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Abstract

Neighborhood aggregation algorithms like spectral graph
convolutional networks (GCNs) formulate graph convolu-
tions as a symmetric Laplacian smoothing operation to ag-
gregate the feature information of one node with that of its
neighbors. While they have achieved great success in semi-
supervised node classification on graphs, current approaches
suffer from the over-smoothing problem when the depth of
the neural networks increases, which always leads to a notice-
able degradation of performance. To solve this problem, we
present graph convolutional ladder-shape networks (GCLN),
a novel graph neural network architecture that transmits mes-
sages from shallow layers to deeper layers to overcome the
over-smoothing problem and dramatically extend the scale
of the neural networks with improved performance. We have
validated the effectiveness of proposed GCLN at a node-wise
level with a semi-supervised task (node classification) and an
unsupervised task (node clustering), and at a graph-wise level
with graph classification by applying a differentiable pooling
operation. The proposed GCLN outperforms original GCNs,
deep GCNs and other state-of-the-art GCN-based models for
all three tasks, which were designed from various perspec-
tives on six real-world benchmark data sets.

Introduction
Graphs are of the essence for constructing non-Euclidean
data and they are omnipresent in most areas. In the social
media industry, for instance, users, through their personal
profile information, are linked with and interact with other
users (e.g., friends, colleagues), and the entire social me-
dia network is modeled as an attributed graph for prod-
uct/friend/community recommendations (node clustering);
In medicine and pharmacology, molecules and chemical
bonds can be constructed as graphs to potentially discover
new drugs by identifying their bio-activities (node clas-
sification (Defferrard, Bresson, and Vandergheynst 2016;
Gilmer et al. 2017)); In academic citation networks, pa-
pers are connected by their citations, and the titles, au-
thors, venues and keywords form graph characteristics for
automatic categorization (semi-supervised node classifica-
tion (Velickovic et al. 2017; Kipf and Welling 2016b;
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Zhang et al. 2016) and image classification(Liu et al. 2019b;
2019a)).

There has recently been a rise in interest in leveraging
embedding methods or deep learning algorithms for graphs.
Many probabilistic models (Grover and Leskovec 2016;
Tang et al. 2015) or matrix factorization-based works (Cao,
Lu, and Xu 2015; Wang et al. 2017) aim to capture the pat-
terns (walks) with neighborhood connections and the first or
second order proximities from a graph, and to encode the
graph into a low-dimensional, compact vector space. The
well-learned embedding can be directly analyzed by conven-
tional machine learning approaches. These methods exploit
and preserve the topological characteristics and lose sight of
the contextual features of the nodes in the graph.

Other methods simultaneously consider structural char-
acteristics and node features to learn a robust embedding
of the graph. Examples in this category include content
enhanced network embedding methods and neighborhood
aggregation (or message passing) algorithms. Content en-
hanced methods associate text features with the representa-
tion architectures, examples like TADW (Yang et al. 2015)
which incorporates the feature information into network
representation under a matrix factorization framework and
TriDNR (Pan et al. 2016) which trains a neural network ar-
chitecture to capture both structural proximity and attribute
proximity from the attributed graph. Neighborhood aggre-
gation algorithms (Dai et al. 2018; Li, Han, and Wu 2018;
Klicpera, Bojchevski, and Günnemann 2018), represented
as spectral graph convolutional networks (spectral GCNs)
(Kipf and Welling 2016b), introduce the Laplacian smooth-
ing operation to propagate the attributes of a node over its
neighborhood. Spectral-based algorithms have commanded
more attention among the aforementioned approaches due to
their significant improvements over semi-supervised tasks.

Spectral-based algorithms borrow the idea of filters from
the graph signal processing domain to conduct the graph
convolution operation, which can also be interpreted as elim-
inating noises from graph signal. The major difference be-
tween one type of spectral GCN and another lies in the de-
sign of the filter. Spectral CNNs (Bruna et al. 2013) formu-
late the filter with a collection of learnable parameters to
implement the convolution operation based on the spectrum



Figure 1: Influence of the depth of graph convolutional net-
works on semi-supervised node classification performance.
When GCN goes deep (layer>3), its classification accuracy
is decreased as the number of layers increases.

of the graph Laplacian. ChebNet (Defferrard, Bresson, and
Vandergheynst 2016) considers the filter as Chebyshev poly-
nomials of the diagonal matrix of eigenvalues, where the
Chebyshev polynomial is defined with a recursive formu-
lation. Spectral GCNs (Kipf and Welling 2016b) can be in-
terpreted as the first order approximation of ChebNet, which
assumes that the order of the polynomials of the Laplacian is
restricted to 1 while the maximum of the eigenvalues is re-
stricted to 2. Most recently, g-U-Nets (Gao and Ji 2019) at-
tempts to generate the position information of selected nodes
by using proposed gPooling and gUnpool operations, so the
classic computer vision methods can be applied in graphs
and increases the depth of the architecture. However, this
method heavily relays on the graph preprocessing and can
be difficult to train for good performance.

The major problem with all the aforementioned algo-
rithms is that the quality of the neighborhood aggrega-
tion procedure inevitably declines in a deep neural net-
work architecture that has many graph convolutional lay-
ers (Klicpera, Bojchevski, and Günnemann 2018). The line
chart (Fig.1) illustrates how the performance is degraded as
the depth of the GCN model is increased. The main reason
for this problem is that Laplacian smoothing in these ag-
gregation (or propagation) schemes over-smooths the node
features and renders the nodes from different clusters in-
distinguishable (Xu et al. 2018). Explicitly, adding multiple
GCN layers is equivalent to repeatedly conducting a Lapla-
cian smoothing operation, and the features of neighboring
connected nodes in the graph will converge to the same val-
ues. In the case of spectral GCN, the features will converge
in proportion to the square root of the node degree (Li, Han,
and Wu 2018), which is the over-smoothing problem ad-
dressed in this paper.

In this paper, we propose a novel graph convolutional
architecture, graph convolutional ladder-shape networks
(GCLN), which is built upon one contracting path and
one expanding path with contextual feature channels. The
ladder-shape architecture allows the network to directly
transmit and fuse the contextual information from the shal-
low layers to the deeper layers, which challenges the as-
sumption that neighborhood aggregation-based architec-
tures can only be shallow networks (e.g., the GCN per-
formance will necessarily be degraded when there are

more than three convolutional layers) because of the over-
smoothing of features during the propagation procedure.

To further extend GCLN to exploit the hierarchical em-
bedding information of graphs, we also fuse a differentiable
graph pooling module (Ying et al. 2018) with our frame-
work, so that GCLN can infer and aggregate the local topo-
logical structure as well as the coarse-grained topological
structure over graphs. We have not only evaluated the effec-
tiveness of GCLN with a semi-supervised task and unsuper-
vised task at the node-wise level, but have also conducted
graph classification to validate its predictive performance at
the graph-wise level.

Our main contributions are summarized as follows:

• We propose a novel graph convolutional network symmet-
rically constructed on one contracting and one expand-
ing path with contextual feature channels, which dramat-
ically extends the depth of spectral graph convolutional
networks.

• The proposed graph convolutional ladder-shape net-
work (GCLN) solves the problem of over-smoothed fea-
tures with many convolutional layers in neighborhood
aggregation-based neural networks.

• Extensive experiments on semi-supervised and unsuper-
vised node-wise node level tasks, and a graph-wise task
compared with sufficient classical and state-of-the-art
baselines demonstrate the effectiveness of GCLN.

Problem Definition
A graph is defined as G = {V, E}, where {vi}i=1,··· ,n ∈ V
represents all the nodes in a graph. ei,j = (vi, vj)i,j=1,··· ,n ∈
E indicates the set of binary linkage relationships between
two nodes, where ei,j = 1 if there is an edge between nodes
vi and vj, otherwise, ei,j = 0. An adjacency matrix A is used
to mathematically present the topological information of the
graph G, where each cell of the matrix A maps the corre-
sponding edge information encoded in E . A feature matrix
X preserves the features xi ∈ X pertinent to the node vi.

Node-wise Embedding Definition
Given G, the objective of graph neural networks is to embed
all the nodes V into a compact space Z ∈ Rn×d through
f : (A, X) 7−→ Z, where d, normally a smaller number, is
the dimension of the learned embedding. zi ∈ Z indicates
the encoded node vi with associated topological informa-
tion from A and feature information from X. Ideally, nodes
with similar characteristics are expected to remain close in
the embedding space. With well-learned embedding Z of the
graph G, the classical machine learning methods can be di-
rectly applied for semi-supervised tasks like node classifica-
tion and unsupervised tasks like node clustering.

Graph-wise Classification Definition
Given a set of aforementioned graphs G =
{(G1, y1), (G2, y2), ..., (Gk, yk)} where Gk ∈ G with
the corresponding labels yk ∈ Y, the purpose of graph-wise
tasks such as graph classification is to learn a mapping
f : G 7−→ Y which assigns the given graphs to the labels.



Each given graph is embedded into a low-dimensional
vector based on which the class label of the whole graph
can be inferred.

Preliminaries
The proposed GCLN is most related to two models: spec-
tral graph convolutional networks and u-shape networks.
We also employ the differentiable graph pooling module to
graph-wisely validate the effectiveness of GCLN. We elab-
orate the details of these three models in this section.

Graph Convolutional Networks

Figure 2: The architecture of a typical spectral graph convo-
lutional network. The performance of GCNs with more than
two or three layers will dramatically drop as a result of the
over-smoothing problem.

Standard graph convolutional networks (GCNs) (Kipf and
Welling 2016b), as shown in Figure 2, comprise a two-layer
semi-supervised framework which propagates the features
of a node over its neighboring nodes. The objective of GCNs
is to learn a spectral function f(X,A) where the adjacency
matrix A represents the topological characteristics of the
graph and matrix X preserves the interdependence of the
nodes and features. The propagation rule is more likely to
represent each node in the graph by aggregating its neigh-
borhood with self-loops, and the output of the networks is
a normalized node-level representation (or graph embed-
ding), which represents each node with a low-dimensional
vector. Because the spectral function f(•) conducts the fea-
ture smoothing on the topological adjacent matrix A, the
networks can distribute the gradient through the supervised
error and learn the representation of both annotated and un-
labeled nodes.

U-Net
The U-Net (Ronneberger, Fischer, and Brox 2015) is an el-
egant U-shape fully convolutional network architecture de-
veloped for bio-medical image segmentation. The architec-
ture consists of two parts: the down-sampling path and the
up-sampling path.

The down-sampling path is comprised of four blocks with
two convolutional layers and one max pooling (stride=2)
layer for each block. At each step following the down-
sampling path, the number of feature channels is doubled.
The contracting path captures the contextual features from
the input image for segmentation and passes the features to
the up-sampling path with skip connections.

The up-sampling path is also comprised of four similar
de-convolutional blocks and enables the model to simultane-
ously obtain accurate localization information and sufficient
contextual information from the down-sampling path.

The U-Net adequately and simultaneously exploits the
precise localization from the up-sampling path and the con-
textual information from the down-sampling path. The two
sources of information are correspondingly concatenated
through the feature channels during the training for bio-
medical image segmentation.

Differentiable Graph Pooling
The differentiable graph pooling module (Ying et al. 2018) is
designed to enable graph neural networks to conduct predic-
tive tasks over graphs rather than over nodes of one graph.

Graph pooling is necessary for graph-wise tasks such as
graph classification, and the challenge of the pooling oper-
ation in the graph setting, compared to the computer vision
setting, is that unlike an image, a graph has no natural spatial
location and unified dimension.

The differentiable graph pooling module solves the afore-
mentioned challenges by learning a differentiable soft as-
signment at each layer of a GNN model, assigning nodes
to a set of clusters according to the learned representations.
Thus, the pooling operation of each GNN layer coarsens the
given graph iteratively and generates a hierarchical repre-
sentation of every input graph on completion of the entire
training procedure.

Graph Convolutional Ladder-shape Networks

Figure 3: Illustration of a graph convolutional ladder-shape
networks (GCLNs). The network consists of two symmetric
paths: a contracting path (left) and an expanding path (right).
The contextual feature channels between the two paths are
used to pass and fuse contextual information from the con-
tracting path to the location information from the expanding
path in a simple but elegant operation.



The proposed GCLN is a symmetric architecture con-
structed of one contracting path and one expanding path
with GCN layers. Three contextual feature channels allow
the context features captured from the contracting path to
fuse with the localization information learned through the
expanding path. Each layer is built with the spectral graph
convolution and there are eight GCN layers in total in the
proposed framework.

Graph Convolutional Operation
The layers of GCLN are constructed on the first order ap-
proximation of Chebyshev spectral CNNs. The graph con-
volution here can be defined by the normalized graph Lapla-
cian matrix :

gθ ⊗ x = θ0Ix− θ1D−
1
2 AD−

1
2 x, (1)

where gθ is the spectral filter, x ∈ Rn indicates the signal
of the graph and ⊗ represents the convolution operator. Ix
is the identity matrix. D denotes the diagonal degree matrix
of topological adjacency matrix A and θk is the Chebyshev
coefficients.

Due to the condition of the first order approximation (Kipf
and Welling 2016b), the Chebyshev coefficients are further
simplified with θ = θ1 = −θ0, and the graph convolution is
updated as:

gθ ⊗ x = θ
(

I + D−
1
2 AD−

1
2

)
x, (2)

The convolution matrix is normalized through:

I + D−
1
2 AD−

1
2 7−→ I + D̃

− 1
2 ÃD̃

− 1
2 (3)

where D̃ =
∑

j Ãij and Ã = A + I.
Adopting the definition of graph convolution, given a

graph signal with m feature channels (e.g., X ∈ Rn×m, m
features associated with each node), the layer-wise propa-
gation rule of the spectral graph convolutional networks is
defined as:

H(l+1) = ϕ

(
D̃
− 1

2 ÃD̃
− 1

2 HlWl

)
. (4)

where H0 = X and Hl is the activation from the lth GCN
layer. Wl is the trainable weight matrix and ϕ is the activa-
tion function such as ReLU(•) and Linear(•).

For semi-supervised multi-class classification, the soft-
max activation function is applied, row-wisely, to the final
embedding of the graph. The form of the classifier is defined
as follows:

C = softmax
(

ÂReLU
(

ÂXW(l−1)
)

Wl
)
. (5)

where Â = D̃
− 1

2 ÃD̃
− 1

2 and Wl is the weight matrix be-
tween the last GCN-layer and the output layer.

The node classification loss function is written with cross-
entropy error as follows:

L :=
∑
i∈Vl

F∑
f=1

Yif ln Cif . (6)

where Vl denotes the set of annotated nodes and F is the
number of classes. Yif is the label indicator matrix mapping
the predicted nodes.

GCLN Contracting Path
The contracting path is a four-layer graph convolutional em-
bedding architecture in which each layer halves the size (the
number of neurons) of the previous layer. Each GCN layer
conducts the graph convolution with Eq.(4), followed by the
ReLU activation and dropout.

The contracting path can be considered as the encoder part
if GCLN is interpreted as an end-to-end encoder-decoder ar-
chitecture which encodes the topological characteristics and
features associated with each node into feature representa-
tions at multiple echelons. The contextual information of the
graph is captured through the contracting path and preserved
at each layer, and will be correspondingly transmitted to the
expanding path via the contextual feature channels.

GCLN Expanding Path
The expanding path mirrors the architecture of the contract-
ing path with the arrangement of the layers reversed. Each
layer doubles the number of neurons in the previous layer.
An element-wise summation operation is conducted to re-
ceive and fuse the contextual information skipped from the
contracting path as follows:

Hl
expanding = summation

(
Hl,H(L−l)

)
. (7)

where Hl is the latent representation from the lth layer and
L is the number of graph convolutional layers. For the ex-
periments described in this paper, L = 8.

The contextual feature channels allow the network to go
deeper and to fuse the contextual features from the contract-
ing side with the up-convolutional features from the expan-
sive side. This summation enables representations to be bet-
ter localized and obtained following many convolutions. The
indistinguishable features of nodes caused by repetitively
conducting a symmetrically normalized Laplacian smooth-
ing operation are directly characterized and enhanced, en-
abling them to merge with the contextual features from the
contracting path. As a result, the over-smoothing problem of
neighborhood aggregation-based algorithms is overcome.

A softmax activation takes the output from the last graph
convolutional layer to conduct the semi-supervised node
classification with Eq.(5) and Eq.(6).

Algorithm for GCLN
The pseudo-code of GCLN is described in Algorithm 1.

Step 2 walks through the contracting path and collects the
contextual information of the graph layer by layer, while
Steps 3 and 4 lead the network to go deep along the expan-
sive path and fuse the corresponding contextual information
via the feature channels. Steps 5 and 6 conduct the semi-
supervised node classification and update the network.

In particular, the input for each graph convolution layer in
the expanding path is the corresponding result of the sum-
mation, rather than the direct latent matrix Hexp.

Fig. 3 demonstrates the construction of the proposed
GCLN.



Figure 4: Illustration of differentiable graph pooling procedure. At each hierarchical layer, the embeddings of nodes are learned
and obtained through a GCN layer, after which the nodes are clustered according to the learned embeddings into the coarsened
graph for another GCN layer. The process is iterated for l layers and the final output is used for the graph classification task.

Algorithm 1 Graph Convolutional Ladder-Shape Networks for
Node Classification
Require:

G = {V,E}: a graph with nodes and edges;
X: the feature matrix;
T : the number of iterations;
o: the number of the neurons in the first convolution layer;

Ensure: o is divisible by 8.
1: for iterator = 1,2,3, · · · · · · , T do
2: Generate latent matrix H via Eq.(4) passing contracting

path;
3: Generate direct latent matrix Hexp via Eq.(4) passing ex-

panding path;
4: Conduct corresponding summation via Eq.(7) with H and

Hexp;
5: Get the prediction results via Eq.(5)
6: Update the model with the loss computed via Eq.(6);
7: end for

Extension - GCLN with Differentiable Pooling
To extend GCLN for the graph-wise task, we have added
a differentiable pooling layer behind each GCN layer and
taken the output from the last layer for graph classification.
The differentiable graph pooling formulates a general recipe
for hierarchically pooling nodes across a set of graphs by
generating a cluster assignment matrix S over the nodes
leveraging the output of each GCN layer. The cluster ma-
trix S on layer l is computed as follows:

S(l) = softmax
(
GCN

(
A(l),X(l)

))
. (8)

where GCN(A,X) is the graph convolutional operation
elaborated in the last subsection and the softmax function
is row-wisely conducted.

With cluster assignment matrix S, the differentiable pool-
ing layer coarsens the given graph, generating a new adja-
cency matrix A(l+1) and a new matrix X(l+1) by applying
the following equations:

X(l+1) = S(l)
T

Hl ∈ Rnl+1×d. (9)

A(l+1) = S(l)
T

AlS(l) ∈ Rnl+1×nl+1 . (10)
The generated A(l+1) and X(l+1) will be processed into the
next GCN layer.

Fig. 4 illustrates the general process of the differentiable
graph pooling.

Experiments
In this section, we set up the experiments compared to 15
classical and state-of-the-art methods to demonstrate the
solid performance of GCLN on graph node classification.
The experiments with 8-layer GCN and GAT validate the
existence of the over-smoothing problem and demonstrate
that GCLN is the solution to the problem. The contrast ex-
periments compared residual GCN and GAT to illustrate that
residual connection cannot effectively ameliorate the prob-
lem. We also reveal the effectiveness of GCLN on unsuper-
vised learning tasks with clustering experiments compared
to 16 peers. In addition, GCLN proves its predictive capabil-
ity with the differentiable graph pooling module on graph-
wise tasks such as graph classification.

Data Sets
We conducted the experiments using three real-world bib-
liographic data sets: Cora, Citeseer and Pubmed (Sen et al.
2008) and the details of the data set statistics are summa-
rized in Table 1. The data sets are used for both node-wise
classification and clustering.

Node Classification
We conducted node classification to validate the effective-
ness of GCLN on node-wise semi-supervised tasks.

Baseline Algorithms GCLN is compared with Classic
methods and GCN-based algorithms such as Chebyshev
(Defferrard, Bresson, and Vandergheynst 2016), GCN (Kipf
and Welling 2016b), GraphInfoMax (Veličković et al. 2018),
LGCN (Gao, Wang, and Ji 2018), StoGCN (Chen, Zhu,
and Song 2018), DualGCN (Zhuang and Ma 2018), GAT
(Velickovic et al. 2017), and g-U-Nets (Gao and Ji 2019).

Node Classification Setup We used an eight GCN-layer
GCLN (except for the input layer and the layer with soft-
max) to conduct all the experiments. The first layer consists
of 64 neurons and each following layer in the contracting
path halves the number of neurons in the previous layer. Be-
cause of the symmetric architecture of GCLN, the first layer
in the expanding path starts with 8 neurons and each subse-
quent layer doubles the number of neurons, until 64 neurons
are found in the last layer. 0.9 dropout and the ReLU acti-
vation function were applied after every graph convolutional



Table 1: Datasets for Node Classification and Clustering
# Nodes # Edges # Features # Classes # Training Nodes # Validation Nodes # Test Nodes Label rate

Citeseer 3,327 4,732 3,703 6 120 500 1,000 0.036
Cora 2,708 5,429 1,433 7 140 500 1,000 0.052

Pubmed 19,717 443,388 500 3 60 500 1,000 0.003

operation. The learning rate was retained at 0.01 for all the
experiments.

To verify the existence of the over-smoothing issue in the
neighbor aggregation algorithms, we also set up the experi-
ments for 8-layer GCN and GAT (the same number of lay-
ers as GCLN) to compare them with GCLN. For even fairer
comparison, we constructed the residual 8-layer GCN and
GAT, which adds a residual connection behind every layer,
and compared it with GCLN. It is noteworthy that the resid-
ual 8-layer GCN and GAT contain many more parameters
than GCLN.

Each experiment was conducted ten times and the average
scores are reported as detailed below.

Node Classification Results The experimental results are
summarized in Table 2. The GCN-based algorithms, such as
GCN, GAT, LGCN, StoGCN and DualGCN, take advantage
of the neighbor aggregation operation to propagate the fea-
ture of a node over its neighboring nodes, and outperformed
classical methods such as TADW and DeepWalk.

Compared to two-layer GCN and two-layer GAT, the clas-
sification performance of the 8-layer variations were signif-
icantly degraded (more than 60%), which verified the over-
smoothing issue in the graph convolution-based methods.

GCLN outperformed or matched all fifteen state-of-the-
art/classical peers, 8-layer GCN and 8-layer GAT (with
and without residual connections) across all three data sets.
The large margin (26.3% to 173.1%) of difference in the
classification results between GCLN, 8-layer GCN and 8-
layer GAT directly proves that GCLN successfully addresses
the over-smoothing problem of neighborhood aggregation-
based algorithms caused by the repetitious application of the
Laplacian smoothing operation.

To validate whether applying a residual mechanism to
spectral graph convolutional algorithms could alleviate the
over-smoothing problem, we set the experiments by adding
residual connections to GCN and GAT with eight layers to
vie with the normal eight-layer GCN and GAT as well as
GCLN. The last five rows of Table 2 illustrate that adding a
residual connection after each GCN layer dramatically en-
hanced performance when the network deepened (8 layers).
However, there is still a large margin between GCLN and
residual GCN. For GAT, the residual connections resulted
in a performance reduction compared to 8-layer GAT in all
three data sets. The last five sets of contrast experiments val-
idate that the naı̈ve residual connection is not an effective
solution to the over-smoothing problem.

Node Clustering
We evaluated the node-wise unsupervised predictive perfor-
mance of GCLN by conducting a clustering task on the same

Table 2: Comparison of classification accuracy

real-world data sets used for the node classification. Follow-
ing (Kipf and Welling 2016a), we remove the Softmax layer
in the model and reconstruct the topological information at
the last layer as the embedding of the given graph to train a
k-means for node clustering task.

Baseline Algorithms GCLN is compared with two groups
of peers: 1) Single source information-leveraged algo-
rithms such as DNGR (Cao, Lu, and Xu 2016), Graph En-
coder (Tian et al. 2014), GAE∗ (Kipf and Welling 2016a),
VGAE∗; and 2) Both content and structure-leveraged al-
gorithms such as GAE, VGAE, ARGA. Due to the page
limitation, some of baselines are not listed in the table.

Table 3: Clustering results



Table 4: Datasets for Graph Classification
# Nodes(max) # Nodes(avg.) # Graphs # Edges(avg.) # Nodes Labels # Classes Sources

D&D 5,748 284.32 1,178 715.65 82 2 Bio
ENZYMES 126 32.60 600 63.14 6 6 Bio
PROTEINS 620 39.06 1,113 72.81 4 2 Bio

Clustering Results Table 3 lists the experimental results
on Cora, Citeseer and Pubmed respectively. We conducted
experiments with other ten baselines and with more metrics
including normalise mutual information (NMI), Precision,
and Adjusted Rand index (ARI). We only demonstrate six
representative peers due to the limited space.

GCLN outperforms all baselines on Cora and Citeseer un-
der the five metrics, and achieved competitive performance
compared with the latest algorithm on Pubmed. For ex-
ample, on Cora, GCLN improves the accuracy from 7.5%
(compared with ARGA) to 69.1% (compared with RMSC);
raises the F1 score from 6.8% (compared with ARGA) to
79.6% (compared with K-means); and improves NMI from
21.8% (compared with TADW) to 72.3% (compared with
DNGR).

The results from methods such as DeepWalk and Big-
Clam, which only consider a single source of information
from the given graph, are inferior to the performance of
those that simultaneously leverage topological structure and
node characteristics. The graph convolutional models with
adversarial regularization also show their superiority over
their peers on the clustering task. GCLN, with 8 layers, is
not affected by the over-smoothing issue and maintains the
optimal performance over all sixteen baselines.

Graph Classifcation
We validated the graph-wise performance of GCLN with
differentiable pooling module by conducting graph classi-
fication on three biological graph data sets summarized in
the Table 4.

Baseline Algorithms We compared GCLN with both 1)
graph kernel-based methods such as GK (Shervashidze et
al. 2009), DGK (Yanardag and Vishwanathan 2015), WL-
OA (Kriege, Giscard, and Wilson 2016); and 2) deep learn-
ing models such as DCNN (Atwood and Towsley 2016),
ECC (Simonovsky and Komodakis 2017), DGCNN (Zhang
et al. 2018), DIFFPOOL; and 3) CapsuleNet-based such as
GCAPS-CNN (Verma and Zhang 2018) and GCAPS (Xinyi
and Chen 2019).

Experimental Setup To objectively evaluate the effective-
ness of GCLN on graph-wise level prediction, we applied
ten-fold cross validation to conduct the graph classification
experiments. Specifically, Eight-fold training was used to
train the model, one training fold was used as the valida-
tion set for hyper-parameter adjustment, and the remaining
fold was used for testing. Each experiment was conducted
ten times and the average accuracy is reported.

Graph Classification Results Table 5 compares the per-
formance of GCLN at a graph-wise level with other base-

lines. The results demonstrate that GCLN obtains the op-
timal average performance over all graph classification al-
gorithms. The 8-layer GCLN with DIFFPOOL increases
the accuracy compared to the 2-layer GraphSAGE(Hamil-
ton, Ying, and Leskovec 2017) with DIFFPOOL. GCLN
has also outperformed the CasuleNet-based algorithms by
around 4.3% accuracy as well as graph kernel-based meth-
ods by more than 10%. The accuracy of the graph classifi-
cation shows that the architecture of GCLN not only tackles
the over-smoothing problem at a node-wise level, but also
achieves stable performance at a graph-wise level.

Table 5: Graph Classification Results

Conclusion
Neighborhood aggregation algorithms inevitably suffer from
the over-smoothing problem when the depth of the network
is increased, because repeatedly conducting the Laplacian
smoothing operation leads to the features of neighboring
connected nodes in the graph converging to the same val-
ues. In this paper, we have proposed graph convolutional
ladder-shape networks (GCLNs) which address the over-
smoothing problem with a symmetric ladder-shape architec-
ture. The network consists of a contracting path, expanding
path and contextual feature channels which characterize and
enhance indistinguishable features by fusing the correspond-
ing contextual information from the contracting side to the
deeper layers. A comparison of the results of our experi-
ments on classical and state-of-the-art peers, 8-layer GCN,
8-layer GAT and their residual versions prove the superiority
of our method.

We have experimentally evaluated the performance of
GCLN from the perspective of a node-wise semi-supervised
task and node-wise unsupervised task as well as a graph-
wise task. All the experiments results validate the optimal
effectiveness of GCLN from multiple perspectives.
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