
Graph Self-Supervised Learning: 
Taxonomy, Frontiers, and Applications

Yixin Liu1, Yizheng Zheng1, Ming Jin1, Feng Xia2, Shirui Pan3

1 Monash University
2 RMIT University

3 Griffith University

June 18 1:30pm-3:30pm, 2023 (GMT +10)



Tutorial outline

• Introduction and background
• Graph analytics and graph neural networks
• Background of graph self-supervised learning

• Taxonomy of graph self-supervised learning
• Uniform framework  
• Categories of GSSL  
• Representative methods

• Frontiers of graph self-supervised learning
• graph self-supervised learning
• Efficient graph self-supervised learning
• Automatic graph self-supervised learning

• Applications of graph self-supervised learning
• Recommender system 
• Outlier detection
• More applications

• Future directions and conclusion
• Potential directions of graph self-supervised learning
• Conclusion
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Part 1:Introduction and background
• Graph analytics
• Graph neural networks
• Graph self-supervised learning: Background



What is graphs?

A Graph has nodes/vertices
and edges.

Nodes/vertices → a person in 
the social network

Edges → Connection between 
people

Example:  A Social Network Graph

4
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Graphs in real-world applications

Social Networks Bibliography Networks Protein Interaction Networks

Knowledge Graphs Chemical Compounds Traffic Networks



Graph Analytics (1): Link Prediction
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Friend Recommendation: Does 
Alice Know Bob in Facebook

Item Recommendation: Which Items 
will The User Like?



Graph Analytics (2): Community Detection
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Typically a Graph Clustering Task



Graph Analytics (3): Node Classification
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■ d1 is democratic 
■ d2 is republican
■ What can we say 

about d3 and d4?

-Graph from Jerry Zhu’s Tutorial in ICML 07



Graph Analytics (4): Graph Classification
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• Example: Drug Activity Prediction in the Biological domain

It is active to Breast Cancer?



Graph Analytics: Many Others…
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• Sampling

• Ranking

• Evolution

• Matching

• Visualization

• Social Influence

• …



Traditional Machine Learning Pipeline
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• Network Feature Extractions
• Nodes: degree/PageRank score
• Edges: # of common neighbors

• Feature Vector Construction
• Network Feature + Content Feature

• Machine Learning Tasks
• Classification
• Clustering
• Link Prediction

Disadvantages:
• Ineffective
• Shallow Method
• Multiple Steps
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● Methods and Applications
○ Frontier of Deep Learning
○ Effective Representation for Graph Data
○ Wide applications

Graph neural networks (GNNs)
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• Learn Better Representation for Graph Data

Link Prediction

Node Classification

Community Detection

Big Picture of Graph Neural Networks

A deep encoder which transfer the node in a graph into a latent vector

Graph neural networks (GNNs)



Motivation of graph self-supervised learning 
(GSSL)
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Recent graph learning focuses on (semi-) supervised learning scenarios…  

Graph data

…

Hidden 
Layer

…

…
ReLUReLU

Hidden 
Layer

GNN LabelsPrediction

Input Output Supervise

Reliance on labels!



Motivation
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Recent graph learning focuses on (semi-) supervised learning scenarios…  

Reliance on labelsè Problems:

• Problem 1: Expensive cost of data collection and annotation 



Motivation
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Recent graph learning focuses on (semi-) supervised learning scenarios…  

Reliance on labelsè Problems:

• Problem 1: Expensive cost of data collection and annotation
• Problem 2: Pool generalization (over-fitting) 



Motivation
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Recent graph learning focuses on (semi-) supervised learning scenarios…  

Reliance on labelsè Problems:

• Problem 1: Expensive cost of data collection and annotation
• Problem 2: Pool generalization (over-fitting) 
• Problem 3: Vulnerable to label-related adversarial attacks 

Zhang, M., Hu, L., Shi, C., & Wang, X. (2020). Adversarial Label-Flipping Attack and Defense for Graph Neural Networks. 2020 IEEE International Conference on Data Mining (ICDM), 791-800.



Motivation
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Recent graph learning focuses on (semi-) supervised learning scenarios…  

Reliance on labelsè Problems:

• Expensive cost of data 
collection and annotation 

• Pool generalization • Vulnerable to label-related 
adversarial attacks

Zhang, M., Hu, L., Shi, C., & Wang, X. (2020). Adversarial Label-Flipping Attack and Defense for Graph Neural Networks. 2020 IEEE International Conference on Data Mining (ICDM), 791-800.

How to address these problems?



Self-supervised Learning (SSL)

19

Instead of relying on human-annotated labels, self-supervised learning 
acquires “labels”  from data itself by using an “automatic” process.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., & Tang, J. (2021). Self-supervised learning: Generative or contrastive. IEEE Transactions on Knowledge and Data Engineering.

Reduces the dependence on manual labels! 



Self-supervised Learning (SSL)
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“pretext task”: use the data itself to generate labels 
and use supervised methods to solve unsupervised 
problems. 

The representations learned by performing this task 
can be used as a starting point for our downstream 
supervised tasks.

https://amitness.com/2020/05/self-supervised-learning-nlp/

Critical problem: how to design the pretext task? 



Self-supervised Learning: Computer Vision
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Contrastive learning:

https://simclr.github.io

SimCLR

https://www.casualganpapers.com/self-supervised-contrastive-representation-learning/BYOL-explained.html



Self-supervised Learning: NLP
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Large-scale pre-trained language model: BERT

https://medium.com/swlh/bert-pre-training-of-transformers-for-language-understanding-5214fba4a9af

2 self-supervised pre-training schemes of BERT:
• Masked Language Modeling (MLM)
• Next Sentence Prediction (NSP)



Self-supervised Learning on graphs
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How to design pretext tasks in graph domain?

Can we transfer the pretext tasks designed for CV/NLP to graph domain?
- Not trivial! 

SSL on CV

[MASK] is impossible.

Nothing is impossible.

I’m going outside.

I’ll be back soon.

I got up late.

SSL on NLP SSL on graph

Data space
• CV/NLP: 2D/1D regular-grid Euclidean space 
• Graph: Non-Euclidean space 

Reliance between samples
• CV/NLP: Independent samples (image/text)
• Graph: data examples (nodes) in graph data are correlated 

by the topological structure

Cannot easily transfer!
Need: exclusive definitions and taxonomies 



Self-supervised Learning on graphs
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Early studies:
• Node2vec:

• Graph autoencoder (GAE)

https://maelfabien.github.io/machinelearning/graph_5/



Self-supervised Learning on graphs
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A pioneer work of graph SSL:

Growing trend!



Self-supervised Learning on graphs
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After DGI…

Multi-view contrastive learning[1]

Clustering prediction[4]Subgraph contrastive learning [3]

Graph generation [2]

[1] Hassani, K., & Khasahmadi, A. H. (2020, November). Contrastive multi-view representation learning on graphs. In International Conference on Machine Learning (pp. 4116-4126). PMLR.
[2] Hu, Z., Dong, Y., Wang, K., Chang, K. W., & Sun, Y. (2020, August). Gpt-gnn: Generative pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD (pp. 1857-1867).
[3] Jiao, Y., Xiong, Y., Zhang, J., Zhang, Y., Zhang, T., & Zhu, Y. (2020, November). Sub-graph contrast for scalable self-supervised graph representation learning. In 2020 IEEE ICDM (pp. 222-231). IEEE.
[4] You, Y., Chen, T., Wang, Z., & Shen, Y. (2020, November). When does self-supervision help graph convolutional networks?. In International Conference on Machine Learning (pp. 10871-10880). PMLR.

Following questions:
• Which are the representative works? 
• How to categorize them?
• How to formulate them with a unified framework?
• What is the research frontiers?
• Where can GSSL be applied?
• What are the potential future directions?
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Part 2:Taxonomy of graph 
self-supervised learning 

• Uniform framework
• Categories of GSSL
• Representative methods



Graph Self-Supervised Learning: A Survey

IEEE TKDE-2022

https://arxiv.org/abs/2103.00111 28



• Unified framework and systematic taxonomy
We propose a unified framework that mathematically formalizes graph SSL 
approaches. Based on our framework, we systematically categorize the 
existing works into four categories.

• Comprehensive and up-to-date review 
We conduct a comprehensive and timely review for classical and latest 
graph SSL approaches. 

• Abundant resources and applications. 
We collect abundant resources on graph SSL, including datasets, 
evaluation benchmark, performance comparison, and open-source codes. 
We also summarize the practical applications of graph SSL in various 
research fields.

• Outlook on future directions 
We point out the technical limitations of current research. We further 
suggest six promising directions for future works from different 
perspectives.

Overview

29



Encoder-Decoder Framework

30

Graph encoder:
GNNs, Transformers, DNN…

Pretext task: 
For encoder training

Downstream task: 
To solve real-world problems



Encoder-Decoder Framework
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Graph encoder:
GNNs, Transformers, DNN…

Pretext task: 
For encoder training

Downstream task: 
To solve real-world problems

Q1: How to share the encoder 
between two tasks?

Q2: Which types of 
pretext tasks do we 
have?

Q3: What kind of 
downstream tasks can 
be solved?



3 SSL schemes
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(i) Pre-training and Fine-tuning (PF)

(ii) Joint Learning (JL)

(iii) Unsupervised Representation Learning (URL)

Q1: How to share the encoder between two tasks?



4 Categories of Graph SSL
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(i) Generation-based

(ii) Auxiliary Property-based

(iii) Contrast-based

(iv) Hybrid

Q2: Which types of pretext 
tasks do we have?

Main Taxonomy!



(iii) Graph-level tasks:
graph classification, graph regression, 
…

3 Types of Downstream Tasks

34

(i) Node-level tasks:
Node classification, node 
regression…

(ii) Edge-level tasks:
Link prediction, edge 
classification…

Node-level

Edge-level

Graph-level

Q3: What kind of downstream 
tasks can be solved?



Outline of Graph SSL
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Graph 
Self-supervised 

Learning

Clustering-
based

Pair Relation-
based

Generation
-based

Auxiliary 
Property-

based

Contrast-
based

Hybri
d

Auxiliary 
Property 

Classification

Auxiliary 
Property 

Regression

Same-Scale 
Contrast

Node-Level Graph-Level

Cross-Scale 
Contrast

Patch-
Global

Context-
Global

Structure 
Generation

Feature 
Generation
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Structure Generation: 
reconstruct the topological 
structure information 

Generation-based Methods: Origin

36

Generation-based methods aim to reconstruct the input data and use 
the input data as the supervision signals.

Origin: Autoencoder

Generation-based 
Methods

Feature Generation: reconstruct 
the feature information 



Feature Generation
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• Pretext Decoder: Fully connected 
layers that regresses the features

• SSL Loss: Regression loss (MSE)



Intuition: Use the neighboring information to reconstruct the masked features
(similar to MLM in BERT) 

Feature Generation: Representative Method
• Graph completion

You, Y., Chen, T., Wang, Z., & Shen, Y. (2020, November). When does self-
supervision help graph convolutional networks?. In International Conference on 
Machine Learning (pp. 10871-10880). PMLR. 38



Feature Generation: Representative Method

• Self-Supervised Masked Graph Autoencoder (GraphMAE)

Hou, Z., Liu, X., Cen, Y., Dong, Y., Yang, H., Wang, C., & Tang, J. (2022, August). 
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of the 28th 
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 594-604). 39



Structure Generation

• Pretext Decoder: Adjacency 
matrix reconstruction network

• SSL Loss: Binary cross-entropy

40



Structure Generation: Representative Method
• Graph Autoencoder (GAE)

Kipf, T. N., & Welling, M. (2016). Variational graph auto-encoders. NeurIPS Workshop.

Dot production decoder

41



Structure Generation: Representative Method
• Pre-Training GNNs for Generic Structural Feature Extraction

Z. Hu, C. Fan, T. Chen, K.-W. Chang, and Y. Sun, “Pre-training graph neural 
networks for generic structural feature extraction,” arXiv:1905.13728, 2019. 42

• A multi-layer GNN is pre-
trained on three
structure-guided tasks

• Part of GNN layers are
fine-tuned on the given
downstream tasks



Other Representative Generation-Based Methods

• GPT-GNN

Hu, Z., Dong, Y., Wang, K., Chang, K. W., & Sun, Y. (2020, August). Gpt-
gnn: Generative pre-training of graph neural networks. In Proceedings of the 
26th ACM SIGKDD (pp. 1857-1867).

Feature generation + Structure generation

43



Generation-based Methods: Summary

44



Difference:
⇒ Supervised learning uses manual labels to train models
⇒ Auxiliary property-based methods uses pseudo labels to train models

45

Clustering-
based

Pair Relation-
based

Auxiliary 
Property-

based

Auxiliary 
Property 

Classification

Auxiliary 
Property 

Regression

Taxonomy: follows supervised learning

Auxiliary Property-based Methods: Origin
Generation-based methods aim to predict node-, link- and graph- level 
properties which can be obtained from the graph data freely.

Origin: Supervised learning ⇒ Learn with “sample-label” pairs

45



Auxiliary Property Classification

• Pretext Decoder:
Classifier head

• SSL Loss: Classification 
Loss (Cross-entropy)

How to acquire properties?
- Clustering
- Pair Relation

46



Clustering-based Auxiliary Property Classification: 
Representative Methods

You, Y., Chen, T., Wang, Z., & Shen, Y. (2020, November). When does self-
supervision help graph convolutional networks?. In International Conference on 
Machine Learning (pp. 10871-10880). PMLR.

• Node Feature Clustering • Graph Topology Partitioning

Feature-based clustering
(e.g., k-means)

Structure-based clustering
(e.g., Metis)

47



Pair Relation-based Auxiliary Property Classification: 
Representative Method

Peng, Z., Dong, Y., Luo, M., Wu, X. M., & Zheng, Q. (2020). Self-supervised graph 
representation learning via global context prediction. arXiv preprint 
arXiv:2003.01604. 48



Auxiliary Property Regression: Representative Method

• NodeProperty

E.g., target property ⇒ the degree 
of nodes

Jin, W., Derr, T., Liu, H., Wang, Y., Wang, S., Liu, Z., & Tang, J. (2020). Self-
supervised learning on graphs: Deep insights and new direction. arXiv preprint 
arXiv:2006.10141.

• Pretext Decoder: Regression head

• SSL Loss: Regression Loss (MSE)

49



Auxiliary Property-based Methods: Summary

50



Key components:
• Data augmentation
• Contrastive model <main taxonomy>
• Contrastive objective

Contrast-based Methods: Origin
Contrast-based methods learn by maximizing the agreement between two 
augmented instances.

Origin: Visual Contrastive Learning ⇒ Mutual Information (MI) Maximization

51



• Hybrid augmentations
- Subgraph sampling (SS)

Data Augmentation on Graphs

• Attributive augmentations
- Node feature masking (NFM)
- Node feature shuffle (NFS)

• Topological augmentations
- Edge modification (EM)
- Graph diffusion (GD)

52



Graph Contrastive Learning: Taxonomy 

53

Contrast
-based

Same-Scale 
Contrast

Node-Level Graph-Level

Cross-Scale 
Contrast

Patch-Global Context-Global

53



Node-Level Same-Scale Contrast: 
Representative Method

54

• SimCLR Contrastive Learning Framework
• Intra + Inter view contrast
• Augmentation: Remove edges (EM) + mask features (NFM)

Zhu, Y., Xu, Y., Yu, F., Liu, Q., Wu, S., & Wang, L. (2020). Deep graph 
contrastive representation learning. ICML Workshop 54

• GRACE



- Two graph views are 
first generated via 
graph augmentations

- Then, online and 
target networks are 
employed to 
generate node 
representations for 
each view

- A multi-scale graph contrastive schema with the self-knowledge 
distillation is proposed to train the online graph encoder

55

Node-Level Same-Scale Contrast: 
Representative Method
• MERIT

Jin, M., Zheng, Y., Li, Y. F., Gong, C., Zhou, C., & Pan, S. (2021). Multi-scale contrastive 
siamese networks for self-supervised graph representation learning. In International Joint 
Conference on Artificial Intelligence 2021 (pp. 1477-1483).



Graph-Level Same-Scale Contrast: 
Representative Method

56

• SimCLR Contrastive Learning Framework
• Augmentation: EM+SS

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., & Shen, Y. (2020). 
Graph contrastive learning with augmentations. Advances in Neural 
Information Processing Systems, 33, 5812-5823.

• GraphCL

56



Patch-Global Cross-Scale Contrast: 
Representative Method

• Maximize the MI between node and full graph

Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. 
D. (2019). Deep Graph Infomax. ICLR (Poster), 2(3), 4.

• DGI

57



Patch-Global Cross-Scale Contrast: 
Representative Method
• G-Zoom

• Node vs. Node

Zheng, Y., Jin, M., Pan, S., Li, Y. F., Peng, H., Li, M., & Li, Z. (2022). Toward 
Graph Self-Supervised Learning With Contrastive Adjusted Zooming. IEEE 
Transactions on Neural Networks and Learning Systems. 58

• Node vs. Context • Node vs. Graph



Context-Global Cross-Scale Contrast: 
Representative Method
• MICRO-Graph

• Motif vs. Full graph

Subramonian, A. (2021, May). MOTIF-Driven Contrastive Learning of Graph 
Representations. In Proceedings of the AAAI Conference on Artificial 
Intelligence (Vol. 35, No. 18, pp. 15980-15981). 59



MI Estimation - Contrastive Loss
• Jensen-Shannon Estimator

• Noise-Contrastive Estimator

• Triplet loss

• BYOL loss

• Barlow Twins loss

60



Contrast-based Methods: Summary

61



Hybrid Methods: Motivation
Hybrid methods integrate various pretext tasks together in a multi-task 
learning fashion

Motivation: 
⇒ A single pretext task cannot provide sufficient guidance
⇒ Using multiple pretext tasks can better leverage the advantages of various 
types of supervision signals 

62



Hybrid Methods: Representative Methods
• GMI

Peng, Z., Huang, W., Luo, M., Zheng, Q., Rong, Y., Xu, T., & Huang, J. (2020, April). Graph 
representation learning via graphical mutual information maximization. In Proceedings of The 
Web Conference 2020 (pp. 259-270).

• Edge MI: Structure generation

• Node MI: Same-scale contrast

63



Hybrid Methods: Representative Methods
• GROVER

Hu, Z., Dong, Y., Wang, K., Chang, K. W., & Sun, Y. (2020, August). Gpt-
gnn: Generative pre-training of graph neural networks. In Proceedings of the 
26th ACM SIGKDD (pp. 1857-1867). 64

- Node- and edge-level reconstruction

- Context- and graph-level auxiliary properties prediction

- Backbone model: Node and edge GNN transformers



Hybrid Methods: Summary

65
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Part 3: Frontiers of graph 
self-supervised learning 

• Efficient graph self-supervised learning : A new paradigm
• Heterophilic graph self-supervised learning
• Heterogeneous graph self-supervised learning
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Efficient graph self-supervised 
learning : A new paradigm



Existing Problems - Slow Computation with Node Comparison

68

These contrastive-learning approaches rely on node-to-node comparison.

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



69

Node-to-node comparison require heavy gradient computation. For 
example, for the two representative contrastive losses: 

InfoNCE Loss                               

JSD-estimator

Existing Problems - Slow Computation with Node Comparison

Gradient Computation require all negative samples

Gradient Computation require all positive samples

,

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



Introduction to Group Discrimination (GD)
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Positive Group:
Summarised Node representations (       ) 
generated with original or augmented graph.

Summarisation (e.g., sum):

Negative Group: 
Summarised Node representations (       )  
generated with corrupted graph.

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



If positive → y = 1, else → y = 0

Introduction to Group Discrimination (GD)

71

Use a very simple BCE loss to conduct discrimination

A very simple binary classification task: discriminating positive/negative samples

is the summarised node embedding/binary prediction for a 
node i

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



Rethinking DGI
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Original Thought of DGI → 
MI maximization between nodes and summary vector.

summary vector
GNN encoder

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



Rethinking DGI
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However, due to inappropriate usage of Sigmoid function….

Sigmoid 
Function

Node 
Embeddings



Rethinking DGI
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Value in summary vector s almost 
becomes constant vector                         
with no variance.

Changing     has trivial effect on
model performance.  

Non-linear activation in GNN encoder  The assumption of learning via MI interaction between 
nodes and summary vector 

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



Rethinking DGI
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Simplifying DGI

Set      to 1 for                      , and remove w in      

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



Rethinking DGI
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Considering summarised embedding as       → become BCE loss

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



Rethinking DGI
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With the new loss → Dramatic improvement in memory and time

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.
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Rethinking DGI

Replacing the summation with other aggregation function

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



Rethinking DGI

79

With this loss, we can see
Instead of contrastive 
learning, DGI is a Group 
Discrimination method



Proposed Framework: Graph Group Discrimination (GGD)

80

Augmentation             Corruption                         Encoding               Aggregation      Discrimination

Optional

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.



Experiment (Small-to-Medium scale Dataset)

Time Consumption Improvement (epoch per 
second)

Memory Consumption Improvement (MB)

Overall Performance Comparison

81



Experiment (Large scale Dataset - Ogbn-arxiv)
Using only 0.18 seconds and 69.8% less memory to reach SOTA.

10783 faster than existing methods.

Fast convergence → converge with 
only 1 epoch 

82Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely 
efficient approach with group discrimination. Advances in Neural Information Processing Systems, 35, 10809-10820.
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Heterophilic Graph Self-
supervised Learning



Homophily assumption

84

Most UGRL methods are designed based on the homophily assumption:

Linked nodes tend to share similar attributes with each other.

• Low-pass filter-like GNNs[1] (e.g., GCN) as encoders:

[1] Nt, H.; and Maehara, T. 2019. Revisiting graph neural networks: All we have is low-pass filters. arXiv preprint arXiv:1905.09550..

Representations of adjacent nodes 
become similar



Limitation

85

Ideal (pure) homophilic graph Real-world homophilic 
graph

Do real-world graphs always obey the homophily assumption?
No!

• Pure homophilic graph is ideal, real-world graphs often contain heterophilic edges.
• Real-world homophilic graphs can also include heterophilic edges.
• In heterophilic graphs, heterophilic edges are much more than homophilic edges.
• Adversarial attack tends to reduce the homophily of graphs [5]. 

Real-world heterophilic 
graph

Graph after adversarial 
attack

[5] Zhu J.; Jin J.; Loveland D.; Schaub, M.; and Koutra D. 2022. How does Heterophily Impact the Robustness of Graph Neural Networks?: Theoretical Connections and Practical Implications. In SIGKDD.

The behind homophily  assumption hinders the generalization ability to heterophilic graphs and robustness against 
adversarial attack of most UGRL methods

Homo. edge

Hetero. edge

Adversarial noisy edge
(a) (b) (c) (d)



Observation
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Most UGRL methods are designed based on the homophily assumption:

Linked nodes tend to share similar attributes with each other.
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Cora dataset

Texas dataset

All the connected nodes are pushed to be closer in the 
representation space, even if some of them have moderate 
feature similarities that are comparable to randomly sampled 
node pairs.

CNP: connected node pairs
RNP: randomly sampled node pairs
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Visualization of the cosine similarity of: 



Contribution

87

Discriminate the homophilic 
edges and heterophilic edges

Learn informative rand robust 
representations with UGRL

(Q1) Is it possible to distinguish between two types of edges 
in an unsupervised manner?

(A2) dual-channel graph encoding module with robust cross-
channel contrasting.
Training with a closed-loop interplay.

(Q2) How to effectively couple edge discriminating with 
representation learning into an integrated UGRL model?

(A1) trainable edge discriminator with a pivot-anchored 
ranking loss function.

Low-Pass
Graph Filter

Projection 
Head 

High-Pass
Graph Filter

Projection 
Head 

Homophilic View

Heterophilic View

Augmentation

Representations

Dual-Channel 
Contrastive Loss

Edge 
Discriminator

Homophilic Edges

Heterophilic Edges

Pivot-Anchored
Ranking Loss

To address the aforementioned limitation…

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.



Proposed method - GREET
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To discriminates the homophilic and 
heterophilic edges without accessing node 
labels. 

Input Graph

Edge Discriminating Module Dual-Channel Representation Learning Module

Edge 
Similarity

Low-Pass
Graph Filter

Projection 
Head 

High-Pass
Graph Filter

Projection 
Head 

Homophilic View

Heterophilic View

Augmentation

Representations

Dual-Channel 
Contrastive Loss

Edge 
Discriminator

Pivot
Similarity

Random 
Node Pairs

Pivot-Anchored
Ranking Loss

Raw 
Features

Structural 
Encodings

To leverage both types of edges to generate informative 
node representations.

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.



Edge discriminating
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• Input of edge discriminator:
Raw feature + Structural encoding (SE)

Low-Pass
Graph Filter

Projection 
Head 

High-Pass
Graph Filter

Projection 
Head 

Homophilic View

Heterophilic View

Augmentation

Edge Discriminating Module Dual-Channel Representation Learning Module

Representations

Pivot
Similarity

Random 
Node Pairs

Edge 
Similarity

Dual-Channel 
Contrastive Loss

Pivot-Anchored
Ranking Loss

Input Graph

Edge 
Discriminator

Raw 
Features

Structural 
Encodings

Random walk diffusion process-based SE [6]:

where

[6] Dwivedi, V. P.; Luu, A. T.; Laurent, T.; Bengio, Y.; and Bresson, X. 2022. Graph Neural Networks with Learnable Struc- tural and Positional Representations. In ICLR.

• Edge discriminator – a two-layer MLP: 



View generalization
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• Gumbel-Max reparametrization trick [7]:

Low-Pass
Graph Filter

Projection 
Head 

High-Pass
Graph Filter

Projection 
Head 

Augmentation

Edge Discriminating Module Dual-Channel Representation Learning Module

Representations

Pivot
Similarity

Random 
Node Pairs

Edge 
Similarity

Dual-Channel 
Contrastive Loss

Pivot-Anchored
Ranking Loss

Input Graph

Edge 
Discriminator

Raw 
Features

Structural 
Encodings

Homophilic View

Heterophilic View

• View generation: 

Input graph:
Homo. view

Hetero. view

where
[7] Jang, E.; Gu, S.; and Poole, B. 2017. Categorical reparameterization with gumbel-softmax. In ICLR.



Dual-channel encoding
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• Homo. View encoder – low-pass filter:

Projection 
Head 

Projection 
Head 

Edge Discriminating Module Dual-Channel Representation Learning Module

Pivot
Similarity

Random 
Node Pairs

Edge 
Similarity

Dual-Channel 
Contrastive Loss

Pivot-Anchored
Ranking Loss

Input Graph

Edge 
Discriminator

Raw 
Features

Structural 
Encodings

Homophilic View

Heterophilic View

Low-Pass
Graph Filter

High-Pass
Graph Filter

Augmentation

Representations

• Hetero. View encoder – high-pass filter:

where 

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.



Dual-channel encoding
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• Homo. View encoder – low-pass filter:

Projection 
Head 

Projection 
Head 

Edge Discriminating Module Dual-Channel Representation Learning Module

Pivot
Similarity

Random 
Node Pairs

Edge 
Similarity

Dual-Channel 
Contrastive Loss

Pivot-Anchored
Ranking Loss

Input Graph

Edge 
Discriminator

Raw 
Features

Structural 
Encodings

Homophilic View

Heterophilic View

Low-Pass
Graph Filter

High-Pass
Graph Filter

Augmentation

Representations

• Hetero. View encoder – low-pass filter:

concat Node representations:



Pivot-anchored ranking loss
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Projection 
Head 

Projection 
Head 

Edge Discriminating Module
Dual-Channel Representation Learning Module

Edge 
Similarity

Dual-Channel 
Contrastive Loss

Input Graph

Edge 
Discriminator

Raw 
Features

Structural 
Encodings

Homophilic View

Heterophilic View

Low-Pass
Graph Filter

High-Pass
Graph Filter

Augmentation

Representations

Pivot
Similarity

Random 
Node Pairs

Pivot-Anchored
Ranking Loss

Where 𝛾("#), 𝛾("%): margins (hyper-params)

𝑒&,( is an existing edgeRep. sim. of connected nodes i, j where 

Rep. sim. of two randomly sampled nodes 𝑣&), 𝑣()

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.



Pivot-anchored ranking loss
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Projection 
Head 

Projection 
Head 

Edge Discriminating Module Dual-Channel Representation Learning Module

Edge 
Similarity

Dual-Channel 
Contrastive Loss

Input Graph

Edge 
Discriminator

Raw 
Features

Structural 
Encodings

Homophilic View

Heterophilic View

Low-Pass
Graph Filter

High-Pass
Graph Filter

Augmentation

Representations

Pivot
Similarity

Random 
Node Pairs

Pivot-Anchored
Ranking Loss

Where 

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.



Dual-channel contrastive loss
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Edge Discriminating Module Dual-Channel Representation Learning Module

Edge 
Similarity

Input Graph

Edge 
Discriminator

Raw 
Features

Structural 
Encodings

Homophilic View

Heterophilic View

Low-Pass
Graph Filter

High-Pass
Graph Filter

Augmentation

Representations

Pivot
Similarity

Random 
Node Pairs

Pivot-Anchored
Ranking Loss

kNN extends positive samples:

(Cross-view Info-NCE loss)

Projection 
Head 

Projection 
Head 

Dual-Channel 
Contrastive Loss

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.



Alternative training scheme
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Edge Discriminating Module Dual-Channel Representation Learning Module

Edge 
Similarity

Input Graph

Edge 
Discriminator

Raw 
Features

Structural 
Encodings

Homophilic View

Heterophilic View

Low-Pass
Graph Filter

High-Pass
Graph Filter

Augmentation

Representations

Pivot
Similarity

Random 
Node Pairs

Pivot-Anchored
Ranking Loss

Overall optimization objective:

Projection 
Head 

Projection 
Head 

Dual-Channel 
Contrastive Loss

Train Representation Learning 
Module

Train Edge 
Discriminating Module  

Better node 
representations

Better edge 
discrimination

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.



Performance comparison
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• Node classification @ homophilic graphs

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.



Performance comparison

98

• Node classification @ heterophilic graphs

Liu, Y., Zheng, Y., Zhang, D., Lee, V., & Pan, S. (2022). Beyond Smoothing: Unsupervised Graph Representation Learning with 
Edge Heterophily Discriminating. arXiv preprint arXiv:2211.14065.
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Heterogenous Graph Self-
supervised Learning



Heterogeneous Graphs
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Heterogeneous Graph has
different types of nodes or edges

Wang, X., Liu, N., Han, H., & Shi, C. (2021, August). Self-supervised heterogeneous graph neural network with co-contrastive 
learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 1726-1736).



HeCo Framework – (View Generation)
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Network Schema View

Wang, X., Liu, N., Han, H., & Shi, C. (2021, August). Self-supervised heterogeneous graph neural network with co-contrastive 
learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 1726-1736).



HeCo Framework – (View Generation)
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Meta-path View

Wang, X., Liu, N., Han, H., & Shi, C. (2021, August). Self-supervised heterogeneous graph neural network with co-contrastive 
learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 1726-1736).



HeCo Framework – (Contrastive Learning)
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Masked Node in Network Schema View

Masked People/Subjects in Meta-path View

Wang, X., Liu, N., Han, H., & Shi, C. (2021, August). Self-supervised heterogeneous graph neural network with co-contrastive 
learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 1726-1736).



HeCo Framework – (Contrastive Learning)
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We can obtain L^{mp} similarly

Wang, X., Liu, N., Han, H., & Shi, C. (2021, August). Self-supervised heterogeneous graph neural network with co-contrastive 
learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 1726-1736).



Experiment

105Wang, X., Liu, N., Han, H., & Shi, C. (2021, August). Self-supervised heterogeneous graph neural network with co-contrastive 
learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 1726-1736).
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Part 4: Applications of graph 
self-supervised learning 

• Recommender system 
• Outlier detection
• More applications: Chemistry, graph structure learning…



Graphs in recommender system
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Users Items

…
…

…
…

…

?

?

Interaction à User-item graph 

Social relation à User-user graph 
(for social recommendation) 

Item transmission/similarityà Item-item graph 
(for sequential/session-based recommendation) 



GNNs for recommender system
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LightGCN for collaborative filtering

SR-GNN for session-based recommendation

[1] He, Xiangnan, et al. "Lightgcn: Simplifying and powering graph convolution network for recommendation." Proceedings of the 43rd International ACM SIGIR conference on 
research and development in Information Retrieval. 2020.
[2] Wu, Shu, et al. "Session-based recommendation with graph neural networks." Proceedings of the AAAI conference on artificial intelligence. Vol. 33. No. 01. 2019.
[3] Fan, Wenqi, et al. "Graph neural networks for social recommendation." The world wide web conference. 2019.

GraphRec for social recommendation

…

…



GSSL for recommendation: Motivations 
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• Problem 1: Sparse Supervision Signal

…
…

…

Learning scheme: observed interactions à ranking loss (e.g. BPR)

The observed interactions can be extremely sparse 
compared to the whole interaction space

Wu, Jiancan, et al. "Self-supervised graph learning for recommendation." Proceedings of the 44th 
international ACM SIGIR conference on research and development in information retrieval. 2021.

GSSL: 
provide extra supervision signals from data itself!



GSSL for recommendation: Motivations 
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• Problem 1: Sparse Supervision Signal

…
…

…

Learning scheme: observed interactions à ranking loss (e.g. BPR)

• Problem 2: Noisy interaction

Observed interactions usually contain noises, e.g., a user is 
misled to click an item and finds it uninteresting after consuming it

Wu, Jiancan, et al. "Self-supervised graph learning for recommendation." Proceedings of the 44th 
international ACM SIGIR conference on research and development in information retrieval. 2021.

GSSL: 
• Regularize the model to prevent it from over-fitting 

the noisy interaction
• Data augmentations to reduce the impact by noise



Contrast-based method

111Wu, Jiancan, et al. "Self-supervised graph learning for recommendation." Proceedings of the 44th 
international ACM SIGIR conference on research and development in information retrieval. 2021.

Scenario: collaborative filtering recommendation
SGL

Augmentations: Node Dropout (ND), Edge Dropout (ED), and Random Walk (RW)



Contrast-based method
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Yu, Junliang, et al. "Are graph augmentations necessary? simple graph contrastive learning for recommendation." Proceedings of the 45th 
International ACM SIGIR Conference on Research and Development in Information Retrieval. 2022.
Cai, Xuheng, et al. "LightGCL: Simple Yet Effective Graph Contrastive Learning for Recommendation." ICLR 2023

Scenario: collaborative filtering recommendationFollowing works of SGL:
LightGCLSimGCL

representation-level augmentation!
SVD-based augmentation



Contrast-based method
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Scenario: social recommendationSEPT

Yu, Junliang, et al. "Socially-aware self-supervised tri-training for recommendation." Proceedings of the 
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021.



Contrast-based method
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Scenario: session-based recommendationCOTREC

Xia, Xin, et al. "Self-supervised graph co-training for session-based recommendation." Proceedings of the 
30th ACM International conference on information & knowledge management. 2021.



Generation-based method
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Scenario: Multimodal Side Information-based RecommendationPMGT

Liu, Yong, et al. "Pre-training graph transformer with multimodal side information for recommendation." 
Proceedings of the 29th ACM International Conference on Multimedia, 2021

Loss: 
Edge reconstruction:

Feature reconstruction:



Generation-based method
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Scenario: Sequential RecommendationMAERec

Ye, Yaowen, Lianghao Xia, and Chao Huang. "Graph Masked Autoencoder for Sequential 
Recommendation." SIGIR 2023

“Learning to mask” loss

Reconstruction loss: 
recovering the masked global item transition paths



Hybrid method
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Scenario: Sequential RecommendationCHEST

Wang, Hui, et al. "Curriculum Pre-Training Heterogeneous Subgraph Transformer for Top-N 
Recommendation." ACM Transactions on Information Systems 41.1 (2023): 1-28.

Three tasks:
- Masked Node Prediction (MNP)
- Masked Edge Prediction (MEP)
- Meta-path Type Prediction (MTP)



Summary: GSSL for recommender systems
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• Scenarios
Ø Collaborative filtering-based recommendation
Ø Social recommendation
Ø Session-based recommendation
Ø Sequential recommendation
Ø …

• Pretext tasks
Ø Mainstream solution: Contrast-based GSSL
Ø Promising directions: Generation-based and hybrid GSSL 

• Representative methods

SGL MAERec



acid acid acid

Non-acid

Graph-based outlier detection
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Anomaly detection

Detect

Abnormal Nodes

Abnormal Edges

Abnormal Communities

Fraud detection

https://neo4j.com/blog/enterprise-fraud-detection/

Out-of-distribution detection



Graph-based outlier detection
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https://neo4j.com/blog/enterprise-fraud-detection/

Social bots

Rumors

Fake news

……
Social Network Graph

Anomaly 
Detection



Graph-based outlier detection
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https://neo4j.com/blog/enterprise-fraud-detection/

Outlier 
Detection

Hackers

Cyber Attacks



GSSL for outlier detection: motivation
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The lack of annotated labels for outliers: 

Challenge: It’s difficult to annotate the anomalies/out-of-
distribution samples from numerous normal sample!



GSSL for outlier detection: motivation
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Self-supervised methods: 
capture the latent patterns of normal data without any label 
à the model can find the outlier according to its normality

It’s difficult to annotate the anomalies/out-of-distribution samples from numerous normal sample!

Capture the normal patterns from itself!



Generation-based method
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DOMINANT

Scenario: node-level 
anomaly detection

Ding, Kaize, et al. "Deep anomaly detection on attributed networks." Proceedings of the 2019 SIAM 
International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2019.



Generation-based method
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AnomalyDAE

Scenario: node-level 
anomaly detection

Fan, Haoyi, Fengbin Zhang, and Zuoyong Li. "Anomalydae: Dual autoencoder for anomaly detection on attributed networks." 
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020.

Attention mechanism



Generation-based method
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GUIDE Scenario: node-level 
anomaly detection

Yuan, Xu, et al. "Higher-order structure based anomaly detection on attributed networks." 
2021 IEEE International Conference on Big Data (Big Data). IEEE, 2021.

Attention mechanism

Consider various motifs in structure-based auto-encoder



Contrast-based method
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CoLA

Scenario: node-level 
anomaly detection

Liu, Yixin, et al. "Anomaly detection on attributed networks via contrastive self-supervised 
learning." IEEE transactions on neural networks and learning systems 33.6 (2021): 2378-2392.



Contrast-based method
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ANEMONE

Scenario: node-level 
anomaly detection

Jin, Ming, et al. "Anemone: Graph anomaly detection with multi-scale contrastive learning." Proceedings of 
the 30th ACM International Conference on Information & Knowledge Management. 2021.

Multi-scale contrastive learning!



Contrast-based method
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GOOD-D

Scenario: graph-level out-of-distribution/anomaly detection

Liu, Yixin, et al. "GOOD-D: On Unsupervised Graph Out-Of-Distribution Detection." Proceedings of the 
Sixteenth ACM International Conference on Web Search and Data Mining. 2023.

Hierarchical contrastive learning



Auxiliary property-based method
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Sub-CR

Scenario: node-level 
anomaly detection

Huang, Tianjin, et al. "Hop-count based self-supervised anomaly detection on attributed networks." Machine Learning and Knowledge Discovery in Databases: 
European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part I. Cham: Springer International Publishing, 2023.

Hop prediction-based anomaly detection



Hybrid method
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SL-GAD Scenario: node-level 
anomaly detection

Zheng, Yu, et al. "Generative and contrastive self-supervised learning for graph anomaly detection." 
IEEE Transactions on Knowledge and Data Engineering (2021).

Contrast-based + generation-based



Hybrid method
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GLADC

Luo, Xuexiong, et al. "Deep graph level anomaly detection with contrastive learning." 
Scientific Reports 12.1 (2022): 19867.

Scenario: graph-level 
anomaly detection

Contrast-based + generation-based



Summary: GSSL for outlier detection
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• Scenarios
Ø Node-level
Ø Graph-level

• Pretext tasks
Ø Early methods: generation-based: autoencoder
Ø Mainstream methods: contrast-based: from single scale to multi-scale
Ø A new perspective: auxiliary property – predict the hop
Ø Advanced solutions: hybrid GSSL

• Representative methods

DOMINANT CoLA



More applications: chemistry
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MIRACLE for drug-drug interaction prediction

GROVER for molecular pre-train model

Rong, Yu, et al. "Self-supervised graph transformer on large-scale molecular data." Advances in Neural Information Processing Systems 33 (2020): 12559-12571.
Wang, Yingheng, et al. "Multi-view graph contrastive representation learning for drug-drug interaction prediction." Proceedings of the Web Conference 2021. 2021.



More applications: graph structure learning
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SUBLIME

SLAPS

Fatemi, Bahare, Layla El Asri, and Seyed Mehran Kazemi. "SLAPS: Self-supervision improves structure learning for graph neural networks." Advances in Neural Information Processing Systems 
34 (2021): 22667-22681.
Liu, Yixin, et al. "Towards unsupervised deep graph structure learning." Proceedings of the ACM Web Conference 2022. 2022.



Summary
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• Recommender Systems • Outlier Detection

• Chemistry

• Boarder Applications
Ø Expert finding
Ø Program repairing
Ø Open world modeling
Ø Medical
Ø Federated Learning
…

• Graph Structure Learning
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Part 5: Future directions 
and conclusion 

• Potential directions of graph self-supervised learning  
• Conclusion 



Future Directions
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• Theoretical Foundation

The existing methods are mostly designed with intuition and 
their performance gain is evaluated by empirical experiments, 
but don’t have a solid theoretical foundation. 

Potential theoretical basis:

Information theory

Wu, Tailin, et al. "Graph information bottleneck." Advances in Neural Information Processing Systems 33 (2020): 20437-20448.
Liu, Nian, et al. "Revisiting graph contrastive learning from the perspective of graph spectrum." Advances in Neural Information Processing Systems (2022)

Spectral graph theory

…



Future Directions
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• Interpretability and Robustness 

Most of the current works lack these properties.  
Interpretability: Explainable GSSL model  
Robustness: adversarial attack/defense of GSSL model

Interpretability

Ying, Zhitao, et al. "Gnnexplainer: Generating explanations for graph neural networks." Advances in neural information processing systems 32 (2019).
https://www.arxiv-vanity.com/papers/2003.00653/

Adversarial Attack



Future Directions
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• Pretext Tasks for Complex Types of Graphs 

Most of the existing works: Plain graph, Attributed graph

Potential targets:

Hypergraph Dynamic graph

https://www.cambridge.org/core/books/abs/applying-graph-theory-in-ecological-research/spatiotemporal-graphs/ED048111EDD5E344DC897C7D305069A5
https://ai.googleblog.com/2023/03/teaching-old-labels-new-tricks-in.html

Spatial-temporal graph Heterogeneous graph

https://www.cambridge.org/core/books/abs/applying-graph-theory-in-ecological-research/spatiotemporal-graphs/ED048111EDD5E344DC897C7D305069A5


Future Directions
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• Augmentation for Graph Contrastive Learning

Existing augmentations: Feature and/or structure perturbing.

Can we develop more effective augmentation strategy for graphs?

Knowledge-based augmentation

Wang, Yuyang, et al. "Molecular contrastive learning of representations via graph neural networks." Nature Machine Intelligence 4.3 (2022): 279-287.
https://deepai.org/publication/analysis-of-irregular-spatial-data-with-machine-learning-classification-of-building-patterns-with-a-graph-convolutional-neural-network

Spectral-based augmentation



Future Directions

142

• Learning with Multiple Pretext Tasks

How to effectively leverage different pretext tasks?  
Can we select pretext tasks automatically? 

• Broader Scope of Applications

Can we apply GSSL to more graph-related scenarios?



Conclusion
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• Background

SSL on CV

[MASK] is impossible.

Nothing is impossible.

I’m going outside.

I’ll be back soon.

I got up late.

SSL on NLP SSL on graph

Self-supervised learning on graph: 
acquires supervision signals from data itself for 
graph-based deep learning models.

Link Prediction

Node Classification

Community Detection

Graph neural networks



Conclusion
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• Graph self-supervised learning: Taxonomy



Conclusion
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• Graph self-supervised learning: Frontiers

Efficient GSSL paradigm:
Group Discrimination

GSSL for 
Heterophilic graph

GSSL for 
Heterogeneous graph

https://ai.googleblog.com/2023/03/teaching-old-labels-new-tricks-in.html



Conclusion
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• Graph self-supervised learning: Applications
• Recommender Systems • Outlier Detection

• Chemistry

Boarder Applications…

• Graph Structure Learning
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Thanks for listening!
Q&A


