

Graph Self-Supervised Learning: Taxonomy, Frontiers, and Applications

Yixin Liu¹, Yizheng Zheng¹, Ming Jin¹, Feng Xia², Shirui Pan³

¹ Monash University
 ² RMIT University
 ³ Griffith University

June 18 1:30pm-3:30pm, 2023 (GMT +10)

Tutorial outline

	Content		<u>Presenter</u>
20 min	 Introduction and background Graph analytics and graph neural networks Background of graph self-supervised learning 	Part 1	Shirui Pan
30 min	 Taxonomy of graph self-supervised learning Uniform framework Categories of GSSL Representative methods 	Part 2	Ming Jin
30 min	 Frontiers of graph self-supervised learning graph self-supervised learning Efficient graph self-supervised learning Automatic graph self-supervised learning 	Part 3	Yizhen Zheng
	 Applications of graph self-supervised learning Recommender system Outlier detection More applications 	Part 4	Yixin Liu
10 min	 Future directions and conclusion Potential directions of graph self-supervised learning Conclusion 	Part 5	Yixin Liu

Part 1:Introduction and background

- Graph analytics
- Graph neural networks
- Graph self-supervised learning: Background

What is graphs?

Example: A Social Network Graph

A Graph has nodes/vertices and edges.

Nodes/vertices \rightarrow a person in the social network

 $\frac{\text{Edges}}{\text{people}} \rightarrow \text{Connection between}$

Graphs in real-world applications

Social Networks

Bibliography Networks

Protein Interaction Networks

Traffic Networks

Graph Analytics (1): Link Prediction

Friend Recommendation: Does Alice Know Bob in Facebook Item Recommendation: Which Items will The User Like?

Graph Analytics (2): Community Detection

Graph Analytics (3): Node Classification

-Graph from Jerry Zhu's Tutorial in ICML 07

- d1 is democratic
- d2 is republican
- What can we say about d3 and d4?

Graph Analytics (4): Graph Classification

Example: Drug Activity Prediction in the Biological domain

It is active to Breast Cancer?

Graph Analytics: Many Others...

- Sampling
- Ranking
- Evolution
- Matching
- Visualization
- Social Influence
- ...

Traditional Machine Learning Pipeline

Network Feature Extractions

- Nodes: degree/PageRank score
- Edges: # of common neighbors
 - **Feature Vector Construction**
 - Network Feature + Content Feature

Disadvantages:

- Ineffective
- Shallow Method
- Multiple Steps

- Machine Learning Tasks
 - Classification
 - Clustering

•

Link Prediction

Graph neural networks (GNNs)

Graph neural networks (GNNs)

A deep encoder which transfer the node in a graph into a latent vector

 $\operatorname{ENC}(v) = \operatorname{non-linear\ transformations}_{\text{of graph\ structure}}$

• Learn Better Representation for Graph Data

Big Picture of Graph Neural Networks

Motivation of graph self-supervised learning (GSSL)

Recent graph learning focuses on (semi-) supervised learning scenarios...

Recent graph learning focuses on (semi-) supervised learning scenarios...

Reliance on **labels** Problems:

• Problem 1: Expensive cost of data collection and annotation

Recent graph learning focuses on (semi-) supervised learning scenarios...

Reliance on **labels**→ Problems:

- Problem 1: Expensive cost of data collection and annotation
- Problem 2: Pool generalization (over-fitting)

Recent graph learning focuses on (semi-) supervised learning scenarios...

Reliance on **labels** Problems:

- Problem 1: Expensive cost of data collection and annotation
- Problem 2: Pool generalization (over-fitting)
- Problem 3: Vulnerable to label-related adversarial attacks

Recent graph learning focuses on (semi-) supervised learning scenarios...

Reliance on **labels**→ Problems:

• Expensive cost of data collection and annotation

Pool generalization

Vulnerable to label-related adversarial attacks

How to address these problems?

Zhang, M., Hu, L., Shi, C., & Wang, X. (2020). Adversarial Label-Flipping Attack and Defense for Graph Neural Networks. 2020 IEEE International Conference on Data Mining (ICDM), 791-800.

Self-supervised Learning (SSL)

Instead of relying on human-annotated labels, self-supervised learning acquires "labels" from data itself by using an "automatic" process.

Reduces the dependence on manual labels!

Self-supervised Learning (SSL)

"pretext task": use the data itself to generate labels and use supervised methods to solve unsupervised problems.

The representations learned by performing this task can be used as a starting point for our **downstream supervised tasks**.

Critical problem: how to design the pretext task?

Self-supervised Learning: Computer Vision

Contrastive learning:

(a) Original

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(g) Cutout

(b) Crop and resize

utout (

(h) Gaussian noise

n noise (i) Gaussian blur

ur (j) Sobe

(j) Sobel filtering

Figure 4. Illustrations of the studied data augmentation operators. Each augmentation can transform data stochastically with some internal parameters (e.g. rotation degree, noise level). Note that we *only* test these operators in ablation, the *augmentation policy used to train our models* only includes *random crop (with flip and resize), color distortion*, and *Gaussian blur*. (Original image cc-by: Von.grzanka)

https://simclr.github.io

Self-supervised Learning: NLP

Large-scale pre-trained language model: BERT

- 2 self-supervised pre-training schemes of BERT:
- Masked Language Modeling (MLM)
- Next Sentence Prediction (NSP)

https://medium.com/swlh/bert-pre-training-of-transformers-for-language-understanding-5214fba4a9af

How to **design pretext tasks** in graph domain?

Can we transfer the pretext tasks designed for CV/NLP to graph domain? - Not trivial!

Data space

- CV/NLP: 2D/1D regular-grid Euclidean space
- Graph: Non-Euclidean space

SSL on CV

Reliance between samples

- CV/NLP: Independent samples (image/text)
- Graph: data examples (nodes) in graph data are correlated by the topological structure

Cannot easily transfer! Need: exclusive definitions and taxonomies

Early studies:

Node2vec:

٠

• Graph autoencoder (GAE)

A pioneer work of graph SSL:

Deep Graph Infomax

- Authors Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, R Devon Hjelm
- Publication date 2019/5
 - Journal 7th International Conference on Learning Representations (ICLR 2019)
 - Total citations Cited by 1535

Growing trend!

Multi-view contrastive learning^[1]

Following questions:

- Which are the representative works?
- How to categorize them?
 - How to formulate them with a unified framework?
- What is the research frontiers?
- Where can GSSL be applied?
- What are the potential future directions?

Hassani, K., & Khasahmadi, A. H. (2020, November). Contrastive multi-view representation learning on graphs. In International Conference on Machine Learning (pp. 4116-4126). PMLR.
 Hu, Z., Dong, Y., Wang, K., Chang, K. W., & Sun, Y. (2020, August). Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD (pp. 1857-1867).
 Jiao, Y., Xiong, Y., Zhang, J., Zhang, Y., Zhang, T., & Zhu, Y. (2020, November). Sub-graph contrast for scalable self-supervised graph representation learning. In 2020 IEEE ICDM (pp. 222-231). IEEE.
 You, Y., Chen, T., Wang, Z., & Shen, Y. (2020, November). When does self-supervision help graph convolutional networks?. In International Conference on Machine Learning (pp. 10871-10880). PMLR.

Part 2:Taxonomy of graph self-supervised learning

- Uniform framework
- Categories of GSSL
- Representative methods

Graph Self-Supervised Learning: A Survey

IEEE TKDE-2022

Graph Self-Supervised Learning: A Survey

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, Philip S. Yu, Life Fellow, IEEE

Abstract—Deep learning on graphs has attracted significant interests recently. However, most of the works have focused on (semi-) supervised learning, resulting in shortcomings including heavy label reliance, poor generalization, and weak robustness. To address these issues, self-supervised learning (SSL), which extracts informative knowledge through well-designed pretext tasks without relying on manual labels, has become a promising and trending learning paradigm for graph data. Different from SSL on other domains like computer vision and natural language processing, SSL on graphs has an exclusive background, design ideas, and taxonomies. Under the umbrella of *graph self-supervised learning*, we present a timely and comprehensive review of the existing approaches which employ SSL techniques for graph data. We construct a unified framework that mathematically formalizes the paradigm of graph SSL. According to the objectives of pretext tasks, we divide these approaches into four categories: generation-based, auxiliary property-based, contrast-based, and hybrid approaches. We further describe the applications of graph SSL across various research fields and summarize the commonly used datasets, evaluation benchmark, performance comparison and open-source codes of graph SSL. Finally, we discuss the remaining challenges and potential future directions in this research field.

Index Terms—Self-supervised learning, graph analytics, deep learning, graph representation learning, graph neural networks.

Graph self-supervised learning: A survey

Y Liu, M Jin, S Pan, C Zhou, Y Zheng... - ... on Knowledge and ..., 2022 - ieeexplore.ieee.org Deep learning on graphs has attracted significant interests recently. However, most of the works have focused on (semi-) supervised learning, resulting in shortcomings including heavy label reliance, poor generalization, and weak robustness. To address these issues, self-supervised learning (SSL), which extracts informative knowledge through well-designed pretext tasks without relying on manual labels, has become a promising and trending learning paradigm for graph data. Different from SSL on other domains like computer vision ... ☆ Save 55 Cite Cited by 184 Related articles All 4 versions

Overview

Unified framework and systematic taxonomy

We propose a unified framework that mathematically formalizes graph SSL approaches. Based on our framework, we systematically categorize the existing works into four categories.

Comprehensive and up-to-date review

We conduct a comprehensive and timely review for classical and latest graph SSL approaches.

Abundant resources and applications.

We collect abundant resources on graph SSL, including datasets, evaluation benchmark, performance comparison, and open-source codes. We also summarize the practical applications of graph SSL in various research fields.

Outlook on future directions

We point out the technical limitations of current research. We further suggest six promising directions for future works from different perspectives.

Encoder-Decoder Framework

Encoder-Decoder Framework

3 SSL schemes Q1: How to share the encoder between two tasks?

(i) Pre-training and Fine-tuning (PF)

(iii) Unsupervised Representation Learning (URL)

4 Categories of Graph SSL

Q2: Which types of pretext tasks do we have?

(ii) Auxiliary Property-based

3 Types of Downstream Tasks

Q3: What kind of downstream tasks can be solved?

(i) Node-level tasks: Node classification, node regression...

(ii) Edge-level tasks:

Link prediction, edge classification...

(iii) Graph-level tasks:

. . .

graph classification, graph regression,

Outline of Graph SSL

Generation-based Methods: Origin

Generation-based methods aim to reconstruct the input data and use the input data as the supervision signals.

Origin: Autoencoder

Feature Generation

- **Pretext Decoder:** Fully connected layers that regresses the features
- SSL Loss: Regression loss (MSE)

Feature Generation: Representative Method

Graph completion

Intuition: Use the neighboring information to reconstruct the masked features (similar to MLM in BERT)

You, Y., Chen, T., Wang, Z., & Shen, Y. (2020, November). When does selfsupervision help graph convolutional networks?. In International Conference on Machine Learning (pp. 10871-10880). PMLR.

Feature Generation: Representative Method

Self-Supervised Masked Graph Autoencoder (GraphMAE)

Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C., & Tang, J. (2022, August). Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 594-604).

Structure Generation

- Pretext Decoder: Adjacency
 matrix reconstruction network
- **SSL Loss:** Binary cross-entropy

Structure Generation: Representative Method

• Graph Autoencoder (GAE)

Structure Generation: Representative Method

Pre-Training GNNs for Generic Structural Feature Extraction

• A multi-layer GNN is pretrained on three structure-guided tasks

 Part of GNN layers are fine-tuned on the given downstream tasks

Other Representative Generation-Based Methods

· GPT-GNN

Feature generation + Structure generation

Hu, Z., Dong, Y., Wang, K., Chang, K. W., & Sun, Y. (2020, August). Gptgnn: Generative pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD (pp. 1857-1867).

Generation-based Methods: Summary

Approach	Pretext Task Category	Downstream Task Level	Training Scheme	Data Type of Graph	Input Data Perturbation	Generation Target
Graph Completion [17]	FG	Node	PF/JL	Attributed	Feature Masking	Node Feature
AttributeMask [40]	FG	Node	PF/JL	Attributed	Feature Masking	PCA Node Feature
AttrMasking [16]	FG	Node	PF	Attributed	Feature Masking	Node/Edge Feature
MGAE [41]	FG	Node	JL	Attributed	Feature Noising	Node Feature
Corrupted Features Reconstruction [42]	FG	Node	JL	Attributed	Feature Noising	Node Feature
Corrupted Embeddings Reconstruction [42]	FG	Node	JL	Attributed	Embedding Noising	Node Embedding
GALA [43]	FG	Node/Link	JL	Attributed	-	Node Feature
Autoencoding [42]	FG	Node	JL	Attributed	-	Node Feature
GAE/VGAE [32]	SG	Link	URL	Attributed	-	Adjacency Matrix
SIG-VAE [44]	SG	Node/Link	URL	Plain/Attributed	-	Adjacency Matrix
ARGA/ARVGA [45]	SG	Node/Link	URL	Attributed	-	Adjacency Matrix
SuperGAT [46]	SG	Node	JL	Attributed	-	Partial Edge
Denoising Link Reconstruction [47]	SG	Node/Link/Graph	PF	Attributed	Edge Masking	Masked Edge
EdgeMask [40]	SG	Node	PF/JL	Attributed	Edge Masking	Masked Edge
Zhu et al. [48]	SG	Node	PF	Attributed	Feature Masking/Edge Masking	Partial Edge

Auxiliary Property-based Methods: Origin

Generation-based methods aim to predict node-, link- and graph- level properties which can be obtained from the graph data freely.

Origin: Supervised learning \Rightarrow Learn with "sample-label" pairs

Difference:

- \Rightarrow Supervised learning uses manual labels to train models
- \Rightarrow Auxiliary property-based methods uses pseudo labels to train models

Taxonomy: follows supervised learning

Auxiliary Property Classification

- Pretext Decoder:
 Classifier head
 - **SSL Loss:** Classification Loss (Cross-entropy)

How to acquire properties?

- Clustering
- Pair Relation

Clustering-based Auxiliary Property Classification: Representative Methods

Node Feature Clustering

Feature-based clustering (e.g., k-means)

Graph Topology Partitioning

Structure-based clustering (e.g., Metis)

You, Y., Chen, T., Wang, Z., & Shen, Y. (2020, November). When does selfsupervision help graph convolutional networks?. In International Conference on Machine Learning (pp. 10871-10880). PMLR.

Pair Relation-based Auxiliary Property Classification: Representative Method

Peng, Z., Dong, Y., Luo, M., Wu, X. M., & Zheng, Q. (2020). Self-supervised graph representation learning via global context prediction. arXiv preprint arXiv:2003.01604.

Auxiliary Property Regression: Representative Method

NodeProperty

Jin, W., Derr, T., Liu, H., Wang, Y., Wang, S., Liu, Z., & Tang, J. (2020). Selfsupervised learning on graphs: Deep insights and new direction. arXiv preprint arXiv:2006.10141.

Auxiliary Property-based Methods: Summary

Approach	Pretext Task Category	Downstream Task Level	Training Scheme	Data Type of Graph	Property Level	Mapping Function
Node Clustering [17]	CAPC	Node	PF/JL	Attributed	Node	Feature-based Clustering
M3S [54]	CAPC	Node	JL	Attributed	Node	Feature-based Clustering
Graph Partitioning [17]	CAPC	Node	PF/JL	Attributed	Node	Structure-based Clustering
Cluster Preserving [48]	CAPC	Node/Link/Graph	PF	Attributed	Node	Structure-based Clustering
CAGNN [55]	CAPC	Node	URL	Attributed	Node	Feature-based Clustering with Structural Refinement
S ² GRL [56]	PAPC	Node/Link	URL	Attributed	Node Pair	Shortest Distance Function
PairwiseDistance [41]	PAPC	Node	PF/JL	Attributed	Node Pair	Shortest Distance Function
Centrality Score Ranking [48]	PAPC	Node/Link/Graph	PF	Attributed	Node Pair	Centrality Scores Comparison
TopoTER [57]	PAPC	Node/Graph	URL	Attributed	Node Pair	Topological Transformation Indicator
NodeProperty [41]	APR	Node	PF/JL	Attributed	Node	Degree Calculation
Distance2Cluster [41]	APR	Node	PF/JL	Attributed	Node Pair	Distance to Cluster Center
PairwiseAttrSim [41]	APR	Node	PF/JL	Attributed	Node Pair	Cosine Similarity of Feature
SimP-GCN [58]	APR	Node	JL	Attributed	Node Pair	Cosine Similarity of Feature

Contrast-based Methods: Origin

Contrast-based methods learn by maximizing the agreement between two augmented instances.

Origin: Visual Contrastive Learning \Rightarrow Mutual Information (MI) Maximization

Key components:

- Data augmentation
- Contrastive model <main taxonomy>
- Contrastive objective

Data Augmentation on Graphs

- Attributive augmentations
 - Node feature masking (NFM)
 - Node feature shuffle (NFS)
- Topological augmentations
 - Edge modification (EM)
 - Graph diffusion (GD)
- Hybrid augmentations
 - Subgraph sampling (SS)

Graph Contrastive Learning: Taxonomy

Node-Level Same-Scale Contrast: Representative Method

· GRACE

- SimCLR Contrastive Learning Framework
- Intra + Inter view contrast
- Augmentation: Remove edges (EM) + mask features (NFM)

•

Node-Level Same-Scale Contrast: Representative Method

A multi-scale graph contrastive schema with the self-knowledge distillation is proposed to train the online graph encoder

Graph-Level Same-Scale Contrast: Representative Method

· GraphCL

- SimCLR Contrastive Learning Framework
- Augmentation: EM+SS

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., & Shen, Y. (2020). Graph contrastive learning with augmentations. Advances in Neural Information Processing Systems, 33, 5812-5823.

Patch-Global Cross-Scale Contrast: Representative Method

· DGI

Maximize the MI between node and full graph

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019). Deep Graph Infomax. ICLR (Poster), 2(3), 4.

Patch-Global Cross-Scale Contrast: Representative Method

· G-Zoom

Zheng, Y., Jin, M., Pan, S., Li, Y. F., Peng, H., Li, M., & Li, Z. (2022). Toward Graph Self-Supervised Learning With Contrastive Adjusted Zooming. *IEEE Transactions on Neural Networks and Learning Systems*.

Context-Global Cross-Scale Contrast: Representative Method

· MICRO-Graph

• Motif vs. Full graph

Subramonian, A. (2021, May). MOTIF-Driven Contrastive Learning of Graph Representations. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35, No. 18, pp. 15980-15981).

MI Estimation - Contrastive Loss

· Jensen-Shannon Estimator

$$\mathcal{MI}_{JSD}(\mathbf{h}_i,\mathbf{h}_j) = \mathbb{E}_{\mathcal{P}}\Big[\log\left(\mathcal{D}(\mathbf{h}_i,\mathbf{h}_j)
ight)\Big] -\mathbb{E}_{\mathcal{P} imes\widetilde{\mathcal{P}}}\Big[\log\left(1-\mathcal{D}(\mathbf{h}_i,\mathbf{h}'_j)
ight)\Big].$$

Noise-Contrastive Estimator

 $\mathcal{MI}_{NCE}(\mathbf{h}_i,\mathbf{h}_j) =$ $\mathbb{E}_{\mathcal{P}\times\widetilde{\mathcal{P}}^{N}}\left[\log\frac{e^{\mathcal{D}(\mathbf{h}_{i},\mathbf{h}_{j})}}{e^{\mathcal{D}(\mathbf{h}_{i},\mathbf{h}_{j})} + \sum_{n \in N} e^{\mathcal{D}(\mathbf{h}_{i},\mathbf{h}_{n}')}}\right] \qquad \begin{array}{c} \cdot \text{ Barlow Twins loss}\\ \\ \mathcal{C}_{n} = \mathbb{E}_{n} = \sum_{i=1}^{N} \left[\sum_{j=1}^{N} e^{\sum_{i=1}^{N} e^{$

• Triplet loss

$$\mathcal{L}_{triplet} = \mathbb{E}_{\mathcal{P} imes \widetilde{\mathcal{P}}} \bigg[\max \bigg[\mathcal{D}(\mathbf{h}_i, \mathbf{h}_j) - \mathcal{D}(\mathbf{h}_i, \mathbf{h'}_j) + \epsilon, 0 \bigg] \bigg]$$

• BYOL loss

$$\mathcal{L}_{byol} = \mathbb{E}_{\mathcal{P}^{N}} \Big[-\frac{2}{N} \sum_{i,j \in N} \frac{\left[p_{\psi}(\mathbf{h}_{i}) \right]^{T} \mathbf{h}_{j}}{\| p_{\psi}(\mathbf{h}_{i}) \| \| \mathbf{h}_{j} \|} \Big]$$

$$\mathcal{L}_{bt} = \mathbb{E}_{\mathbf{B}\sim\mathcal{P}^{N}} \left[\sum_{a} (1 - \frac{\sum_{i \in \mathbf{B}} \mathbf{H}_{ia}^{(1)} \mathbf{H}_{ia}^{(2)}}{\left\| \mathbf{H}_{ia}^{(1)} \right\| \left\| \mathbf{H}_{ia}^{(2)} \right\|})^{2} + \lambda \sum_{a} \sum_{b \neq a} \left(\frac{\sum_{i \in \mathbf{B}} \mathbf{H}_{ia}^{(1)} \mathbf{H}_{ib}^{(2)}}{\left\| \mathbf{H}_{ia}^{(1)} \right\| \left\| \mathbf{H}_{ib}^{(2)} \right\|} \right)^{2} \right]$$

Contrast-based Methods: Summary

Approach	Pretext Task Category	Downstream Task Level	Training Scheme	Data Type of Graph	Graph Augmentation	Objective Function
DeepWalk [30]	NSC	Node	URL	Plain	SS	SkipGram
node2vec [31]	NSC	Node	URL	Plain	SS	SkipGram
GraphSAGE [78]	NSC	Node	URL	Attributed	SS	ISD
SELAR [80]	NSC	Node	IL	Heterogeneous	Meta-path sampling	ISD
LINE [79]	NSC	Node	URL	Plain	SS	JSD
GRACE [33]	NSC	Node	URL	Attributed	NFM+EM	InfoNCE
GROC [18]	NSC	Node	URL	Attributed	NFM+Adversarial EM	InfoNCE
GCA [67]	NSC	Node	URL	Attributed	Adaptive NFM+Adaptive EM	InfoNCE
GraphCL(N) [81]	NSC	Node	URL	Attributed	SS+NFS+EM	InfoNCE
GCC [15]	NSC	Node/Graph	PF/URL	Plain	SS	InfoNCE
HeCo [82]	NSC	Node	URL	Heterogeneous	NFM	InfoNCE
Contrast-Reg [71]	NSC	Node	IL	Attributed	Arbitrary	ISD
BGRL [83]	NSC	Node	URL	Attributed	NFM+EM	BYOL
SelfGNN [84]	NSC	Node	URL	Attributed	GD+Node attributive transformation	BYOL
G-BT [86]	NSC	Node	URL	Attributed	NFM+EM	Barlow Twins
MERIT [66]	NSC	Node	URL	Attributed	SS+GD+NFM+EM	BYOL+InfoNCE
DwGCL [68]	NSC	Node	IL	Attributed	Adaptive NFM+Adaptive EM	KL-Divergence
GraphCL(G) [65]	GSC	Graph	PF/URL	Attributed	SS+NFM+EM	InfoNCE
DACL [88]	GSC	Graph	URL	Attributed	Noise Mixing	InfoNCE
AD-GCL [75]	GSC	Graph	PF/URL	Attributed	Adversarail EM	InfoNCE
JOAO [69]	GSC	Graph	PF/URL	Attributed	Automated	InfoNCE
CSSL [74]	GSC	Graph	PF/JL/URL	Attributed	SS+Node insertion/deletion+EM	InfoNCE
LCGNN [89]	GSC	Graph	IL	Attributed	Arbitrary	InfoNCE
IGSD [74]	GSC	Graph	IL/URL	Attributed	GD+EM	BYOL+InfoNCE
DGI [13]	PGCC	Node	URL	Attributed	None	ISD
GIC [90]	PGCC	Node	URL	Attributed	Arbitrary	ISD
HDGI [91]	PGCC	Node	URL	Heterogeneous	None	ISD
ConCH [92]	PGCC	Node	IL	Attributed	None	ISD
DMGI [93]	PGCC	Node	JL/URL	Heterogeneous	None	ISD
EGI [94]	PGCC	Node	PF/JL	Attributed	SS	ISD
STDGI [70]	PGCC	Node	URL	Dynamic	Node feature shuffling	ISD
KS2L [95]	PGCC	Node	URL	Attributed	None	InfoNCE
MVGRL [14]	PGCC	Node/Graph	URL	Attributed	GD+SS	ISD
SUBG-CON [77]	PGCC	Node	URL	Attributed	SS+Node representation shuffling	Triplet
SLiCE [96]	PGCC	Edge	IL	Heterogeneous	None	ISD
InfoGraph [97]	PGCC	Graph	IL/URL	Attributed	None	ISD
Robinson et al. [98]	PGCC	Graph	URL	Attributed	Arbitrary	ISD
BiGI [99]	CGCC	Graph	URL	Heterogeneous	SS	ISD
HTC [100]	CGCC	Graph	IL	Attributed	NFS	ISD
MICRO-Graph [101]	CGCC	Graph	URL	Attributed	SS	InfoNCE
SUGAR [102]	CGCC	Graph		Attributed	SS	ISD

Hybrid Methods: Motivation

Hybrid methods integrate various pretext tasks together in a <u>multi-task</u> <u>learning</u> fashion

Motivation:

 \Rightarrow A single pretext task cannot provide sufficient guidance

 \Rightarrow Using multiple pretext tasks can better leverage the advantages of various types of supervision signals

Hybrid Methods: Representative Methods

· GMI

- Edge MI: Structure generation
- Node MI: Same-scale contrast

Peng, Z., Huang, W., Luo, M., Zheng, Q., Rong, Y., Xu, T., & Huang, J. (2020, April). Graph representation learning via graphical mutual information maximization. In Proceedings of The Web Conference 2020 (pp. 259-270).

Hybrid Methods: Representative Methods

· GROVER

- Backbone model: Node and edge GNN transformers

Hu, Z., Dong, Y., Wang, K., Chang, K. W., & Sun, Y. (2020, August). Gptgnn: Generative pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD (pp. 1857-1867).

Hybrid Methods: Summary

Approach	Pretext Task Categories	Downstream Task Level	Training Scheme	Data Type of Graph
GPT-GNN [9]	FG/SG	Node/Link	PF	Hetero.
Graph-Bert [104]	FG/SG	Node	PF	Attributed
PT-DGNN [105]	FG/SG	Link	PF	Dynamic
M. et al. [43]	FG/FG/FG	Node	JL	Attributed
GMI [106]	SG/NSC	Node/Link	URL	Attributed
CG ³ [107]	SG/NSC	Node	JL	Attributed
MVMI-FT [108]	SG/PGCC	Node	URL	Attributed
GraphLoG [109]	NSC/GSC/ CGCC	Graph	PF	Attributed
HDMI [110]	NSC/PGCC	Node	URL	Multiplex
LnL-GNN [111]	NSC/NSC	Node	JL	Attributed
Hu et al. [48]	SG/APC/ APC	Node/Link/ Graph	PF	Attributed
GROVER [10]	APC/APC	Node/Link/ Graph	PF	Attributed
Kou et al. [112]	FG/SG/ APC	Node	JL	Attributed

Part 3: Frontiers of graph self-supervised learning

- Efficient graph self-supervised learning : A new paradigm
- Heterophilic graph self-supervised learning
- Heterogeneous graph self-supervised learning

Efficient graph self-supervised learning : A new paradigm

Existing Problems - Slow Computation with Node Comparison

These contrastive-learning approaches rely on node-to-node comparison.

(a)Node-to-node Comparison

Existing Problems - Slow Computation with Node Comparison

Node-to-node comparison require heavy gradient computation. For example, for the two representative contrastive losses:

$$\text{nfoNCE Loss} \quad \mathcal{L}_{NCE}(i) = -\log \frac{e^{z_i \cdot c_i/\tau}}{\sum_{k=1}^{N} e^{z_i \cdot z_k/\tau}},$$

Gradient Computation require all negative samples

$$\textbf{JSD-estimator} \quad \mathcal{L}_{JSD}(i) = -log\mathcal{D}(z_i, \vec{s}) + log(1 - \mathcal{D}(\tilde{z}_i, \vec{s})) \text{ , } \vec{s} = \sigma(\frac{1}{N}\sum_{i=1}^{N} z_i)$$

Gradient Computation require all positive samples

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. *Advances in Neural Information Processing Systems*, *35*, 10809-10820.

Introduction to Group Discrimination (GD)

(b) Group Discrimination

Summarisation (e.g., sum):

$$\mathbf{\exists} \mathcal{R}^{1 \times D} \quad \mathbf{\Box} \qquad \mathbf{\Box} \mathcal{R}^{1 \times 1}$$

Positive Group:
 ×1 Summarised Node representation R^{1×1},)
 generated with original or augmented grap

Negative Group:

Summarised Node representation $\mathcal{R}^{1\times 1}$ generated with corrupted graph.

Introduction to Group Discrimination (GD)

Use a very simple BCE loss to conduct discrimination

Rethinking DGI

Original Thought of $DGI \rightarrow$

MI maximization between nodes and summary vector.

Rethinking DGI

However, due to inappropriate usage of Sigmoid function....

Activation	Statistics	Cora	CiteSeer	PubMed
	Mean	0.50	0.50	0.50
ReLU/LReLU/PReLU	Std	1.3e-03	1.0e-04	4.0e-04
	Range	1.4e-03	8.0e-04	1.5e-03
	Mean	0.62	0.62	0.62
Sigmoid	Std	5.4e-05	2.9e-05	6.6e-05
5	Range	3.6e-03	3.0e-03	3.2e-03

Value in summary vector \vec{s} almost becomes constant vector $s = \epsilon I = I$ with no variance.

The assumption of learning via MI interaction between nodes and summary vector

Dataset	0	0.2	0.4	0.6	0.8	1.0
Cora	70.3±0.7	82.4±0.2	82.3±0.3	82.5±0.4	82.3±0.3	
CiteSeer	61.8±0.8	71.7±0.6	71.9±0.7	71.6±0.9	71.7±1.0	
PubMed	68.3±1.5	77.8±0.5	77.9±0.8	77.7±0.9	77.4±1.1	

Changing ϵ has trivial effect on model performance.

Simplifying DGI

Set ${\boldsymbol{\mathcal E}}$ to 1 for $s={\boldsymbol{\varepsilon}} I=I$, and remove w in $\ {\mathfrak D}(z_i,\vec{s})=z_i\cdot w\cdot \vec{s},$

$$\begin{split} \mathcal{L}_{DGI} &= \frac{1}{2N} (\sum_{i=1}^{N} \log \mathcal{D}(z_i, \vec{s}) + \log(1 - \mathcal{D}(\tilde{z}_i, \vec{s}))), \\ &= \frac{1}{2N} (\sum_{i=1}^{N} \log(z_i \cdot \vec{s}) + \log(1 - \tilde{z}_i \cdot \vec{s}))), \\ &= \frac{1}{2N} (\sum_{i=1}^{N} \log(\operatorname{sum}(z_i)) + \log(1 - \operatorname{sum}(\tilde{z}_i))), \end{split}$$

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. *Advances in Neural Information Processing Systems*, *35*, 10809-10820.

$$= \frac{1}{2N} \left(\sum_{i=1}^{N} \log(\operatorname{sum}(z_i)) + \log(1 - \operatorname{sum}(\tilde{z}_i))\right),$$

Considering summarised embedding as $h_1 \rightarrow \text{become BCE loss}$

$$\mathcal{L}_{BCE} = \frac{1}{2N} (\sum_{i=1}^{2N} y_i \log h_i + (1 - y_i) \log(1 - h_i)),$$

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. *Advances in Neural Information Processing Systems*, *35*, 10809-10820.

Rethinking DGI

With the new loss \rightarrow Dramatic improvement in memory and time

Experiment	Method	Cora	CiteSeer	PubMed	
Accuracy	curacy DGI		71.5 ± 0.7	77.3±0.6	
	DGI _{BCE}		71.7 ± 0.6	77.7±0.5	
Memory	DGI	4189MB	8199MB	11471MB	
	DGI _{BCE}	1475MB 64.8%	1587MB 80.6%	1629MB 85.8%	
Time	DGI	0.085s	0.134s	0.158s	
	DGI _{BCE}	0.010s 8.5×	0.021s 6.4×	0.015s 10.5×	

$$= \frac{1}{2N} \left(\sum_{i=1}^{N} \log(\operatorname{sum}(z_i)) + \log(1 - \operatorname{sum}(\tilde{z}_i))\right),$$

Replacing the summation with other aggregation function

Table 11: The experiment result on three datasets with different aggregation function on node embeddings.

Method	Cora	CiteSeer	PubMed
Sum	82.5 ± 0.2	71.7 ± 0.6	77.7 ± 0.5
Mean	81.8 ± 0.5	71.8 ± 1.1	76.5 ± 1.2
Min	80.4 ± 1.3	61.7 ± 1.8	70.1 ± 1.9
Max	71.4 ± 1.2	65.3 ± 1.4	$70.2\pm\!2.8$
linear	82.2 ± 0.4	72.1 ± 0.7	77.9 ± 0.5

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. *Advances in Neural Information Processing Systems*, *35*, 10809-10820.

Rethinking DGI

$$\mathcal{L}_{BCE} = \frac{1}{2N} (\sum_{i=1}^{2N} y_i \log h_i + (1 - y_i) \log(1 - h_i)),$$

With this loss, we can see Instead of contrastive learning, DGI is a Group Discrimination method

(b) Group Discrimination

Proposed Framework: Graph Group Discrimination (GGD)

Augmentation Corruption Encoding Aggregation Discrimination

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. *Advances in Neural Information Processing Systems*, *35*, 10809-10820.

Experiment (Small-to-Medium scale Dataset)

	Overall Performance Comparison											
Data	Method	Aethod Cora		PubMed	Comp	Photo						
X, A, Y	GCN	81.5	70.3	79.0	76.3±0.5	87.3±1.0						
X, A, Y	GAT	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3	79.3 ± 1.1	86.2 ± 1.5						
X, A, Y	SGC	81.0±0.0	71.9 ± 0.1	78.9 ± 0.0	74.4 ± 0.1	86.4 ± 0.0						
X, A, Y	CG3	83.4±0.7	73.6±0.8	80.2 ± 0.8	79.9 ± 0.6	89.4 ± 0.5						
X, A	DGI	81.7±0.6	71.5 ± 0.7	77.3±0.6	75.9±0.6	83.1±0.5						
X, A	GMI	82.7±0.2	73.0 ± 0.3	80.1 ± 0.2	76.8 ± 0.1	85.1 ± 0.1						
X, A	MVGRL	82.9±0.7	72.6 ± 0.7	79.4 ± 0.3	79.0 ± 0.6	87.3±0.3						
X, A	GRACE	80.0±0.4	71.7 ± 0.6	79.5 ± 1.1	71.8 ± 0.4	81.8 ± 1.0						
X, A	BGRL	80.5±1.0	71.0 ± 1.2	79.5 ± 0.6	89.2±0.9	91.2 ± 0.8						
X, A	GBT	81.0±0.5	70.8 ± 0.2	79.0 ± 0.1	88.5±1.0	91.1±0.7						
X, A	GGD	84.1±0.4	73.0 ± 0.6	81.3 ±0.8	90.1 ±0.9	92.5 ±0.6						

second)	Cora	CiteSeer	PubMed	Comp	Photo
DGI	0.085	0.134	0.158	0.171	0.059
GMI	0.394	0.497	2.285	1.297	0.637
MVGRL	0.123	0.171	0.488	0.663	0.468
GRACE	0.056	0.092	0.893	0.546	0.203
BGRL	0.085	0.094	0.147	0.337	0.273
GBT	0.073	0.072	0.103	0.492	0.173
GGD	0.010	0.021	0.015	0.016	0.009
Improve	7.3-39.4×	3.4-23.7×	6.9-152.3×	10.7-15.3×	19.2-70.8×

Memory Consumption Improvement (MB)

Method	Cora	CiteSeer	PubMed	Comp	Photo
DGI	4,189	8,199	11,471	7,991	4,946
GMI	4,527	5,467	14,697	10,655	5,219
MVGRL	5,381	5,429	6,619	6,645	6,645
GRACE	1,913	2,043	12,597	8,129	4,881
BGRL	1,627	1,749	2,299	5,069	3,303
GBT	1,651	1,799	2,461	5,037	2,641
GGD	1,475	1,587	1,629	1,787	1,637
Improve	10.7-72.6%	11.8-80.6%	27.2-85.8%	64.5-83.2%	38.0-75.4%

Experiment (Large scale Dataset - Ogbn-arxiv)

Using only 0.18 seconds and 69.8% less memory to reach SOTA.

10783 faster than existing methods.

Method Valid T		Test	Memory	Time	Total
Supervised GCN	73.0 ± 0.2	71.7 ± 0.3	-	-	-
MLP	57.7±0.4	55.5 ± 0.2	-	-	-
Node2vec	71.3 ± 0.1	70.1 ± 0.1	-	-	-
DGI	71.3±0.1	70.3±0.2	-	-	-
GRACE(10k epos)	72.6 ± 0.2	71.5 ± 0.1	-	-	-
BGRL(10k epos)	72.5 ± 0.1	71.6 ± 0.1	OOM (Full-graph)	/	/
GBT(300 epos)	$71.0 {\pm} 0.1$	70.1 ± 0.2	14,959MB	6.47	1,941.00
GGD(1 epo)	72.7±0.3	71.6 ± 0.5	4,513MB 69.8%	0.18	0.18 10,783×

Fast convergence → converge with only 1 epoch

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. *Advances in Neural Information Processing Systems*, *35*, 10809-10820.

Heterophilic Graph Selfsupervised Learning

Homophily assumption

Most UGRL methods are designed based on the homophily assumption:

Linked nodes tend to share similar attributes with each other.

• Low-pass filter-like GNNs^[1] (e.g., GCN) as encoders:

Representations of adjacent nodes become similar

Limitation

Do real-world graphs always obey the homophily assumption? No!

- Pure homophilic graph is ideal, real-world graphs often contain heterophilic edges.
- Real-world homophilic graphs can also include heterophilic edges.
- In heterophilic graphs, heterophilic edges are much more than homophilic edges.
- Adversarial attack tends to reduce the homophily of graphs ^[5].

The behind homophily assumption hinders the generalization ability to heterophilic graphs and robustness against adversarial attack of most UGRL methods

[5] Zhu J.; Jin J.; Loveland D.; Schaub, M.; and Koutra D. 2022. How does Heterophily Impact the Robustness of Graph Neural Networks?: Theoretical Connections and Practical Implications. In SIGKDD.

Observation

Most UGRL methods are designed based on the homophily assumption:

Linked nodes tend to share similar attributes with each other.

CNP: connected node pairs

All the connected nodes are pushed to be closer in the representation space, even if some of them have moderate feature similarities that are comparable to randomly sampled node pairs.

Contribution

To address the aforementioned limitation...

(Q1) Is it possible to distinguish between two types of edges in an unsupervised manner?

(A1) trainable edge discriminator with a pivot-anchored ranking loss function.

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.

(Q2) How to effectively couple edge discriminating with representation learning into an integrated UGRL model?

(A2) dual-channel graph encoding module with robust crosschannel contrasting. Training with a closed-loop interplay.

Proposed method - GREET

heterophilic edges without accessing node labels.

node representations.

Edge discriminating

• Edge discriminator – a two-layer MLP:

 $\mathbf{h}'_{i} = \mathrm{MLP}_{1}([\mathbf{x}_{i} \| \mathbf{s}_{i}]), \ \mathbf{h}'_{j} = \mathrm{MLP}_{1}([\mathbf{x}_{j} \| \mathbf{s}_{j}]),$ $\theta_{i,j} = (\mathrm{MLP}_{2}([\mathbf{h}'_{i} \| \mathbf{h}'_{j}]) + \mathrm{MLP}_{2}([\mathbf{h}'_{j} \| \mathbf{h}'_{i}]))/2,$

Random walk diffusion process-based SE^[6]: $\mathbf{s}_i = \begin{bmatrix} \mathbf{T}_{ii}, \mathbf{T}_{ii}^2, \cdots, \mathbf{T}_{ii}^{d_s} \end{bmatrix} \in \mathbb{R}^{d_s}$ where $\mathbf{T} = \mathbf{A}\mathbf{D}^{-1}$

Raw feature + Structural encoding (SE)

View generalization

• Gumbel-Max reparametrization trick [7]:

$$\hat{w}_{i,j} = \text{Sigmoid}\Big(\big(\theta_{i,j} + \log \delta - \log(1-\delta) \big) / \tau_g \Big)$$

• View generation:

Input graph:

$$\mathcal{G} = (\mathbf{A}, \mathbf{X}) \quad \mathbf{Homo. view} \quad \mathcal{G}^{(hm)} = (\mathbf{A}^{(hm)}, \mathbf{X})$$
Hetero. view
$$\mathcal{G}^{(ht)} = (\mathbf{A}^{(ht)}, \mathbf{X})$$
where
$$\mathbf{A}_{i,j}^{(hm)} = \hat{w}_{i,j}, \ \mathbf{A}_{i,j}^{(ht)} = 1 - \hat{w}_{i,j}, \text{ for } e_{i,j} \in \mathcal{E}$$

Dual-channel encoding

٠

• Homo. View encoder – low-pass filter:

$$\mathbf{H}_{0}^{(hm)} = \mathrm{MLP}^{(hm)}(\mathbf{X}), \ \mathbf{H}_{l}^{(hm)} = \tilde{\mathbf{A}}^{(hm)}\mathbf{H}_{l-1}^{(hm)}$$

$$\begin{split} \mathbf{H}_{0}^{(ht)} &= \mathrm{MLP}^{(ht)}(\mathbf{X}), \ \mathbf{H}_{l}^{(ht)} = \tilde{\mathbf{L}}^{(ht)} \mathbf{H}_{l-1}^{(ht)} \end{split}$$
where $\tilde{\mathbf{L}}^{(ht)} = \mathbf{I} - \alpha \tilde{\mathbf{A}}^{(ht)}$

Hetero. View encoder – high-pass filter:

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating. *arXiv preprint arXiv:2211.14065*.

Dual-channel encoding

concat

Node representations:

 $\mathbf{H} = [\mathbf{H}^{(hm)} \| \mathbf{H}^{(ht)}] \in \mathbb{R}^{n \times d_r}$

• Homo. View encoder – low-pass filter:

$$\mathbf{H}_{0}^{(hm)} = \mathrm{MLP}^{(hm)}(\mathbf{X}), \ \mathbf{H}_{l}^{(hm)} = \tilde{\mathbf{A}}^{(hm)} \mathbf{H}_{l-1}^{(hm)}$$

• Hetero. View encoder – low-pass filter:

$$\mathbf{H}_{0}^{(ht)} = \mathrm{MLP}^{(ht)}(\mathbf{X}), \ \mathbf{H}_{l}^{(ht)} = \tilde{\mathbf{L}}^{(ht)}\mathbf{H}_{l-1}^{(ht)},$$

Pivot-anchored ranking loss

Pivot-anchored ranking loss

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.

Dual-channel contrastive loss

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.

Alternative training scheme

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with Edge Heterophily Discriminating. *arXiv preprint arXiv:2211.14065*.

Performance comparison

• Node classification @ homophilic graphs

Methods	Cora	CiteSeer	PubMed	Wiki-CS	Amz. Comp.	Amz. Photo	Co. CS	Co. Physics
GCN*	81.5	70.3	79.0	$76.89{\scriptstyle \pm 0.37}$	$86.34{\scriptstyle \pm 0.48}$	$92.35{\scriptstyle \pm 0.25}$	$93.10{\scriptstyle \pm 0.17}$	$95.54{\scriptstyle \pm 0.19}$
GAT*	83.0	72.5	79.0	$77.42{\pm}0.19$	$87.06{\scriptstyle \pm 0.35}$	$92.64{\scriptstyle \pm 0.42}$	$92.41{\scriptstyle \pm 0.27}$	$95.45{\scriptstyle \pm 0.17}$
MLP	$56.11 {\pm} 0.34$	$56.91{\scriptstyle \pm 0.42}$	$71.35{\scriptstyle \pm 0.05}$	$72.02{\scriptstyle\pm0.21}$	$73.88{\scriptstyle\pm0.10}$	$78.54{\scriptstyle \pm 0.05}$	$90.42{\scriptstyle \pm 0.08}$	$93.54{\scriptstyle \pm 0.05}$
DeepWalk	$69.47{\pm}0.55$	$58.82{\scriptstyle \pm 0.61}$	$69.87{\scriptstyle\pm1.25}$	$74.35{\scriptstyle \pm 0.06}$	$85.68{\scriptstyle \pm 0.06}$	$89.44{\scriptstyle \pm 0.11}$	$84.61{\scriptstyle \pm 0.22}$	$91.77{\pm}0.15$
node2vec	$71.24 {\pm} 0.89$	$47.64{\scriptstyle \pm 0.77}$	$66.47 {\pm} 1.00$	$71.79{\scriptstyle \pm 0.05}$	$84.39{\scriptstyle \pm 0.08}$	$89.67{\scriptstyle \pm 0.12}$	$85.08{\scriptstyle\pm0.03}$	$91.19{\scriptstyle \pm 0.04}$
GAE	$71.07 {\pm} 0.39$	$65.22{\pm}0.43$	$71.73{\scriptstyle \pm 0.92}$	$70.15{\scriptstyle \pm 0.01}$	$85.27{\scriptstyle\pm0.19}$	$91.62{\scriptstyle \pm 0.13}$	$90.01 {\pm} 0.71$	$94.92{\scriptstyle\pm0.07}$
VGAE	$79.81{\pm}0.87$	$66.75{\scriptstyle \pm 0.37}$	$77.16{\scriptstyle \pm 0.31}$	$75.63{\scriptstyle \pm 0.19}$	$86.37{\scriptstyle\pm0.21}$	$92.20{\scriptstyle\pm0.11}$	$92.11{\scriptstyle \pm 0.09}$	$94.52{\scriptstyle\pm0.00}$
DGI	82.29 ± 0.56	$71.49{\scriptstyle \pm 0.14}$	$77.43{\scriptstyle \pm 0.84}$	$75.73{\scriptstyle \pm 0.13}$	$84.09{\scriptstyle\pm0.39}$	$91.49{\scriptstyle \pm 0.25}$	$91.95{\scriptstyle \pm 0.40}$	$94.57{\scriptstyle\pm0.38}$
GMI	$82.51 {\pm} 1.47$	$71.56{\pm}0.56$	$79.83{\scriptstyle \pm 0.90}$	$75.06{\scriptstyle \pm 0.13}$	$81.76{\scriptstyle \pm 0.52}$	$90.72{\scriptstyle\pm0.33}$	OOM	OOM
MVGRL	$83.03{\scriptstyle\pm0.27}$	$72.75{\scriptstyle\pm0.46}$	$79.63{\scriptstyle \pm 0.38}$	$77.97{\scriptstyle \pm 0.18}$	$87.09{\scriptstyle \pm 0.27}$	$92.01{\scriptstyle\pm0.13}$	$91.97{\scriptstyle \pm 0.19}$	$95.53{\scriptstyle \pm 0.10}$
GRACE	$\overline{80.08 \pm 0.53}$	$\overline{71.41 \pm 0.38}$	$80.15{\scriptstyle \pm 0.34}$	$79.16{\scriptstyle \pm 0.36}$	$87.21{\pm}0.44$	$92.65{\scriptstyle \pm 0.32}$	$92.78{\scriptstyle\pm0.23}$	$95.39{\scriptstyle \pm 0.32}$
GCA	$80.39{\scriptstyle \pm 0.42}$	$71.21{\scriptstyle \pm 0.24}$	$80.37{\scriptstyle\pm0.75}$	$79.35{\scriptstyle \pm 0.12}$	$87.84{\scriptstyle \pm 0.27}$	$92.78{\scriptstyle\pm0.17}$	$93.32{\scriptstyle \pm 0.12}$	$95.87{\scriptstyle \pm 0.15}$
BGRL	$81.08{\scriptstyle\pm0.17}$	$71.59{\scriptstyle \pm 0.42}$	$79.97{\scriptstyle \pm 0.36}$	$\overline{78.74{\scriptstyle\pm0.22}}$	$88.92{\scriptstyle \pm 0.33}$	$93.24{\scriptstyle \pm 0.29}$	$\overline{93.26{\scriptstyle\pm0.36}}$	$\overline{95.76{\scriptstyle\pm0.38}}$
GREET	83.81±0.87	$73.08{\scriptstyle \pm 0.84}$	$\underline{80.29{\scriptstyle\pm1.00}}$	$80.68{\scriptstyle \pm 0.31}$	$\underline{87.94{\scriptstyle\pm0.35}}$	$\underline{92.85{\scriptstyle\pm0.31}}$	$94.65{\scriptstyle \pm 0.18}$	$96.13{\scriptstyle \pm 0.12}$

Performance comparison

• Node classification @ heterophilic graphs

Methods	Chameleon	Squirrel	Actor	Cornell	Texas	Wisconsin
GCN	$59.63 {\pm} 2.32$	$36.28{\scriptstyle\pm1.52}$	$30.83{\pm}0.77$	$57.03 {\pm} 3.30$	$60.00 {\pm} 4.80$	$56.47{\pm}6.55$
GAT	$56.38{\scriptstyle\pm2.19}$	$32.09{\pm}3.27$	$28.06{\pm}1.48$	$59.46{\scriptstyle\pm3.63}$	$61.62{\pm}3.78$	$54.71 {\pm} 6.87$
MLP	$46.91{\scriptstyle \pm 2.15}$	$29.28{\scriptstyle\pm1.33}$	$35.66{\scriptstyle \pm 0.94}$	$81.08{\pm}7.93$	$81.62{\scriptstyle \pm 5.51}$	$84.31{\scriptstyle \pm 3.40}$
Geom-GCN*	60.90	38.14	31.63	60.81	67.57	64.12
H2GCN*	$59.39{\scriptstyle \pm 1.98}$	$37.90{\scriptstyle\pm2.02}$	$35.86{\scriptstyle\pm1.03}$	$82.16{\scriptstyle \pm 4.80}$	$84.86{\scriptstyle\pm6.77}$	$86.67 {\scriptstyle \pm 4.69}$
FAGCN	$63.44{\scriptstyle \pm 2.05}$	$41.17{\scriptstyle\pm1.94}$	$35.74{\scriptstyle\pm0.62}$	$81.35{\scriptstyle \pm 5.05}$	$84.32{\scriptstyle\pm6.02}$	$83.33{\scriptstyle \pm 2.01}$
GPR-GNN	$\overline{61.58 \pm 2.24}$	$\overline{39.65{\scriptstyle\pm2.81}}$	$35.27{\pm}1.04$	$81.89{\scriptstyle\pm5.93}$	$83.24{\scriptstyle \pm 4.95}$	$84.12{\scriptstyle\pm3.45}$
DeepWalk	$47.74{\pm}2.05$	$32.93{\scriptstyle\pm1.58}$	$22.78{\scriptstyle\pm0.64}$	$39.18{\scriptstyle\pm5.57}$	$46.49{\scriptstyle\pm6.49}$	$33.53{\pm}4.92$
node2vec	$41.93 {\pm} 3.29$	$22.84{\scriptstyle\pm0.72}$	$28.28{\pm}1.27$	$42.94{\scriptstyle\pm7.46}$	$41.92{\pm}7.76$	$37.45{\scriptstyle\pm7.09}$
GAE	$33.84{\pm}2.77$	$28.03 {\pm} 1.61$	$28.03 {\pm} 1.18$	$58.85{\pm}3.21$	$58.64{\pm}4.53$	$52.55 {\pm} 3.80$
VGAE	$35.22{\scriptstyle\pm2.71}$	$29.48{\scriptstyle\pm1.48}$	$26.99{\scriptstyle \pm 1.56}$	$59.19{\scriptstyle \pm 4.09}$	$59.20{\pm}4.26$	$56.67{\scriptstyle\pm5.51}$
DGI	$39.95{\scriptstyle \pm 1.75}$	$31.80{\pm}0.77$	$29.82{\scriptstyle \pm 0.69}$	$63.35{\scriptstyle\pm4.61}$	$60.59{\pm}7.56$	$55.41{\pm}5.96$
GMI	$46.97 {\pm} 3.43$	$30.11 {\pm} 1.92$	$27.82{\scriptstyle \pm 0.90}$	$54.76{\scriptstyle \pm 5.06}$	$50.49{\scriptstyle\pm2.21}$	$45.98{\scriptstyle \pm 2.76}$
MVGRL	$51.07{\pm}2.68$	$35.47 {\pm} 1.29$	$30.02{\pm}0.70$	$64.30{\scriptstyle \pm 5.43}$	$62.38{\scriptstyle\pm5.61}$	$62.37{\scriptstyle\pm4.32}$
GRACE	$48.05 {\pm} 1.81$	$31.33{\scriptstyle \pm 1.22}$	$29.01{\scriptstyle \pm 0.78}$	$54.86{\scriptstyle\pm6.95}$	$57.57{\scriptstyle\pm5.68}$	$50.00{\scriptstyle\pm5.83}$
GRACE-FA	$52.68 {\pm} 2.14$	$35.97 {\pm} 1.20$	$32.55{\pm}1.28$	$67.57{\scriptstyle\pm4.98}$	$64.05{\scriptstyle\pm7.46}$	$63.73{\scriptstyle\pm6.81}$
GCA	$49.80 {\pm} 1.81$	$35.50{\scriptstyle \pm 0.91}$	$29.65 {\pm} 1.47$	$55.41{\pm}4.56$	$59.46{\scriptstyle\pm6.16}$	$50.78{\scriptstyle\pm4.06}$
BGRL	$47.46{\scriptstyle \pm 2.74}$	$32.64{\scriptstyle \pm 0.78}$	$29.86{\scriptstyle \pm 0.75}$	$57.30{\scriptstyle \pm 5.51}$	$59.19{\scriptstyle \pm 5.85}$	$52.35{\scriptstyle\pm4.12}$
GREET	$63.64{\scriptstyle \pm 1.26}$	$42.29{\scriptstyle \pm 1.43}$	$36.55{\scriptstyle \pm 1.01}$	$85.14{\scriptstyle \pm 4.87}$	$87.03{\scriptstyle \pm 2.36}$	$\underline{84.90{\scriptstyle\pm4.48}}$

Heterogenous Graph Selfsupervised Learning

Heterogeneous Graphs

Figure 1: A toy example of HIN (ACM) and relative illustrations of meta-path and network schema.

HeCo Framework – (View Generation)

Figure 2: The overall architecture of our proposed HeCo.

HeCo Framework – (View Generation)

Figure 2: The overall architecture of our proposed HeCo.

Meta-path View

$$\begin{split} \mathbf{w}_{\Phi_m} &= \frac{1}{|V|} \sum_{i \in V} \mathbf{a}_{sc}^\top \cdot \tanh\left(\mathbf{W}_{sc} h_i^{\Phi_m} + \mathbf{b}_{sc}\right), \\ \beta_{\Phi_m} &= \frac{\exp\left(w_{\Phi_m}\right)}{\sum_{i=1}^S \exp\left(w_{\Phi_i}\right)}, \\ z_i^{sc} &= \sum_{m=1}^S \beta_{\Phi_m} \cdot h_i^{\Phi_m}. \end{split}$$

Wang, X., Liu, N., Han, H., & Shi, C. (2021, August). Self-supervised heterogeneous graph neural network with co-contrastive learning. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining* (pp. 1726-1736).

HeCo Framework – (Contrastive Learning)

Figure 3: A schematic diagram of view mask mechanism.

Masked Node in Network Schema View

Masked People/Subjects in Meta-path View

$$\begin{split} z_{i}^{sc}_proj &= W^{(2)}\sigma\left(W^{(1)}z_{i}^{sc} + b^{(1)}\right) + b^{(2)}, \\ z_{i}^{mp}_proj &= W^{(2)}\sigma\left(W^{(1)}z_{i}^{mp} + b^{(1)}\right) + b^{(2)}, \end{split}$$

$$\mathcal{L}_{i}^{sc} = -\log \frac{\sum_{j \in \mathbb{P}_{i}} exp\left(sim\left(z_{i}^{sc}_proj, z_{j}^{mp}_proj\right)/\tau\right)}{\sum_{k \in \{\mathbb{P}_{i} \bigcup \mathbb{N}_{i}\}} exp\left(sim\left(z_{i}^{sc}_proj, z_{k}^{mp}_proj\right)/\tau\right)},$$

$$\mathcal{J} = \frac{1}{|V|} \sum_{i \in V} \left[\lambda \cdot \mathcal{L}_i^{sc} + (1 - \lambda) \cdot \mathcal{L}_i^{mp} \right],$$

HeCo Framework – (Contrastive Learning)

Figure 3: A schematic diagram of view mask mechanism.

$$\begin{aligned} z_{i}^{sc}_proj &= W^{(2)}\sigma\left(W^{(1)}z_{i}^{sc} + b^{(1)}\right) + b^{(2)}, \\ z_{i}^{mp}_proj &= W^{(2)}\sigma\left(W^{(1)}z_{i}^{mp} + b^{(1)}\right) + b^{(2)}, \\ \mathcal{L}_{i}^{sc} &= -\log\frac{\sum_{j\in\mathbb{P}_{i}}exp\left(sim\left(z_{i}^{sc}_proj, z_{j}^{mp}_proj\right)/\tau\right)}{(1 + 1)^{2}} \end{aligned}$$

(1)

(~)

$$\mathcal{L}_{i}^{sc} = -\log \frac{\sum_{j \in \mathbb{P}_{i}} exp\left(sim\left(z_{i}^{sc}_proj, z_{j}^{mp}_proj\right)/\tau\right)}{\sum_{k \in \{\mathbb{P}_{i} \cup \mathbb{N}_{i}\}} exp\left(sim\left(z_{i}^{sc}_proj, z_{k}^{mp}_proj\right)/\tau\right)},$$

We can obtain L⁴{mp} similarly

$$\mathcal{J} = \frac{1}{|V|} \sum_{i \in V} \left[\lambda \cdot \mathcal{L}_i^{sc} + (1 - \lambda) \cdot \mathcal{L}_i^{mp} \right],$$

Experiment

Table 2: Quantitative results ($\% \pm \sigma$) on node classification.

Datasets	Metric	Split	GraphSAGE	GAE	Mp2vec	HERec	HetGNN	HAN	DGI	DMGI	HeCo
		20	47.13±4.7	62.72 ± 3.1	51.91 ± 0.9	55.13 ± 1.5	72.11 ± 0.9	85.66 ± 2.1	79.27 ± 3.8	87.86 ± 0.2	88.56±0.8
	Ma-F1	40	55.96±6.8	61.61±3.2	62.41±0.6	61.21 ± 0.8	72.02 ± 0.4	87.47±1.1	80.23±3.3	86.23±0.8	87.61±0.5
		60	56.59±5.7	61.67 ± 2.9	61.13 ± 0.4	64.35 ± 0.8	74.33 ± 0.6	88.41 ± 1.1	80.03±3.3	87.97±0.4	89.04±0.5
		20	49.72±5.5	68.02±1.9	53.13±0.9	57.47 ± 1.5	71.89 ± 1.1	85.11 ± 2.2	79.63±3.5	87.60 ± 0.8	88.13±0.8
ACM	Mi-F1	40	60.98±3.5	66.38 ± 1.9	64.43 ± 0.6	62.62 ± 0.9	74.46 ± 0.8	87.21 ± 1.2	80.41 ± 3.0	86.02 ± 0.9	87.45±0.5
		60	60.72±4.3	65.71 ± 2.2	62.72 ± 0.3	65.15 ± 0.9	76.08 ± 0.7	88.10 ± 1.2	80.15 ± 3.2	87.82 ± 0.5	88.71±0.5
		20	65.88±3.7	79.50 ± 2.4	71.66 ± 0.7	75.44 ± 1.3	84.36 ± 1.0	93.47±1.5	91.47 ± 2.3	96.72±0.3	96.49±0.3
	AUC	40	71.06±5.2	79.14 ± 2.5	80.48 ± 0.4	79.84 ± 0.5	85.01 ± 0.6	94.84 ± 0.9	91.52 ± 2.3	96.35 ± 0.3	96.40±0.4
		60	70.45±6.2	77.90 ± 2.8	79.33 ± 0.4	81.64 ± 0.7	87.64 ± 0.7	94.68 ± 1.4	91.41±1.9	96.79 ± 0.2	96.55±0.3
		20	71.97±8.4	90.90 ± 0.1	88.98±0.2	89.57±0.4	89.51±1.1	89.31±0.9	87.93±2.4	89.94±0.4	91.28±0.2
	Ma-F1	40	73.69±8.4	89.60±0.3	88.68 ± 0.2	89.73 ± 0.4	88.61 ± 0.8	88.87±1.0	88.62 ± 0.6	89.25 ± 0.4	90.34±0.3
		60	73.86±8.1	90.08 ± 0.2	90.25 ± 0.1	90.18 ± 0.3	89.56 ± 0.5	89.20 ± 0.8	89.19±0.9	89.46±0.6	90.64±0.3
		20	71.44±8.7	91.55 ± 0.1	89.67±0.1	90.24 ± 0.4	90.11±1.0	90.16±0.9	88.72±2.6	90.78±0.3	91.97±0.2
DBLP	Mi-F1	40	73.61±8.6	90.00±0.3	89.14±0.2	90.15 ± 0.4	89.03±0.7	89.47±0.9	89.22±0.5	89.92 ± 0.4	90.76±0.3
		60	74.05±8.3	90.95 ± 0.2	91.17 ± 0.1	91.01 ± 0.3	90.43±0.6	90.34±0.8	90.35 ± 0.8	90.66±0.5	91.59±0.2
		20	90.59±4.3	98.15 ± 0.1	97.69±0.0	98.21 ± 0.2	97.96 ± 0.4	98.07±0.6	96.99 ± 1.4	97.75±0.3	98.32±0.1
	AUC	40	91.42±4.0	97.85 ± 0.1	97.08 ± 0.0	97.93 ± 0.1	97.70 ± 0.3	97.48 ± 0.6	97.12 ± 0.4	97.23 ± 0.2	98.06±0.1
		60	91.73±3.8	98.37 ± 0.1	98.00 ± 0.0	98.49 ± 0.1	97.97 ± 0.2	97.96 ± 0.5	97.76 ± 0.5	97.72 ± 0.4	98.59±0.1
		20	45.14±4.5	53.81 ± 0.6	53.96 ± 0.7	55.78 ± 0.5	52.72 ± 1.0	53.16 ± 2.8	54.90 ± 0.7	55.79 ± 0.9	59.23±0.7
	Ma-F1	40	44.88 ± 4.1	52.44 ± 2.3	57.80 ± 1.1	59.28 ± 0.6	48.57 ± 0.5	59.63 ± 2.3	53.40 ± 1.4	49.88±1.9	61.19±0.6
		60	45.16±3.1	50.65 ± 0.4	55.94±0.7	56.50 ± 0.4	52.37 ± 0.8	56.77 ± 1.7	53.81 ± 1.1	52.10 ± 0.7	60.13±1.3
		20	54.83±3.0	55.20 ± 0.7	56.23 ± 0.8	57.92 ± 0.5	56.85 ± 0.9	57.24 ± 3.2	58.16 ± 0.9	58.26 ± 0.9	61.72±0.6
Freebase	Mi-F1	40	57.08±3.2	56.05 ± 2.0	61.01±1.3	62.71 ± 0.7	53.96 ± 1.1	63.74±2.7	57.82 ± 0.8	54.28 ± 1.6	64.03±0.7
		60	55.92±3.2	53.85 ± 0.4	58.74 ± 0.8	58.57 ± 0.5	56.84 ± 0.7	61.06 ± 2.0	57.96 ± 0.7	56.69 ± 1.2	63.61±1.6
		20	67.63±5.0	73.03 ± 0.7	71.78 ± 0.7	73.89 ± 0.4	70.84 ± 0.7	73.26 ± 2.1	72.80 ± 0.6	73.19 ± 1.2	76.22±0.8
	AUC	40	66.42±4.7	74.05±0.9	75.51±0.8	76.08 ± 0.4	69.48±0.2	77.74±1.2	72.97 ± 1.1	70.77±1.6	78.44±0.5
		60	66.78±3.5	71.75 ± 0.4	74.78 ± 0.4	74.89 ± 0.4	71.01 ± 0.5	75.69 ± 1.5	73.32 ± 0.9	73.17 ± 1.4	78.04±0.4
		20	42.46±2.5	60.22 ± 2.0	54.78 ± 0.5	58.32 ± 1.1	50.06±0.9	56.07±3.2	51.61 ± 3.2	59.50 ± 2.1	71.38±1.1
	Ma-F1	40	45.77±1.5	65.66 ± 1.5	64.77±0.5	64.50 ± 0.7	58.97±0.9	63.85 ± 1.5	54.72 ± 2.6	61.92 ± 2.1	73.75±0.5
		60	44.91±2.0	63.74±1.6	60.65±0.3	65.53±0.7	57.34±1.4	62.02±1.2	55.45 ± 2.4	61.15 ± 2.5	75.80±1.8
		20	49.68±3.1	65.78±2.9	60.82±0.4	63.64±1.1	61.49±2.5	68.86±4.6	62.39±3.9	63.93±3.3	78.81±1.3
AMiner	Mi-F1	40	52.10±2.2	71.34±1.8	69.66±0.6	71.57 ± 0.7	68.47±2.2	76.89±1.6	63.87±2.9	63.60 ± 2.5	80.53±0.7
		60	51.36 ± 2.2	67.70±1.9	63.92±0.5	69.76±0.8	65.61 ± 2.2	74.73 ± 1.4	63.10 ± 3.0	62.51±2.6	82.46±1.4
		20	70.86±2.5	85.39±1.0	81.22±0.3	83.35±0.5	77.96±1.4	78.92±2.3	75.89 ± 2.2	85.34±0.9	90.82±0.6
	AUC	40	74.44±1.3	88.29±1.0	88.82±0.2	88.70 ± 0.4	83.14±1.6	80.72 ± 2.1	77.86 ± 2.1	88.02±1.3	92.11±0.6
		60	74.16±1.3	86.92±0.8	85.57±0.2	87.74±0.5	84.77±0.9	80.39±1.5	77.21±1.4	86.20 ± 1.7	92.40±0.7

Table 3: Quantitative results ($\% \pm \sigma$) on node clustering.

Datasets	ACM		DBLP		Freebase		AMiner	
Metrics	NMI	ARI	NMI	ARI	NMI	ARI	NMI	ARI
GraphSage	29.20	27.72	51.50	36.40	9.05	10.49	15.74	10.10
GAE	27.42	24.49	72.59	77.31	19.03	14.10	28.58	20.90
Mp2vec	48.43	34.65	73.55	77.70	16.47	17.32	30.80	25.26
HERec	47.54	35.67	70.21	73.99	19.76	19.36	27.82	20.16
HetGNN	41.53	34.81	69.79	75.34	12.25	15.01	21.46	26.60
DGI	51.73	41.16	59.23	61.85	18.34	11.29	22.06	15.93
DMGI	51.66	46.64	70.06	75.46	16.98	16.91	19.24	20.09
HeCo	56.87	56.94	74.51	80.17	20.38	20.98	32.26	28.64

Wang, X., Liu, N., Han, H., & Shi, C. (2021, August). Self-supervised heterogeneous graph neural network with co-contrastive learning. In *Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining* (pp. 1726-1736).

Part 4: Applications of graph self-supervised learning

- Recommender system
- Outlier detection
- More applications: Chemistry, graph structure learning...

Graphs in recommender system

GNNs for recommender system

LightGCN for collaborative filtering

SR-GNN for session-based recommendation

GraphRec for social recommendation

[1] He, Xiangnan, et al. "Lightgcn: Simplifying and powering graph convolution network for recommendation." Proceedings of the 43rd International ACM SIGIR conference on research and development in Information Retrieval. 2020.

[2] Wu, Shu, et al. "Session-based recommendation with graph neural networks." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.[3] Fan, Wenqi, et al. "Graph neural networks for social recommendation." The world wide web conference. 2019.

. . .

. . .

GSSL for recommendation: Motivations

Learning scheme: observed interactions \rightarrow ranking loss (e.g. BPR)

$$\mathcal{L}_{main} = \sum_{(u,i,j)\in O} -\log \sigma(\hat{y}_{ui} - \hat{y}_{uj}),$$

• Problem 1: Sparse Supervision Signal The observed interactions can be extremely sparse compared to the whole interaction space

GSSL:

provide extra supervision signals from data itself!

GSSL for recommendation: Motivations

Learning scheme: observed interactions \rightarrow ranking loss (e.g. BPR)

$$\mathcal{L}_{main} = \sum_{(u,i,j)\in O} -\log \sigma(\hat{y}_{ui} - \hat{y}_{uj}),$$

- Problem 1: Sparse Supervision Signal
- Problem 2: Noisy interaction

Observed interactions usually contain noises, e.g., a user is misled to click an item and finds it uninteresting after consuming it

GSSL:

- <u>Regularize the model to prevent it from over-fitting</u>
 <u>the noisy interaction</u>
- Data augmentations to reduce the impact by noise

Wu, Jiancan, et al. "Self-supervised graph learning for recommendation." Proceedings of the 44th international ACM SIGIR conference on research and development in information retrieval. 2021.

Augmentations: Node Dropout (ND), Edge Dropout (ED), and Random Walk (RW)

Following works of SGL: <u>Scenario: collaborative filtering recommendation</u>

SimGCL

representation-level augmentation!

Yu, Junliang, et al. "Are graph augmentations necessary? simple graph contrastive learning for recommendation." Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022. Cai, Xuheng, et al. "LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation." ICLR 2023

SEPT

Scenario: social recommendation

Yu, Junliang, et al. "Socially-aware self-supervised tri-training for recommendation." Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021.

COTREC

Scenario: session-based recommendation

Xia, Xin, et al. "Self-supervised graph co-training for session-based recommendation." Proceedings of the 30th ACM International conference on information & knowledge management. 2021.

PMGT

Scenario: Multimodal Side Information-based Recommendation

Liu, Yong, et al. "Pre-training graph transformer with multimodal side information for recommendation." Proceedings of the 29th ACM International Conference on Multimedia, 2021

MAERec

Scenario: Sequential Recommendation

"Learning to mask" loss

Ye, Yaowen, Lianghao Xia, and Chao Huang. "Graph Masked Autoencoder for Sequential Recommendation." SIGIR 2023

Hybrid method

CHEST

Scenario: Sequential Recommendation

Three tasks:

- Masked Node Prediction (MNP)
- Masked Edge Prediction (MEP)
- Meta-path Type Prediction (MTP)

Summary: GSSL for recommender systems

- Scenarios
- Collaborative filtering-based recommendation
- Social recommendation
- Session-based recommendation
- Sequential recommendation
- ▶ ...
- Pretext tasks
- Mainstream solution: Contrast-based GSSL
- Promising directions: Generation-based and hybrid GSSL

Representative methods

MAERec

Graph-based outlier detection

Graph-based outlier detection

Social Network Graph

Graph-based outlier detection

GSSL for outlier detection: motivation

The lack of annotated labels for outliers:

Challenge: It's difficult to annotate the anomalies/out-ofdistribution samples from numerous normal sample!

GSSL for outlier detection: motivation

It's difficult to annotate the anomalies/out-of-distribution samples from numerous normal sample!

Self-supervised methods:

capture the latent patterns of normal data without any label \rightarrow the model can find the outlier according to its normality

Capture the normal patterns from itself!

DOMINANT

anomaly detection

Ding, Kaize, et al. "Deep anomaly detection on attributed networks." Proceedings of the 2019 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2019.

Scenario: node-level anomaly detection

Fan, Haoyi, Fengbin Zhang, and Zuoyong Li. "Anomalydae: Dual autoencoder for anomaly detection on attributed networks." ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.

Consider various motifs in structure-based auto-encoder

Yuan, Xu, et al. "Higher-order structure based anomaly detection on attributed networks." 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021.

CoLA

Scenario: node-level anomaly detection

Liu, Yixin, et al. "Anomaly detection on attributed networks via contrastive self-supervised learning." IEEE transactions on neural networks and learning systems 33.6 (2021): 2378-2392.

ANEMONE

Scenario: node-level anomaly detection Multi-scale contrastive learning!

GOOD-D

Scenario: graph-level out-of-distribution/anomaly detection

Liu, Yixin, et al. "GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection." Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. 2023.

Auxiliary property-based method

Scenario: node-level anomaly detection

Huang, Tianjin, et al. "Hop-count based self-supervised anomaly detection on attributed networks." Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part I. Cham: Springer International Publishing, 2023.

Hybrid method

Scenario: node-level **SL-GAD** anomaly detection Contrast-based + generation-based Generative Full Graph 822 223 GNN Anomaly Scores Decoder (+)(-) \mathcal{R} (+)Contrastive Readout Anomaly Scores GNN Generative Target Node **Contrastive Scores** Encoder Scores Î Readout D View Sampling \mathcal{R} (+)0.93 0.74 0.62 0.57 (-) 0.350.28GNN Decoder Subgraph 1 Subgraph 2 **Graph View Sampling Generative and Contrastive Discrimination Modules Anomaly Scoring**

Zheng, Yu, et al. "Generative and contrastive self-supervised learning for graph anomaly detection." IEEE Transactions on Knowledge and Data Engineering (2021).

Hybrid method

GLADC

Contrast-based + generation-based

Summary: GSSL for outlier detection

- Scenarios
- Node-level
- Graph-level

Pretext tasks

- Early methods: generation-based: autoencoder
- Mainstream methods: contrast-based: from single scale to multi-scale
- > A new perspective: auxiliary property predict the hop
- Advanced solutions: hybrid GSSL

Representative methods

More applications: chemistry

GROVER for molecular pre-train model

MIRACLE for drug-drug interaction prediction

Rong, Yu, et al. "Self-supervised graph transformer on large-scale molecular data." *Advances in Neural Information Processing Systems* 33 (2020): 12559-12571. Wang, Yingheng, et al. "Multi-view graph contrastive representation learning for drug-drug interaction prediction." Proceedings of the Web Conference 2021. 2021.

More applications: graph structure learning

Fatemi, Bahare, Layla El Asri, and Seyed Mehran Kazemi. "SLAPS: Self-supervision improves structure learning for graph neural networks." Advances in Neural Information Processing Systems 34 (2021): 22667-22681.

Liu, Yixin, et al. "Towards unsupervised deep graph structure learning." Proceedings of the ACM Web Conference 2022. 2022.

Summary

Recommender Systems

Outlier Detection

Chemistry

Graph Structure Learning

- Boarder Applications
- Expert finding
- Program repairing
- Open world modeling
- Medical
- Federated Learning

•••

Part 5: Future directions and conclusion

- Potential directions of graph self-supervised learning
- Conclusion

Theoretical Foundation

The existing methods are mostly designed with intuition and their performance gain is evaluated by empirical experiments, but don't have a solid theoretical foundation.

. . .

Potential theoretical basis:

Wu, Tailin, et al. "Graph information bottleneck." Advances in Neural Information Processing Systems 33 (2020): 20437-20448. Liu, Nian, et al. "Revisiting graph contrastive learning from the perspective of graph spectrum." Advances in Neural Information Processing Systems (2022)

Interpretability and Robustness

Most of the current works lack these properties. Interpretability: Explainable GSSL model Robustness: adversarial attack/defense of GSSL model

Interpretability

Adversarial Attack

• Pretext Tasks for Complex Types of Graphs

Most of the existing works: Plain graph, Attributed graph

Potential targets:

• Augmentation for Graph Contrastive Learning

Existing augmentations: Feature and/or structure perturbing.

Can we develop more effective augmentation strategy for graphs?

Spectral-based augmentation

• Learning with Multiple Pretext Tasks

How to effectively leverage different pretext tasks? Can we select pretext tasks automatically?

• Broader Scope of Applications

Can we apply GSSL to more graph-related scenarios?

Background

Graph neural networks

[MASK] is impossible.

Self-supervised learning on graph: acquires supervision signals from data itself for graph-based deep learning models.

• Graph self-supervised learning: Taxonomy

• Graph self-supervised learning: Frontiers

Efficient GSSL paradigm: Group Discrimination GSSL for Heterophilic graph GSSL for Heterogeneous graph

"Review"

node type

- Graph self-supervised learning: Applications
- Recommender Systems

Outlier Detection

• Chemistry

Graph Structure Learning

Boarder Applications...

Thanks for listening! Q&A