions
f(x) with two continuous derivatives, find one that mini-
mizes the penalized residual sum of squares

RSS(f, λ) =

N∑
i=1

{yi − f (xi)}2 + λ

∫ b

a

{f ′′(t)}2 dt, (1)

where λ is a fixed smoothing parameter, xi is a scalar and
a < x1 < · · · < xN < b. It has been shown that (1) has an
explicit, finite-dimensional, unique minimizer f̂(x) which is
a natural cubic spline with knots at the unique values of the
xi and f̂(xi) = yi, i = 1, ..., N . The natural cubic spline
with K knots ξk ∈ R, k = 1, ...,K can be represented by:

α1(x) = 1, (2)
α2(x) = x, (3)

αk+2(x) = dk(x)− dK−1(x), (4)

where

dk(x) =
(x− ξk)3+ − (x− ξK)

3
+

ξK − ξk
, (5)

ξ1 < ξ2 < ... < ξK . (6)

Each of these basis functions can be proved to have ze-
ro second and third derivative for X ≥ ξK , which means

the minimizer is linear beyond the boundary. The f̂(x) that
minimizes (1) with two continuous derivatives has the form

f̂(x) =

N∑
i=1

αi(x)θi, (7)

where θi is the learnable parameter. In this paper, the superi-
ority of smoothing splines is exploited for graph embedding.

Methodology
In this section, we outline the unified model GSSNN and
show how it is used to generate high-quality graph embed-
dings which then can be applied to graph classification. Fig-
ure 2 shows the schematic of GSSNN model.

Scaled Smoothing Splines
Inspired by smoothing splines, we designed Scaled Smooth-
ing Splines (S3) in graph neural networks. Graph Convolu-
tional Networks (GCN) can be represented as:

f(X, Â) = σ
(
Â σ

(
ÂXW (0)

)
W (1)

)
, (8)

where Â is the symmetric normalized laplacian of graph G;
X ∈ RN×d is the node features;W (0) ∈ Rd×d1 andW (1) ∈
Rd1×d2 are learnable parameters. Considering the first layer
in GCN:

f1(X, Â) = σ
(
ÂXW (0)

)
, (9)

we use h1j,k to denote the input of the jth node’s kth feature
in the second layer. Then we have:

gk(Xi) = XT
i W

0
k , (10)

h1j,k =

N∑
i=1

Âj,igk(Xi), (11)

with i = 1, 2, ..., N and k = 1, 2, ..., d1. When finishing
the training of GCN, gk(x) is sensitive to noisy data and the
non smoothness potentially reduces the performance of GC-
N. Let (x1i , x

2
i , ..., x

d
i ) be the feature of node vi. Among all

the GCN models, we choose the one with the best perfor-
mance and use yi to denote the value of gk

(
x1i , x

2
i , ..., x

d
i

)
for vi in that GCN model. To make gk smooth and insensi-
tive to noisy data, we hope to minimize the following penal-
ized residual sum of squares:

RSS(gk, λ)=

N∑
i=1

{
yi−gk

(
x1i , x

2
i , ..., x

d
i

)}2
+ λ

∫
B

d∑
j=1

(
∂2gk
∂xj 2

)2

dx, (12)

where B = (a1, b1) × (a2, b2) × ... × (ad, bd) and xji ∈
(aj , bj),∀i = 1, ..., N.

Theorem 1 If gk
(
x1, x2, ..., xd

)
that minimizes Eq.(12)

with two continuous derivatives has the form

gk
(
x1, x2, ..., xd

)
=

d∑
j=1

uj(x
j), (13)



Figure 2: Schematic of GSSNN architecture. (i) Node Importance Scoring: estimates the importance of nodes based on graph
features and topology through the integration of self-attention score and weighted centrality score; (ii) Scaled Smoothing
Splines: uses top K important nodes features as knots based on node importance scores, to enhance each node via a unique
structural perspective for identified features, and scales the dimension through a fully connected layer; (iii) The simplified
architecture of GSSNN (right): consists of a node importance scoring layer, two S3 layers, additional graph convolution layers,
and a readout layer. The model is trained end-to-end.

and uj(xj) has two continuous derivatives, then Eq.(12) has
an explicit, finite-dimensional, unique minimizer:

gk
(
x1, x2, ..., xd

)
=

d∑
j=1

N∑
i=1

αj
i (x

j)θij , (14)

where αj
i (x

j) can be represented by:

αj
1(x

j) = 1, (15)

αj
2(x

j) = xj , (16)

αj
k+2(x

j) = djk(x
j)− djN−1(x

j), (17)

where

djk(x
j) =

(
xj − ξjk

)3
+
−
(
xj − ξjN

)3
+

ξjN − ξ
j
k

, (18)

ξjk = xjlj,k ∈ R and aj < xjlj,1 < ... < xjlj,N < bj . (19)

(aj , bj) is the range of the jth feature values of nodes V; xji
is the value of the jth feature of node vi; lj,k are the node
indexes that make xjlj,1 < ... < xjlj,N ; θij is the learnable
parameter.

Smoothing Feature Enhancement. According to
Theorem1, we design a natural cubic splines function on

(x1, x2, ..., xd) to make gk(x) minimize Eq.(12).

Fs(X) = σ([β(XT
1 ), β(X

T
2 ), ..., β(X

T
N )]TWs + bs) (20)

β(x1, x2, ..., xd) = (γ(x1), γ(x2), ..., γ(xd)) (21)

γ(xj) = (αj
1(x

j), αj
2(x

j), ..., αj
K(xj)), (22)

where K is the number of knots for one feature dimension,
σ is the activation function, Ws and bs are learnable param-
eters for scaling the expanded nodes dimension. We can ap-
ply them on every single layer of the graph neural network
as follows.

f1(X, Â) = σ
(
ÂFs(X)W (0)

)
. (23)

Theoretically the natural cubic splines function can make
every gk(x) minimize Eq.(12), if N knots are chosen for ev-
ery feature dimension. Eq.(11) guarantees the input of every
node in the second layer can be written as a linear combi-
nation of gk(x), k = 1, 2, ..., d1. Therefore the input of ev-
ery node in the second layer can also minimize a penalized
residual sum of squares like Eq.(12).

Due to the expansion in dimensions of the enhancement
process may lead to overfitting, we scaled each node fea-
tures into a fixed dimension through a fully connected layer
in Eq.(20). After the enhancement process, each node will
interact with different description through graph convolution
and finally all the nodes can vote which label the graph be-
long to.



It would be very time-consuming and over smooth if we
use all the nodes features as the knots. In practice, thinning
strategy is used and we choose the top K most important n-
odes features as the knots. Let ξjk denote the jth feature of

the lj,kth important node, then
(
xj − ξjk

)3
+

can be regarded

as the information enhancement function. The difference be-
tween

(
xj − ξjk

)3
+

and
(
xj − ξjK

)3
+

can help characterize

the relationship between the lj,kth and the lj,K th important
nodes. When xj equals to the node feature value xji , djk(x

j)
can be viewed as a description of the relationship between
the lj,kth and the lj,K th important nodes for the node vi.

Based on Theorem1, ξjk should be sorted according to the
top K important nodes feature values. In practice, we sim-
plify the sorting operation for every feature dimension and
fix the order of ξjk, j = 1, ..., d, according to the importance
scores of the important nodes. There are two reasons why
we simplify the sorting operation. One is that we hope every
dimension of the augmented features in Eq.(21) describe the
information from the same subset of the important nodes.
The other is that if the order of the importance scores is con-
sistent with the order of the feature values in any dimension,
S3 can still promise the smoothness to some extent.

In practice, when using node features as knots in S3, each
dimension of node feature cannot guarantee the consistent
greater-than relationship aj < xjlj,1 < ... < xjlj,N < bj
in Eq.(18), and there may be cases where the features are
equal, resulting in that the denominator of djk(x

j) could be
zero. Therefore, we add a small value ε to the denominator
to ensure it’s not zero.

Node Importance Scoring Mechanism
In order to select important nodes features adaptively to
serve as knots in S3 module, we propose the node im-
portance scoring mechanism to learn a mapping function:
V → RN×1 to evaluate the node importance, according to
both the topology and features of graph, which consists of
two components: self-attention scoring and centrality scor-
ing.

Self-attention Scoring. Without any information about n-
ode importance in a graph, we try to use the topology and
feature of itself to learn an initial score. Self-attention mech-
anism have been widely used in recent deep learning stud-
ies. We adopt the self-attention scoring method of SAGPool
(Lee, Lee, and Kang 2019) to get an initial importance score
S ∈ RN×1 as follows.

S = σ
(
Â σ

(
ÂXW (0)

)
W (1)

)
, (24)

where σ is the activation function, Â is the symmetric nor-
malized laplacian of graph G; X ∈ RN×d is the node fea-
tures; W (0) ∈ Rd×d and W (1) ∈ Rd×1 are learnable param-
eters.

Centrality Scoring. Without any other information, it is
reasonable to assume that highly central nodes are more im-
portant than less central ones. Thus, we adjust the initial s-

cores based on node centrality to preserve more global char-
acteristics, including degree and closeness centrality.

Degree centralityD(v) is a simple centrality measure that
determines the importance of nodes by counting the num-
ber of neighbors. Some works also utilize this information
like (Wu, He, and Xu 2019; Park et al. 2019). We normal-
ize it by dividing the maximum possible degree N − 1 in
a simple graph, where N is the number of nodes, so that
it allows comparisons between nodes of graphs of different
sizes. Closeness centrality C(v) implies the proximity of a
node v to other nodes w, calculated as the reciprocal of the
average shortest path distance between the node v and all
N − 1 reachable nodes.

As prior knowledge in a graph, degree and closeness cen-
trality provide useful information about the node importance
in graph classification. We need to balance of degree central-
ity, closeness centrality and self-attention scores. Therefore,
we utilize weighted sum with three learnable weights qs, qd
and qc to measure their contributions to the final scores. At
last, we apply an activation function σ as follows.

P (v) = σ (qsSv + qdD(v) + qcC(v)) , (25)

where for node v, Sv is initial important score, and P (v) is
final importance score.

Model Architecture
We implement our model GSSNN with an end-to-end ar-
chitecture. The right panel in Figure 2 shows a simplified
version. As we can see, for each epoch, we first compute the
important scores of nodes, and then with top K important
nodes features as knots, node features are smoothed via S3

module before each graph convolution layer. At last, follow-
ing several graph convolution layers to make the expanded
features deeply integrated based on graph topology. In ad-
dition, batch normalization is added after each propagation
layer for improving the speed and stability of propagation.

Readout Layer. For keeping the permutation invariant
and graph isomorphism properties, we apply summation
pooling function that sums all node features after graph con-
volution to get a fixed size graph-level representation. In ad-
dition, the summarized output feature can be concatenated
with the knots features used in S3.

hG = CONCAT {SUM {hv|v ∈ G} , p (ξi|i = 1, ...,K)} ,

where p is a pooling function, such as mean operation.

Model Training
After readout layer, we take the graph embedding and feed it
to a multilayer perceptron (MLP) for predicting graph labels.
Our model is trained by minimizing the cross-entropy loss
over all labeled training examples:

L = −
∑
l∈YL

F∑
f=1

Ylf lnXlf , (26)

where YL is the set of labeled graph, Xlf is the f -th entry
of the network output for i-th labeled graph and Ylf denotes
its ground truth label.



Complexity Analysis
For the S3 module, the time complexity is O(NdK), where
N is the number of nodes in the graph, d is the dimensions
of the original node feature and K is the number of knots
for one dimension. The computational complexity of the re-
maining structures is the same with GCN (Kipf and Welling
2017).

Experiments
In this section, we conduct extensive experiments to verify
the performance of proposed model GSSNN on graph clas-
sification.

Experiments Setup
Datasets. We validate the performance of generated graph
representations on classification task over 4 biological
datasets and 3 social datasets (Kersting et al. 2016). The s-
tatistics of the datasets are summarized in Table 2.

Biological datasets. The MUTAG dataset consists of 188
chemical compounds divided into two classes according to
their mutagenic effect on a bacterium. PROTEINS are sets of
proteins that are classified into enzymes and non-enzymes.
D&D consists of protein structures, with the nodes in each
graph represent amino acids. NCI1 is a subset of balanced
datasets of chemical compounds screened for ability to sup-
press or inhibit the growth of a panel of human tumor cell
lines. Since nodes in the four datasets have discrete labels,
the node input features are initialized as one-hot of labels.

Social datasets. IMDB-BINARY and IMDB-MULTI are
movie collaboration datasets. Each graph corresponds to an
ego-network for each actor/actress, and the task is to classi-
fy the genre graph it is derived from. COLLAB is a scien-
tific collaboration dataset, derived from public collaboration
datasets, and the task is to classify each graph to a field the
corresponding researcher belongs to. Since nodes have no
label in the three datasets, the node input features are initial-
ized as the degree of each node.

Table 2: A summary of the benchmark Datasets. For each
dataset, we report the number of graphs, the source of graph-
s, number of classes, number of averaged nodes, and number
of averaged edges, respectively.

Dataset Source Graphs Classes Avg.N Avg.E

MUTAG Bio 188 2 17.93 19.79
PROTEINS Bio 1113 2 39.06 72.81
D&D Bio 1178 2 284.31 715.65
NCI1 Bio 4110 2 29.87 32.30
IMDB-B Social 1000 2 19.77 193.06
IMDB-M Social 1500 3 13 131.87
COLLAB Social 5000 3 74.49 4914.99

Baselines. We compare our model to several state-of-the-
art baselines, including 3 kernel-based methods and 6 GNN-
based methods, to evaluate the effectiveness of our model.
The details are given as follows.

• Kernel-based methods: Weisfeiler-Lehman Kernels (WL)
(De Vries and de Rooij 2015), Graphlet Count Kernel
(GK) (Shervashidze et al. 2009) and Deep Graph Kernel
(DGK) (Yanardag and Vishwanathan 2015). These three
algorithms are sub-components based and then machine
learning algorithms are applied to perform graph classifi-
cation.

• GNN-based methods: Three algorithms without pooling
are compared: GCAPS-CNN (Verma and Zhang 2019),
Capsule Graph Neural Network (CapsGNN) (Xinyi and
Chen 2019) and Graph Isomorphism Network (GIN) (Xu
et al. 2019); Another three GNNs with pooling are com-
pared: SortPool (Zhang et al. 2018), DiffPool (Ying et al.
2018) and SAGPool (Lee, Lee, and Kang 2019).

Parameter Settings. In our experiments, we evaluated all
the GNN-based methods over the same random seed using
10-fold cross validation. 10 percent of the data was used for
testing and the rest were used for training. In addition, the
same early stopping criterion, hyper-parameter selection s-
trategy are used for all the baselines to ensure a fair com-
parison. The optimal hyper-parameters are obtained by grid
search. The ranges of grid search are summarized in Table 3.
We implemented GSSNN using the Adam optimizer (King-
ma and Ba 2014) and the geometric deep learning extension
library provided by (Fey and Lenssen 2019).

Table 3: The grid search space for the hyperparameters.

Hyperparameter Range

Hidden dimension. 16, 32, 64
Weight decay 1e-4, 5e-4
S3 layer 1, 2, 3
Convolutional layer 2, 3, 4, 5
ξ number 3, 4, 5

Experimental Results
Graph Classification. We report averaged accuracy and
standard deviation in Table 4. By default, we use the re-
sults reported in the original work for kernel-based base-
lines (Xinyi and Chen 2019). Compared with kernel-based
and GNN-based baselines, our proposed method GSSNN
achieves the best graph classification performance on six bi-
ological and social datasets, demonstrating the capability of
GSSNN on classifying graphs. At the same time, the smaller
standard deviation compared with baselines can indicate that
GSSNN can generate a more robust graph representation.

Interpretability. One attractive property of our algorith-
m is that the important nodes, which are used as knots for
the Scaled Smoothing Splines, provides interpretability to
the classification results. Here we visualize the important
nodes selected by our algorithm in Figure 3. Specifically,
We choose to depict the topology of MUTAG graphs, which
consists of chemical compounds divided into two classes ac-
cording to their mutagenic effect on a bacterium, where mu-
tagenic effect mainly depends on the structure of the chemi-
cal compound.



Table 4: Graph classification results of biological and social datasets in accuracy.

Method MUTAG NCI1 PROTEINS DD COLLAB IMDB-B IMDB-M

WL 82.05±0.36 82.19±0.18 74.68±0.49 79.78±0.36 79.02±1.77 73.40±4.63 49.33±4.75
GK 81.58±2.11 62.49±0.27 71.67±0.55 78.45±0.26 72.84±0.28 65.87±0.98 43.89±0.38
DGK 87.44±2.72 80.31±0.46 75.68±0.54 73.50±1.01 73.09±0.25 66.96±0.56 44.55±0.52

GCAPS-CNN 89.62±5.38 81.35±2.37 75.70±3.86 78.82±3.17 77.32±1.98 72.02±4.10 49.31±5.30
GapsGNN 87.78±6.68 78.25±2.22 75.68±3.22 75.88±3.41 79.67±1.24 74.68±3.10 52.17±4.25
GIN 93.50±6.49 80.85±2.34 76.81±3.78 77.76±2.27 80.50±1.43 78.60±3.37 54.33±4.49

SortPool 86.62±4.72 70.36±4.36 76.72±3.77 75.27±2.60 78.70±1.52 74.40±5.29 53.07±5.20
DiffPool 89.79±8.15 78.29±3.33 77.02±3.23 70.95±2.41 79.70±1.84 78.08±4.24 53.13±4.70
SAGPool 90.42±7.78 77.62±2.37 76.55±3.50 76.91±2.12 79.88±1.02 78.10±4.20 53.80±4.08

GSSNN 96.77±4.68 80.75±4.07 79.73±3.31 80.26±2.50 81.60±1.26 80.10±3.25 59.00±3.80

(a) Class 1: graph 1 (b) Class 1: graph 2

(c) Class 2: graph 1 (d) Class 2: graph 2

Figure 3: Visualization of important nodes in MUTAG
dataset. We extract 4 graphs from two different classes and
draw the topology of each graph, where the red nodes repre-
sent important nodes selected by the trained GSSNN.

As we can see from Figure 3, important nodes are mainly
focused on heavy atoms with large degree, which determine
the structure and properties of the compound to a large ex-
tent. Therefore, the important nodes features have a great
influence on the mutagenic effect. Understanding these im-
portant nodes or substructures which affect the graph classi-
fication results is very important to many applications such
as drug discovery in biological domain.

Global Information. Our scoring component exploits
both local and global information from three aspects (as
shown in Eq.(25)), self-attention score Sv , node degree
D(v), and closeness C(v). We report the results using d-
ifferent strategy in Table 5. It is clear that exploiting glob-
al information C(v) leads to significant improvement over
other strategies which only consider local information such
as self-attention score and degree information. This demon-
strates the effectiveness of our design in exploiting global
topological information.

Table 5: Graph classification accuracy with different scoring
strategies.

Method Sv Sv + D(v) Sv + D(v) + C(v)

MUTAG 88.89 94.44 96.77
DD 74.62 77.78 80.26
IMDB-B 77.30 79.30 80.10

S3 as a Plugin. Our S3 module can also serve as an indi-
vidual layer to plug into existing graph neural networks. To
demonstrate the effectiveness of the smoothing module, we
integrate S3 with two most important GNNs, GCN and GAT.
Specifically, S3 module is added after the propagation lay-
ers of GCN and GAT respectively, and following the same
readout layer to generate graph representation. The param-
eter setting is consistent across all methods. As shown in
Table 6, the performance on graph classification of models
plugged with S3 outperform the model itself.

Table 6: Graph classification results of existing GNNs
plugged with S3 in accuracy.

Method MUTAG PROTEINS DD IMDB-M

GCN 93.50 76.81 77.76 54.33
GCN+S3 96.77 79.73 80.26 59.00

GAT 95.33 77.48 77.78 55.33
GAT+S3 96.89 80.18 81.20 56.67

Conclusion
GNNs are effective algorithms for graph classification.
However, existing GNNs fail to explore the smoothing n-
ode feature and ignore global topological information. To
overcome these limitations, we present an end-to-end learn-
ing algorithm, Graph Smoothing Splines Neural Network-
s (GSSNN), for graph classification. By employing the s-
moothing splines to smooth nodes features, our algorithm
enables a high-quality and more robust graph representation.



With the integration of global information closeness central-
ity, as well as degree information into a self-attention mod-
ule, our algorithm provides important score to each node.
The important nodes features are served as knots in Scaled
Smoothing Splines (S3) that can be potentially used for in-
terpreting classification results. Our smoothing component
S3 can be easily fit into existing GNN models, achieving im-
provement for the graph classification task. Extensive exper-
imental results on graph classification demonstrate the state-
of-the-art performance on six biological and social datasets.
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