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Part 1: Introduction & Overview

« Why Data-centric Graph Machine Learning (DC-GML)

 QOverview of DC-GML Framework



Al System

Al system = Code + Data

(model/algorithm)



What is data-centric Al?

“Data-centric Al (DCAI) is the discipline of systematically engineering the data used to build an
Al system.” ——-Andrew Ng
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Fig. 1. General comparison between (a) model-centric Al and (b) data-centric Al.



Why data-centric Al matters

An example:

Inspecting steel sheets for defects

Examples
of defects

Data-centric improves more than model-centric!

[11 A Chat with Andrew on MLOps: From Model-centric to Data-centric Al: https://www.youtube.com/watch?v=06-AZXmwHjo

Baseline 76.2% 75.68% 85.05%
Model-centric +0% +0.04% +0.00%
(76.2%) (75.72%) (85.05%)
Data-centric +16.9% +3.06% +0.4%
(93.1%) (78.74%) (85.45%)
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Why data-centric Al matters

When model design becomes mature, the significance of both the size and quality of the data increases.

GPT-1 - 4.8GB (unfiltered) data
GPT-2 < 40GB human-filtered data
Similar model
architectures 1 ‘

GPT-3 <+— 570GB data filtered from 45TB raw data

4

ChatGPT/GPT-4 «+«— Human demonstrations and annotations
. |4
Data size T
Data quality T

+» Core idea:

Engineering data to enable great “availability and quality” for serving and promoting model-related ML tasks.

[1] Zha, Daochen, et al. Data-centric Artificial Intelligence: A Survey. arXiv, 2023.



Data-centric Al is attracting attentions...

* Exponentially growing DCAI research papers . DCAI Courses, Workshops, Competitions

Google Scholar

350 n : Introduction to Data-Centric Al - atuar:::]r_%gﬂ:;rjlty
4 Articles —

300 Introduction to Data-Centric Al, MIT IAP 2023 A ﬁ X | | ”
A I A 43 followers 69 https://dcai.csail.mit.edu rtl Cla nte Igence

250 Data-Centric Al Virtual Workshop

150 dc

@pbeeplearning.Al | 3 LANDING Al

Data-Centric Al Competition

Join the data-centric Al movement!

NEURIPS DATA-CENTRIC Al
03018 2019 2020 2021 2022 WORKSHOP

Number of Google Scholar publications
o >
o o

« Al Startups

3 LANDING Al & Snorkel

[1] Zha, Daochen, et al. Data-centric Al: Perspectives and Challenges. SDM, 2023. 8



Graphs: A typical & vital instantiation in DCAI

0 S 1 o A2 4 8.2 A Graph has nodes/vertices and edges:
7 o 2. , ™ c B § . .
AN e 4™ 'y » 0 SN " * Nodes/vertices — a person in the
Q. & ' Y S & N\ e e :
m r SR oAk e social network
S ATV T S 3\ .
| Rl A4 « Y] * Edges — Connection between
Mg"" Q. ! ; - S 6 |
R B 2 e K
g T T o
- M o r M ‘ ANAY
v s bk . . ‘ P\, ags .
1 IV S g A .,Q P Graphs have the ability of:
i 7 '-..' g i £ 8 alh o * Representing complex structural
P A w S .
v - relationships among massive
N - 0 P A a ﬁ‘ n i p g

diverse entities in the real world
Example: A Social Network Graph



Graphs in real-world appllcatlons
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‘Towards data-centric graph machine learning

....................................................................................................................................................................................................................................................................................

Data-centric graph machine How To Enhance Graph Data How To Learn From Graph Data
Iearning (DC-GML) aims to: Availability and Quality? With Limited-availability and Low-quality?
« Process, analyze, and & a 0 ! /1N
' ' L o LA\ 1% . ) ! L = @
Il{fndersl.’[and graph data in entire A = e Vi 5 /<//\ :
| ecyC e Yeococoooooooottboooooonononoonoos A S et OmE e e e ee e O o e e e e !
Graph Data Improvement Graph MLOpS Graph Data Exploitation
« Enhancing the quality _
/\ )
« Uncovering the insights TN
. . NS
« Developing comprehensive \< ave g

representations

« Working collaboratively with
graph ML models under graph
MLOps




Why data-centric GML matters

% Taking graph OOD detection as example:

— I
% — —> B

Original Graph Downstream
Task Prediction

Density ‘\l ‘l “ 00D
00D Detection ngo% o GNN . A
B for OOD ’ Score
EREsEees 00D Detection
Prediction

(a) Typical retraining-based graph OOD detection methods

Downstream
Task Prediction

Downstream
Tasks

OOD Detection
Task

Score
Amplified Graph OOD Detection
Prediction

(b) Our proposed data-centric framework for graph OOD detection.

ID O0OD Metric | | GCLg || GCLs+ Improv.

AUCT|| 6297 || 73.76 +17.14%
ENZYMES | PROTEIN | AUPR 1| | 62.47 || 75.27 +20.49%
FPR95 || | 93.33 || 88.33 -5.36%

AUCT|| 80.52 || 83.84 +4.12%
IMDBM IMDBB AUPR T} | 7443 || 80.16 +7.70%
FPR95 |} | 38.67 || 38.33 -0.88%

AUCT|| 75.00 || 97.31 +29.75%
BZR COX2 AUPRT) | 6241 || 97.17 +55.70%
FPR95 || | 47.50 || 15.00 -68.42%

Model-centric GML method / /

¥ Data-centric GML
method and improvements

12

Guo, Y., Yang, C., Chen, Y., Liu, J., Shi, C., & Du, J. (2023). A Data-centric Framework to Endow Graph Neural Networks with Out-Of-Distribution Detection Ability.



OverviEw of DC-GML Framework

Graph Data Improvement

" Graph Structure Enhancement

L‘ Graph Structure Learning [| Graph Sparsification [[ Graph Diffusion
" Graph Feature Enhancement

Graph Feature Completion [| Graph Feature Denoising

T—" Graph Label Enhancement

L‘ Graph Pseudo-labelling || Graph Label Denoising || Graph Class-imbalanced Sampling

¥ Graph Size Enhancement

L‘ Graph Size Reduction [| Graph Data Augmentation

Graph Data Exploitation Graph Data Collection
+ Graph Data Crowdsourcing & Synthesis
h Self- i L i
Graph Self-supervised Learning Graph Data Exploration
' GApaSemsuporvisextieaxming +— Graph Data Understanding, Visualization & Valuation

— : i
Graph Active Learning Graph Data Maintenance

" Graph Transfer Learning {— Graph Data Privacy & Security

13



Resources

+* More resources and details in our work

» Survey paper: Towards Data-centric Graph Machine Learning: Review and Outlook

» @Github collection: https://aithub.com/Data-Centric-GraphML/awesome-papers

Data-centric Graph ML DC-GML GitHub Collection
Review & Outlook


https://github.com/Data-Centric-GraphML/awesome-papers

Part 2: Frontiers of

Graph Data Enhancement



Overview of Graph Data Enhancement

,:, C ore Strate gy Graph Structure Enhancement | Graph Feature Enhancement
E i -
aim to synthesize or modify graph data itself to N (1[7\ y l/ \}/\ i % ‘/ \Eyiﬁ E/ ‘/ \E}iﬁ
o - '
improve availability and quality by comprehensively VA VA ! L) @> H ; 195 Ay

G with Missing/Noisy Structures G with Enhanced Structures * G with Missing/Noisy Features G with Enhanced Features

fixing potential issues of graph data. =~ ... _

Given a graph G = (A, X Y), with several essential

|
|
|
1
ANL I AN @ N
components of : /Whd ™ o/ Nid SN — S T
LA L A : N Kde®
1) graph structure A; G with Limited/Noisy Labels G with Enhanced Labels | G with Limited Size G with Augmented Size
|
. 8 /N
2) node/edge attribute features X ; /1> /1\\/ : e W4
//[ ¥4 —) { /7 / : /‘ —\ —
N A\l )
3) node/graph annotated labels Y; A YA ! K 6
G with Imbalanced Labels G with Balanced Labels : G with Over Size G with Reduced Size

4) the holistic graph G related scale



Outline for Graph Data Enhancement

s Overview of Graph Data Enhancement
s Techniques with Case Studies :

* Graph Structure Enhancement
 Graph Feature Enhancement
* Graph Label Enhancement

* Graph Size Enhancement

17



Graph Structure Enhancement

Graph Structure Learning - Graph Sparsification Graph Diffusion

4

| I
| I
| |
NS L7\ \ o TN
IS/ 2z 00000 e ; b e — I Vi
[ o & AN . N4 eI
Y o) = 2 L / T oy S 0N
A4 Vesxl ! “/oaal ! VbW
s I |
Original G | :

Refine the structure

......................................................................................

Fig. 5. lllustration of graph structure enhancement methods.

» Graph Structure Learning: add, remove, and reweight the edges on noisy or incomplete structures
» Graph Sparsification: prune the redundant edges to avoid over-dense structures

» Graph Diffusion: establish links with global and long-range structural interactions

18



TOﬂaFdS Unsupervised Deep Graph Structure Learning

--Case Study on Graph Structure Enhancement

% Graph structure learning (GSL): learning graph structure from data when structure is

missing or unreliable

¢—I I—¢

Structure inference: Structure refinement:
Learning from non-structured data Learning with structure-noisy graph data

AV VRV
Non-structured data Learned structure Noisy graph structure Learned structure

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., & Pan, S. (2022, April). Towards unsupervised deep graph structure learning. In Proceedings 19
of the ACM Web Conference (WWW). 2022 (pp. 1392-1403).



TOﬂaFdS Unsupervised Deep Graph Structure Learning

--Case Study on Graph Structure Enhancement

*» Existing methods: Supervised graph structure learning

supervised by node classification task!
 eaass) 0B
» Cross-entropy
GNN loss function
—

/

Limitation-1: High label
reliance

—— e,

L
R ——

[ ]
m —
[ |
o ‘\ I » Structure *
\\ Parameterization
u [ ]
i

%
3

N

N

Limitation-2: Biased edge

distribution learning
Limitation-3: Sub-optimal to

other downstream tasks

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., & Pan, S. (2022, April). Towards unsupervised deep graph structure learning. In Proceedings 20
of the ACM Web Conference (WWW). 2022 (pp. 1392-1403).



TOﬂaFdS Unsupervised Deep Graph Structure Learning

--Case Study on Graph Structure Enhancement

*» More practical scenario: Unsupervised graph structure learning

aim to optimize the graph structure as an independent task and without label-based supetrvision.

------
........
3 L2
* .

N I\I I\l , \1\[
Unsupervised GSL - \ \
) N — / /[ / |
y \ //_ Node cIaSS|f|cat|on Link prediction Node clusterlng
\\ I\| Various downstream tasks
[

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., & Pan, S. (2022, April). Towards unsupervised deep graph structure learning. In Proceedings

of the ACM Web Conference (WWW). 2022 (pp. 1392-1403). 21



TOﬂaFdS Unsupervised Deep Graph Structure Learning

--Case Study on Graph Structure Enhancement

s Comparison: Supervised GSL vs. Unsupervised GSL

Node
Supervised GSL Labels _
Data =
W)
Unsupervised GSL ~ Data &=

(Proposed)

Supervise

e ———
Input

GNN based Model

_ ImErove % Benefit

Node Classification ]

Task for Supervision

Learned
Graph

Node Classification |
Input ﬁ) . | Improve Benefit | Node Clustering |
. . : +J see ﬁ > - = =
% | Link Prediction |
e Learned
GNN-based Model Graph Downstream Tasks

Advantages of UGSL.: Does not rely on labels Unbiased learning Task-agnostic

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., & Pan, S. (2022, April). Towards unsupervised deep graph structure learning. In Proceedings 22
of the ACM Web Conference (WWW). 2022 (pp. 1392-1403).



TOﬂaFdS Unsupervised Deep Graph Structure Learning

--Case Study on Graph Structure Enhancement

% Proposed framework - SUBLIME

------------------------------------------------------------------------------------------------------------------

TInput Data : Anchor View
X A (optional) :
_ Initialization ~ } GNN Ha' = MLP
H ™ Encoder f, " Projector g,
A A
Inout bootstrapping data shared shared contrastive
p . l update augmentation weight weight loss
v
Graph Post- MLP
: Learner p,, g | processor g ;I’ Projector g,
. l

------------------------------------------------------------------------------------------------------------------------------------------------------------

To model and regularize the To provide a self-optimized supervision signal for GSL.
learned graph topology.

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., & Pan, S. (2022, April). Towards unsupervised deep graph structure learning. In Proceedings

of the ACM Web Conference (WWW). 2022 (pp. 1392-1403). 23



TOﬂaFdS Unsupervised Deep Graph Structure Learning

--Case Study on Graph Structure Enhancement

+ SUBLIME Performance on Node classification @ Structure Inference

Available Method Dataset
Data for GSL Cora Citeseer =~ Pubmed ogbn-arxiv  Wine Cancer Digits 20news
- LR 60.8+0.0 62.2+0.0 72.4+0.0 52.5+0.0 92.1+1.3 93.3+0.5 85515 42.7£1.7
- Linear SVM 58.9+0.0 58.3+0.0 72.7+0.1 51.8+0.0 93.9+1.6 90.6+4.5 87.1+1.8 40.3t1.4
- MLP 56.1£1.6  56.7x1.7 71.4+0.0 54.7+0.1 89.7£1.9 929+1.2 36.3+0.3 38.6x14
- GCNy,n [22] 66.5+0.4 68.3+1.3 70.4+0.4 54.1+0.3 93.2+3.1 83.8+1.4 91.3+0.5 41.3+0.6
- GATy,,, [40] 66.2+0.5 70.0+0.6 69.6+0.5 OOM 91.5+2.4  95.1+£0.8 91.4+0.1 45.0+1.2
- SAGEp,, [15] | 66.1£0.7 68.0+1.6 68.7+0.2 55.2+0.4 87.4+0.8 93.7+x0.3 91.6+0.7 45.4+04
X, Y LDS [12] 71.5+0.8 71.5%1.1 OOM OOM 97.3£0.4 94.4+1.9 925+0.7 46.4t1.6
XY, Arnn GRCN [53] 69.6+0.2 70.4+0.3 70.6+0.1 OOM 96.6+0.4 95.4+0.6 92.8+0.2 41.8+0.2
XY, Arnn Pro-GNN [20] | 69.2+1.4 69.8+1.7 OOM OOM 95.1£1.5 96.5+0.1 93.9+19 45.7+14
X, Y, Agpn GEN [45] 69.1£0.7 70.7£1.1  70.7+0.9 OOM 96.9+1.0  96.8+£0.4 94.1+0.4 47.1+03
X, Y IDGL [7] 70.9+£0.6 68.2+0.6 70.1+1.3 55.0+0.2 98.1+1.1  95.1£1.0 93.2+0.9 48.5+0.6
X, Y SLAPS [11] 73.4+0.3 72.6+0.6 74.4+0.6 56.6+0.1 96.6£0.4 96.6+0.2 94.4+0.7 50.4+0.7
Ainn GDC [23] 68.1+1.2 68.8+0.8 68.4+0.4 OOM 96.1+1.0 95.9+0.4 92.6+0.5 46.4+0.9
X SLAPS-2s [11] | 72.1+04 69.4+1.4 71.1+0.5 54.2+0.2 96.2+2.1 95.9+1.2 93.6+0.8 47.7+£0.7
X SUBLIME 73.0+£0.6 | 73.1+0.3| 73.8+0.6 55.5+0.1 98.2+1.6 |97.2i0.2 | 94.3+0.4 49.2+0.6

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., & Pan, S. (2022, April). Towards unsupervised deep graph structure learning. In Proceedings
of the ACM Web Conference (WWW). 2022 (pp. 1392-1403).



TOﬂaFdS Unsupervised Deep Graph Structure Learning

--Case Study on Graph Structure Enhancement

«» SUBLIME Performance

* Node classification @ structure refinement * Node clustering @ structure refinement
Available Dataset Cora Citeseer
Data for GSL Method Cora Citeseer =~ Pubmed ogbn-arxiv Method C-ACC NMI F1 ARl | C-ACC NMI F1  ARI
= GCN 81.5 70.3 79.0 71.7+0.3 K-means | 50.0 317 376 239 | 544 312 413 285
8 GAT 83.0£0.7  72.5+0.7  79.0+0.3 OOM SC 39.8 29.7 332 174 | 308 9.0 257 82
- SAGE 77.4+1.0 67.0+1.0 76.6+0.8 71.5+0.3 GE 30.1 5.9 23.0 4.6 293 5.7 91.3 4.3
X, Y, A LDS 83.9+0.6 74.8£0.3  OOM OOM DW 529 384 435 291 | 390 131 305 13.7
XY, A GRCN | 84.0+02 73.0+03 78.9+02  OOM DNGR 419 318 340 142 | 326 180 300 43
i ¥ 2 gr};:IGNN 23532‘1 Z;ii‘;‘; 839?3,8 ggx M-NMF | 423 256 320 161 | 336 99 255 7.0
X, Y, A IDGL 84.040.5 73.1+0.7 83.0+0.2 72.0+0.3 RMSC 466 320 347 203 )\ 5L6 308 404 26,6
h e YT TR LT YL TTY SoN TADW 53.6  36.6 40.1 24.0 | 529 320 43.6 28.6
X, A SUBLIME | 84.2+0.5 735+0.6 81.0+0.6  71.8+03 VGAE 9.2 408 456 347 | 392 163 278 101
ARGA 64.0 449 619 352 | 573 350 546 34.1
MGAE 68.1 489 531 56.5| 669 416 52.6 425
AGC 689 537 656 448 | 670 411 625 415
DAEGC 704 528 68.2 496 | 672 397 63.6 41.0
SUBLIME | 713 542 635 503 | 685 44.1 632 43.9

Liu, Y., Zheng, Y., Zhang, D., Chen, H., Peng, H., & Pan, S. (2022, April). Towards unsupervised deep graph structure learning. In Proceedings
of the ACM Web Conference (WWW). 2022 (pp. 1392-1403).



Outline for Graph Data Enhancement

s Overview of Graph Data Enhancement
s Techniques with Case Studies :

e Graph Structure Enhancement
* Graph Feature Enhancement
* Graph Label Enhancement

* Graph Size Enhancement

26



Graph Feature Enhancement

Graph Feature Completion Graph Feature Denoising u romaeaure
: N Missing feature
ﬁ} E E/ E | / ﬁ E/ E E Noisy feature

| Poi | Bojl : \ N: Y S —
x : /t ; / = A
/s <ﬁ ) : /e / £ i (B — ; 7Rl A4
o A T A oo

G with Missing Features Impute the missing features : G with Noisy Features Restore the noisy features

Fig. 6. lllustration of graph feature enhancement methods.

» Graph Feature Completion: focuses on imputing the missing features

» Graph Feature Denoising: refining the noisy features.

27



Robust Graph Representation Learning for Local Corruption Recovery

-- Case study on Graph Feature Completion

*+ Graph node noise exists widely

oQ® _4
' ‘ . . noisy node / perturbed node /
outlier / anomaly
“‘ @ ‘.
oy ° &>
O o
” " °9 ®e O The question is:
O Q) @ - : :
O o® ° O ® How to eliminate undesirable corruptions the
o
@ O O ® — input node attributes to enhance graph
L & . .
e o representation learning?
Zhou, B., Jiang, Y., Wang, Y., Liang, J., Gao, J., Pan, S., & Zhang, X. (2023, April). Robust graph representation learning for local corruption recovery. In Proceedings of the 28

ACM Web Conference (WWW). 2023 (pp. 438-448).



Robust Graph Representation Learning for Local Corruption Recovery

-- Case study on Graph Feature Completion

s Framework of the proposed MAGNET

decoded graph reconstruction error é\
<§)o
O
o O
N O
: O
(o]
!l
° )
N/
Robust Representation
decoderN\_/
encoderZ\
Output OO e oom
Ooo
ull = oo0oao |0 OO0 m
local Oooo ooao O o [m
smooth ooao ooao OO ooo
ooo oodo - Oom
@III b oo EE ooo

‘ input @ @

masked graph

Zhou, B., Jiang, Y., Wang, Y., Liang, J., Gao, J., Pan, S., & Zhang, X. (2023, April). Robust graph representation learning for local corruption recovery. In Proceedings of the 29
ACM Web Conference (WWW). 2023 (pp. 438-448).



Robust Graph Representation Learning for Local Corruption Recovery

-- Case study on Graph Feature Completion
* First, mask matrix (M) generation

p )
decoded graph reconstruction error |

IIIJli%l 1VZ||pc+ M (U - X)eqg st.Z=WU

where M = 1 — threshold(||X — X'||1, 7)

decoder<_/
encoderdZ\

SEEN remark. X’ is the reconstructed signal
ng 3 with a trainable GAE with MSE loss

Texas
n | Coauthor-
| i
ns |
| el
|
|

it

poisoned graph masked graph

score (%)

y,

Zhou, B., Jiang, Y., Wang, Y., Liang, J., Gao, J., Pan, S., & Zhang, X. (2023, April). Robust graph representation learning for local corruption recovery. In Proceedings of the 30
ACM Web Conference (WWW). 2023 (pp. 438-448).



Robust Graph Representation Learning for Local Corruption Recovery

-- Case study on Graph Feature Completion
* Next, find a robust signal representation

This forms a standard formulation of problems that can be solved by ADMM. The associated augmented

Lagrangian with respect to the objective function reads

L(U,Z;Y) := [VZ]|p,c + 5IM O (U - X)|§ o + (Y, WU - Z) + 3|WU - Z|*

where Y > 0.
Output .
ooe O0Om Ooo
o@o ooao t O0m
local ooo Ooo0Ooo oo OooOono
smooth oono ooag OO Oom
||
bod BHH mom B0
= Q O0o0o
input @ @
Zhou, B., Jiang, Y., Wang, Y., Liang, J., Gao, J., Pan, S., & Zhang, X. (2023, April). Robust graph representation learning for local corruption recovery. In Proceedings of the 31

ACM Web Conference (WWW). 2023 (pp. 438-448).



Robust Graph Representation Learning for Local Corruption Recovery

-- Case study on Graph Feature Completion
* Finally, learning robust GRL

+ 0O 0
A8 e e
o O
z S ©
[}
< || ©
° J
—
Zhou, B., Jiang, Y., Wang, Y., Liang, J., Gao, J., Pan, S., & Zhang, X. (2023, April). Robust graph representation learning for local corruption recovery. In Proceedings of the 32

ACM Web Conference (WWW). 2023 (pp. 438-448).



Robust Graph Representation Learning for Local Corruption Recovery

-- Case study on Graph Feature Completion
» Test the performance with node classification tasks

attribute injection meta attack

-100%
Module Cora Citeseer PubMed Coauthor-CS Wiki-CS Wisconsin Texas OGB-arxiv Cora Citeseer PubMed
clean 81.26+0.65 71.77+029 79.01+0.44 90.19+0.48 77.62+0.26 56.47+5.26 65.14+1.46 71.10+0.21 81.26+0.65 71.77+029  79.01+0.44 -50%
GCN 69.06+0.74 57.58+0.71  67.69+0.40 82.41+0.23 65.44+0.23 48.24+3.19 58.92+2.02 68.42+0.15 75.07+064 55.32+222 72.88+0.30
APPNP 68.46+0.81  60.04+0.59  68.70+0.47 71.14+0.54 56.53+0.72 61.76+5.21 59.46+0.43 OOM 73.49+059 55.67+0.28  70.63+1.07 - 0%
GNNGUARD 61.96+030 54.94+1.00 68.50+0.38 80.67+0.88 65.69+0.32 46.86+1.06 59.19+0.81 65.75+0.32 72.02+061 57.64+131 71.10+0.32
ELASTICGNN @ 77.74+079 64.61+0.85 71.23+0.21 79.91+1.39 64.18+0.53 53.33+2.45 59.77+3.24 41.34+0.38 79.2510.50 67.29+1.17 71.95z0.52
AIRGNN 76.22+375 62.14+082 74.73+0.43 80.18+0.31 71.36+0.20 61.56+0.72 59.46+1.24 52.32+0.58 78.94+045 65.58+063 78.58+0.71 - —30%
MAGNETone 75.88+0.42 59.22+034  68.97+0.21 84.04+0.56 70.83+0.29 55.49+1.53 60.27+1.73 68.24+0.30 77.11+0.45 62.49+1.70 75.83+2.05
MAGNETgae 79.07+0.56 64.79+0.73 75.41+0.35 86.50+0.37 72.40+0.21  64.31+260 60.81+2.18 68.68+0.03 79.04+050 67.40+0.73 78.63+0.32 -—100%

MAGNETtrue 78.48+0.67 68.55+0.74 75.63+0.56 89.23+0.40 75.50+0.20 65.69+1.57 60.54+2.16 69.57+0.23 80.88+0.37 67.46+0.95 79.16+0.41

* The three baseline graph smoothing methods fail to denoise local corruption within the input.
* MAGNET-gae outperforms its competitors and recovers at most 94% prediction accuracy from the perturbed attributes.
» An accurate mask approximation can push the prediction performance of graph representation up to MAGNET true's scores.

Zhou, B., Jiang, Y., Wang, Y., Liang, J., Gao, J., Pan, S., & Zhang, X. (2023, April). Robust graph representation learning for local corruption recovery. In Proceedings of the

ACM Web Conference (WWW). 2023 (pp. 438-448). 33



Outline for Graph Data Enhancement

s Overview of Graph Data Enhancement
s Techniques with Case Studies :

e Graph Structure Enhancement
 Graph Feature Enhancement
 Graph Label Enhancement

* Graph Size Enhancement
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Background of Graph Label Enhancement

Real-world graphs are generally sparsely and noisily labeled

Noise in sparsely labeled graphs can degrade the performance of GNN:

X The size of labels is limited and GNN will overfit to noisy labels

X Noisy label information propagates to their unlabeled neighbors

()
Label: human
(@)
&b
(@)

*Cid

Dai, E., Aggarwal, C., & Wang, S. (2021, August). NRGNN: Learning a label noise resistant graph neural network on sparsely and noisily labeled
graphs. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 227-236).
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Overview Graph Label Enhancement

Graph Pseudo-labeling Graph Label Denoising Graph Class-imbalanced Sampling

I |
I !
LN JWadh' | : /7N /PN : \_/N\
A7 s R AN AT, AT
e — s — s e
//\/ i /\/ : / \/ //\/ : //\/
\ o '".\ — . / \ —" \ -
G with Limited Labels G with Pseudo-labels ' G with No,sy Labels G with Clean Labels ' G with Imbalanced Labels G with Class-imbalanced
) . (Node-level) Labels
| @89 Lobolodnode @ Uniobelod node 4 | Node with pseudo label 551 Node with noisylabel  @I0) Sampled/Synthesized node-

Fig. 7. lllustration of graph label enhancement methods.

» Graph Pseudo-labelling: enriching the label information to alleviate the scarce label issue
» Graph Label Denoising: removing the redundant noisy label information to clean the noisy labels
» Graph Class-imbalanced Sampling: downsampling majority and/or synthesizing minority class labels to

tackle the class-imbalanced label issue
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NRGNN: Learning on Sparsely and Noisily Labeled Graphs

--Case Study on Graph Label Enhancement

“ Preliminary Analysis

« Linking an unlabeled node with similar labeled nodes belonging to the same class
can increase the robustness against label noise.

« Strategy: Extend the label set with accurate pseudo labels by selecting the
predictions with high confidence score

Intuitive explanation | False Label i

False Label - : = - i

Target Node /‘\ ‘ i liargetiizeds /< "\ |
FabElEd Noras ® & dle | Labeled Nodes + - + i
- & - : l

= '‘Accurate pseudo labels i

The labels are more likely to be correct B R R EEEE L PP L PP PP PPEETEE

Dai, E., Aggarwal, C., & Wang, S. (2021, August). NRGNN: Learning a label noise resistant graph neural network on sparsely and noisily labeled

graphs. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 227-236). 37



NRGNN: Learning on Sparsely and Noisily Labeled Graphs

--Case Study on Graph Label Enhancement

«* NRGNN Framework

Initial G Accurate Pseudo Label Miner f, The Proposed NRGNN contains:
( . T \I Edge 1) Edge predictor
| | Predict
: \ ® : S Link unlabeled nodes with similar nodes having
e — - noisy/pseudo labels
Added Edge .
Noisy = 2) Accurate pseudo label miner
Clean +
R Obtain accurate pseudo labels with high confidence
Pseudo Score
Prediction &
Unlabeled 3) GNN classifier

provide robust predictions

Dai, E., Aggarwal, C., & Wang, S. (2021, August). NRGNN: Learning a label noise resistant graph neural network on sparsely and noisily labeled

graphs. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 227-236). 38



Outline for Graph Data Enhancement

s Overview of Graph Data Enhancement
s Techniques with Case Studies :

e Graph Structure Enhancement
 Graph Feature Enhancement
* Graph Label Enhancement

* Graph Size Enhancement
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Graph Size Enhancement

S
o ; 2
b Graph Coreset | Graph Coarsening | Graph Condensation
S . »
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< ST I o b .7"‘.' 2 I
[ : @ j :
\ / N g 0 . [
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/) p® =)
1</ 61 S .
~o—%| S Perturbation-based 1 Synthetic sample-based
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A
G

Fig. 8. lllustration of graph data-centric size enhancement methods.

» Graph Size Reduction: the oversized large-scale graphs with redundant information

» Graph Data Augmentation: small-scale graphs with limited data sources and insufficient information ,,



Graph Size Enhancement

S
(o] .
b Graph Coreset | Graph Coarsening
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Fig. 8. lllustration of graph data-centric size enhancement methods.

» Graph Size Reduction: the oversized large-scale graphs with redundant information

> Graph Data Augmentation: small-scale graphs with limited data sources and insufficient information .



Background of Graph Condensation

--Case Study on Graph Size Enhancement
‘*What is graph condensation?

aim to reduce the size of a large-scale graph by synthesizing a small-scale condensed graph

- - the small-scale condensed graph achieves comparable test performance as the large-scale graph when
training the same GNN model.

Graph
R T=XAY) , test
I' C@nLx, Y \ train GNN > ACC
Test accuracies 1 1 Y : Test accuracies —_— (87' ) T 97‘
GCN: 93.9% 1 Condense | X | GCN: 89.4% test ¢
SGC: 93.5% I I I SGC: 89.6%
APPNP: 94.3% : : & APPNP: 87.8% >
GraphSAGE: 93.0% | X : GraphSAGE: 89.1% Comparable:
1 \\ Q /
L A L N tmin teSt ACTC
) —_—) —l
153,932 training nodes 154 training nodes Condensation GNN(BT') Tt " or’
es
T’ - (XI’AI‘ YI)
Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph- 42

free Data. Advances in Neural Information Processing Systems (NeurlPS), 2023.



Background of Graph Condensation

1) Why need GC [Requirements]?

Modelling large-scale graphs hinders GNN development with heavy costs

o o —————

153,932 training nodes

\

repeat

1
I
I
I
I
I
! training & tuning.
|

F X

input layer output layer

Table 1: Model serving space

--Case Study on Graph Size Enhancement
*Requirements, Advantages, & Applications

\Graph Convolutional Networks (GCN) )

X Heavy costs on: graph data storage, computation, and memory

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-
free Data. Advances in Neural Information Processing Systems (NeurlPS), 2023.

Datasets Model size | Training graph size | Training feature size | Total serving size
Arxiv 1.4MB 5.9MB 46.5MB 53.8MB
Reddit 7.6MB 86.0MB 370.7MB 464.3MB
Product 4.8MB 87.2MB 78.6MB 170.6MB
Amazon2M | 3.0MB 485.4MB 684.0MB 1.17GB

43



Background of Graph Condensation

--Case Study on Graph Size Enhancement
*Requirements, Advantages, & Applications

2) How GC benefit [Advantages]?

Using condensed graph as substitution to facilitate GNN training:

» Alleviated graph data storage/computation/memory costs

3) What practical applications of GC [appiications)?

» Graph Neural Architecture Search (GraphNAS) Bt
_ _ 1 GN 2 GCN ADD relu @
By searching on a small-scale condensed graph, accelerating new i 1iy 4 i 4

i 2l
{Readp i o _

GNN architecture development in GraphNAS

EEn m m
Graph NAS
« Privacy Protection
* Adversarial Robustness
Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph- 44

free Data. Advances in Neural Information Processing Systems (NeurlPS), 2023.



Our Solution: Structure-free Graph Condensation

Graph --Case Study on Graph Size Enhancement
T=(XAY) train test
— GNN6) —> ACC 0,—]
et > Existing works :
Comparable?
test 4 T:(X,A,Y)—>’T’=(X’,A’,Y’), GC.
es
> GNN(o,) — ACC 0
Condensation T eest 7 !
Comparable?
VS. " > Our SFGC:
MLP/GNN(s,) |——p ACC S - -
—> ®o /GNN®2) e » T=X,AY) -»8=XL1Y)=8=(X,Y), SFaC.
Structure-free s; % — -
Condensation =&
» Our Solution:
v Structure-free paradigm —»> + Only synthesizes a small scaled node set to train a GNN/MLP

v Long-range parameter matching schema ——— - Implicitly encodes topology structure into node attributes

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph- 45
free Data. Advances in Neural Information Processing Systems (NeurlPS), 2023.



Structure-free Graph Condensation

--Case Study on Graph Size Enhancement
Condensing large-scale graph into only node set without structures!

Figure 1. Overall pipeline of the proposed Structure-Free Graph Condensation (SFGC) framework

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-
free Data. Advances in Neural Information Processing Systems (NeurlPS), 2023.

Stagel: Graph-free Data Synthesis D) ~ @ |nput: Iarge-scale T, GNN(T)
FoTT ST T Ve T T T e s e T T . Stage2: Condensed Graph-free Data Evaluation &)
| T=XAY) | 7 €) GNN;-training Y
: : l’l . *,1 —— optimize |~ ,,,_.‘“
: | N L ol . Output: small-scale condensed S
! | i MZ ! Expert i
: : i \.‘_‘ . 0*'1 :' 0*,[ — optimize
\ [ ! y *,1 t+p i t *,i
; R I/ o 61 | g 0 :
! ! Pt M ?\ W \"\o\/-{” oy « S1: train expert GNN on large-scale T
! : i ! . w0 N t+
: : | \'_\Hp P | O \‘T{
i 5 \_Expertset: Po, = {07}, = {0/}, ./ ) P Y « $2-3: long-term meta training
eyttt S S L R 2 g Meta-matching
G h : ini ; meta—tt == - . . .
raphy 5= &7 training trajectory : trajectory matching with condensed S
1 E. mERE. .- u E —— optimize :
PRI Graph Neural Feature Score e . E. e i ~\X'\t\0/z_f-l\ _ i
N M. SEERE W) ——>10,,= O}, v |8 i | + S4:update S

° — (gCT VK 8) Evaluation : LN :

.‘. ® val :‘ eEEw ... u! \ |
| en 1 - ini I 0 .
,} ) @ == == © GNN-training 1|+ S5: dynamically evaluates S with a
gn \ o
Vel S Graph T g N T GNTK-based
epe——— Condensed graph-free data § -based score
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Experiments of SFGC

--Case Study on Graph Size Enhancement

Table 1: Node classification performance (ACC%+std) comparison between condensation methods

and other graph size reduction methods with different condensation ratios. (Best results are in bold, and the
second-bests are underlined.)

. Other Graph Size Reduction Baselines Condensation Methods Whole
Datasets Ratio (7) Dataset
Coarsening Random Herding K-Center DC-Graph GCOND-X GCOND SFGC (ours) atas

0.9% 52.24+0.4 54.444.4 57.1+1.5 52.442.8 66.8+1.5 71.4+0.8 70.5+1.2 71.4+0.5

Citeseer 1.8% 59.0+0.5 64.2+1.7 66.7+1.0 64.3+1.0 66.9+0.9 69.8+1.1 70.640.9 72.4+0.4 /1.7+0.1
3.6% 65.3+0.5 69.1+0.1 69.0+0.1 69.1+0.1 66.3+1.5 69.441.4 69.8+1.4 70.6+0.7
1.3% 31.2+0.2 63.6+3.7 67.0+1.3 64.0+2.3 67.3+1.9 75.9+1.2 79.8+1.3 80.1+0.4

Cora 2.6% 65.2+0.6 72.84+1.1 73.4+1.0 73.2+1.2 67.6+3.5 75.7+0.9 80.1+0.6 81.7+0.5 R1.240.2
5.2% 70.6+0.1 76.840.1 76.840.1 76.7+0.1 67.7+2.2 76.0+0.9 79.340.3 81.6+0.8
0.05% 35.4+0.3 47.1+3.9 52.4+1.8 47.2+43.0 58.640.4 61.3+0.5 59.2+1.1 65.5+0.7

Ogbn-arxiv ~ 0.25% 43.5+0.2 57.3+1.1 58.6+1.2 56.8+0.8 59.9+0.3 64.2+0.4 63.2+0.3 66.1+0.4 T11.4+0.1
0.5% 50.4+0.1 60.0+0.9 60.4+0.8 60.340.4 59.5+0.3 63.1+0.5 64.0+0.4 66.8+0.4
0.1% 41.940.2 41.842.0 42.5+1.8 42.04+0.7 46.3+0.2 45.9+0.1 46.5+0.4 46.6+0.2

Flickr 0.5% 44.5+0.1 44.0+0.4 43.940.9 43.2+0.1 45.9+0.1 45.040.2 47.1+0.1 47.0+0.1 17.2+0.1
1% 44.6+0.1 44.6+0.2 44.440.6 44.1+0.4 45.840.1 45.0+0.1 47.1+0.1 47.1+0.1
0.05% 40.9+0.5 46.14+4.4 53.1+25 46.642.3 88.2+0.2 88.4+0.4 88.0+1.8 89.7+0.2

Reddit 0.1% 42.840.8 58.0+2.2 62.7+1.0 53.0+3.3 89.5+0.1 89.3+0.1 89.6+0.7 90.0+0.3 D3.940.0
0.2% 47.440.9 66.3+1.9 71.0+1.6 58.5+2.1 90.5+1.2 88.8+0.4 90.1+0.5 90.3+0.3

» Generally, SFGC achieves the best performance on the node classification task with 13 of 15 cases (five datasets and three condensation
ratios for each of them), illustrating the high quality and expressiveness of the condensed graph-free data synthesized by our SFGC

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graph-
free Data. Advances in Neural Information Processing Systems (NeurlPS), 2023.



Part 3: Frontiers of

Graph Data Exploitation



Outline for Graph Data Exploitation

s Overview of Graph Data Exploitation
+ Techniques with Case Studies :

« Graph Self-supervised Learning
« Graph Semi-supervised Learning
« Graph Active Learning

« Graph Transfer Learning



Overview of Graph Data Exploitation

Despite much effort on improving graph data quality, new graph data with high dynamics,

complexity, diversity comes every day...

% Core Question:
O What if directly graph data enhancement not feasible?

QO What if after enhancement, it’s still not enough to instruct the graph model development?

Graph Data Exploitation

Graph Data

"nw Graph ML Models
Enhanced > >> > P
Graph Data How to Learn from Graph Data with

Limited-availability & Low-quality? 50



Overview of Graph Data Exploitation

s Category of Graph Data Exploitation :

Graph Self-Supervised Learning
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Outline for Graph Data Exploitation

s Overview of Graph Data Exploitation
+ Techniques with Case Studies :

* Graph Self-supervised Learning
 Graph Semi-supervised Learning
« Graph Active Learning

» Graph Transfer Learning
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Motivation of Graph Self-supervised Learning

When lacking of sufficient supervision signals, the potential problems are...

« Expensive cost of data * Poor generalization * Vulnerable to label-related
collection and annotation adversarial attacks
LR P Training Phase : Test Phase
... ::‘.;:.' '..' GCN i Accuracy: 0.875—0.617

Output variable
-
K

R A ® O
- i X
- ’ '
«.0 E
' .." ]
5 A |
" '
. I
;

® OTraining nodes OTest nodes

Predictor variable
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Typical Categories of GSSL

Input Graph Reconstructed Graph

Reconstruction Loss

Encod Pretext
"C; el Decoder
)

Perturbed Graph Representations

‘ Perturbation

(1) Generation-based

Auxiliary Properties Predicted Properties

Prediction Loss

Pretext

Input Graph Representations

' 3
v

Property
t

Extraction

(2) Auxiliary Property-based

Augmented Graph

Representations

Encoder ..........................
f ) :
H
Learned Target
Agreements Agreements
Pretext i
Inpu'r ontrastive
Graph Decoder > Loss
12
s (Positive/
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Augmented Graph

Input Graph

(4) Hybrid

Representations

(3) Contrast-based

m]/ —> p¢,1 +D4—>D
Encoder
/ \ -
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Typical Categories of GSSL
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Existing Problems - Slow Computation with Node Comparison

Most contrastive-learning approaches

* rely on node-to-node comparison

* require heavy gradient computation

Positive

rMaximise-’ OE

B Anchor 1xD
» BHR

A Negative
t - - -Minimise- - 9> @ B

(a)Node-to-node Comparison

56

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural Information
Processing Systems (NeurlPS), 35, 10809-10820.



Existing Problems - Slow Computation with Node Comparison

¢ Existing typical Deep Graph Infomax (DGI) framework

MI maximization between nodes and summary vector

nAAAANAAAANNAAS |

GNN elncoder:

G e A el ) e e T e et e [ it B e e ] e e e e e i e i ] A e Gl

N
1 — —
Lpagl = _ZN(;_I' log D(zi,’s) +log(1 — D(z4,s))),

Y

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural Information
Processing Systems (NeurlPS), 35, 10809-10820.



Rethinking Existing DGI

+¢* Our important findings:

--Case Study on Graph Self-supervised Learning

 Value in summary vector s almost becomes constant vector with no variance

DGl loss can be further simplified as BCE loss

Activation | | Statistics Cora CiteSeer PubMed

Mean 0.50 0.50 0.50
ReLU/LReLU/PReLU | Std 1.3e-03 1.0e-04 4.0e-04

Range 1.4e-03 8.0e-04 1.5e-03

[ Mean 0.62 0.62 0.62

Sigmoid Std 5.4e-05 2.9e-05 6.6e-05

Range 3.6e-03 3.0e-03 3.2e-03
Dataset 0 0.2 0.4 0.6 0.8 1.0
Cora 70.3+0.7  82.4+0.2 82.3+0.3  82.5+0.4  82.3+0.3  82.5+0.1
CiteSeer  61.840.8  71.7+0.6 71.9+0.7 71.6+0.9  71.7£1.0  71.6+0.8
PubMed  68.3+1.5 77.8+£0.5 77.9+£0.8 77.7£0.9  77.4+1.1 77.2+£0.9

Set Eto1fors =€l =1, andremovewin D(z,s) =z -w-5,

Lpal =

~n O

Z log D(z;

-

)

1
N

1=1

+log(1 - D(%;,5))),

N
%(; log(z; - s) +log(1 —%; - s))),

1 N
. (; log(sum

zi)) +log(1 — sum(Z%;))),

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural Information
Processing Systems (NeurlPS), 35, 10809-10820.
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Our Solution: Group Discrimination (GD)

Positive

t - - -Minimise- - > @ B

(a)Node-to-nowomparison

rMaximise-’ ®E
@ E Anchor ER P
A Negative

Positive Negative
Group Group

oyl
8% (8%

(b) Group Discrimination

= Rlxl

|

--Case Study on Graph Self-supervised Learning

Summarisation (e.g., sum):

RIXD 4‘> = Rlxl

» Positive Group:

Summarised Node representations generated with
original or augmented graph.

> Negative Group:

Summarised Node representations generated with
corrupted graph.
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Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural Information

Processing Systems (NeurlPS), 35, 10809-10820.



Our Solution: Group Discrimination (GD)

--Case Study on Graph Self-supervised Learning
Use a very simple BCE loss to conduct discrimination

Positive Negative 1 2N
ik e Lpce =~ 5 () viloghi + (1~ yi) log(1 ~ hy))
= Discriminate =2
. = 4—» . = e R1X1 oy
= @ = 0= If positive -~y =1,else >y=0
s8¢ (59
o where h; € R*! is the summarised node embedding/binary
(b) Group Discrimination | prediction for a node i

A very simple binary classification task: discriminating positive/negative samples

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural Information
Processing Systems (NeurlPS), 35, 10809-10820.
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Pﬂposed Framework: Graph Group Discrimination (GGD)

--Case Study on Graph Self-supervised Learning
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Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural Information
Processing Systems (NeurlPS), 35, 10809-10820.



Performance of Graph Group Discrimination (GGD)

I
: --Case Study on Graph Self-supervised Learnin

Small-to-Medium scale Dataset y P P g

Data | Method | Cora CiteSeer PubMed Comp Photo

X, A, Y GCN 81.5 70.3 79.0 76.3+0.5  87.3+1.0

X, A, Y GAT 83.040.7  72.5+0.7 79.040.3  79.3+1.1  86.2+1.5

X, A, Y SGC 81.040.0  71.9+0.1 78.940.0  74.4+0.1  86.4+0.0

X, A, Y CG3 83.440.7 73.6+0.8 80.2+0.8  79.9+0.6  89.4+0.5

X, A DGI 81.740.6  71.5+0.7 77.3+0.6  75.9+0.6  83.1+0.5

X, A GMI 82.7+0.2  73.0+0.3  80.1£0.2  76.8+0.1  85.1+0.1

X, A MVGRL | 829+0.7 72.6+0.7 79.4+0.3  79.0+0.6  87.3+0.3

X, A GRACE | 80.0+0.4 71.7+0.6 79.5+1.1 71.8+0.4 81.8+1.0

X, A BGRL 80.5£1.0  71.0+1.2  79.5+0.6  89.2+0.9  91.2+0.8

X, A GBT 81.0+0.5 70.8+0.2  79.040.1  88.5+1.0  91.1+0.7

GGD | 84.1+0.4 73.0+0.6 81.3+0.8 90.1+0.9 92.5+0.6

Time Consumption Improvement (epoch per second) Memory Consumption Improvement (MB)
Method Cora CiteSeer PubMed Comp Photo Method Cora CiteSeer PubMed Comp Photo
DGI 0.085 0.134 0.158 0.171 0.059 DGI 4,189 8,199 11,471 7,991 4,946
GMI 0.394 0.497 2.285 1.297 0.637 GMI 4,527 5,467 14,697 10,655 5,219
MVGRL 0.123 0.171 0.488 0.663 0.468 MVGRL 5,381 5,429 6,619 6,645 6,645
GRACE 0.056 0.092 0.893 0.546 0.203 GRACE 1,913 2,043 12,597 8,129 4,881
BGRL 0.085 0.094 0.147 0.337 0.273 BGRL 1,627 1,749 2,299 5,069 3,303
GBT 0.073 0.072 0.103 0.492 0.173 GBT 1,651 1,799 2,461 5,037 2,641
GGD 0.010 0.021 0.015 0.016 0.009 GGD 1,475 1,587 1,629 1,787 1,637
Improve  7.3-39.4X  3.4-237X  6.9-1523Xx  10.7-153X  19.2-70.8X Improve  10.7-72.6%  11.8-80.6%  27.2-85.8%  64.5-83.2%  38.0-75.4%
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Performance of Graph Group Discrimination (GGD)

--Case Study on Graph Self-supervised Learning
Using only 0.18 seconds and 69.8% less memory to reach SOTA.

10783 faster than existing methods.

7.5 Tl 4,,
Method Valid Test | Memory Time Total §
Supervised GCN  73.0£0.2 71.7+0.3 | - . - = 68.5 b sl
MLP 57.7+0.4 55.5+0.2 - - - < — GGD
Node2vec 71.3+0.1 70.1+0.1 - - - —— BGRL
DGI 71.34£0.1 70.340.2 - - - 65.5; ' ‘ ; y
GRACE(10k epos)  72.6+0.2 71.5+0.1 - - - I 20 40 60 30 100
BGRL(10k epos)  72.5+0.1 71.6+0.1 | OOM (Full-graph)  / / Epoches
GBT(300 epos) 71.0+0.1 70.1+0.2 14,959MB 6.47  1,941.00 (a) ogbn-arxiv
GGD(1 epo) 727£0.3 71.6+£0.5 | 4513MB|69.8%  0.18 |0.18]10,783x]

Fast convergence —
converge with only 1 epoch
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Outline for Graph Data Exploitation

s Overview of Graph Data Exploitation
+ Techniques with Case Studies :

* Graph Self-supervised Learning
« Graph Semi-supervised Learning
« Graph Active Learning

» Graph Transfer Learning
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Background of Graph Semi-supervised Learning

% Graph Semi-supervised Learning: Only limited labels are provided
 Core idea from DC-GML view:

Learn to fully leverage/exploit the unlabeled part and collaborate with the labeled part

 Methodology: Regularization & Pseudo Labelling

35652 51 2
Graph Semi-Supervised Learning . —
845
. Supervision
/1N - supervise from fabels l:>
= o1 121 12
L M =
- odel
// \ 133
Nl Supervision from S\AIE 1141 [E
) o unlabeled data
G with Limited Labels
Input: a partially labeled & Output: infer the labels of
attributed graph unlabeled nodes
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Category of Graph Semi-supervised Learning

% Category from DC-GML view

Table 6. Summary of methods in graph semi-supervised learning.

Graph Semi-supervised Learning

Techniques

Categories

Zhu et al. [223]
Zhou et al. [216]
Zhou et al. [217]
Li et al. [82]
NodeAug [171]
GRAND [39]
M3S [148]
SimP-GCN [68]
GCN-LPA [166]
CG? [162]
GCPN [163]
Meta-PN [32]
CycProp [88]

Graph Laplacian regularization

Graph Laplacian regularization

Local smoothness under homophily

Self-training with training set extension

KL divergence-based consistency

L2 distance-based consistency

Clustering-based pseudo label generation
Feature-level similarity in pairwise distance

Edge weights with graph structure regularization
Self-supervised objective based regularization
Contrastive and possion learning based regularization
Adaptive label propagator based on label propagation
High-quality contextual node selection

Regularization-based
Regularization-based
Regularization-based
Pseudo-labelling
Regularization-based
Regularization-based
Pseudo-labelling
Regularization-based
Regularization-based
Regularization-based
Regularization-based
Pseudo-labelling
Pseudo-labelling
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Outline for Graph Data Exploitation

s Overview of Graph Data Exploitation
+ Techniques with Case Studies :

* Graph Self-supervised Learning
 Graph Semi-supervised Learning
« Graph Active Learning

» Graph Transfer Learning
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Background of Graph Active Learning

Given the fixed cost (e.g., human labour and expert knowledge) for label, how can we fully make
the best use of such labelling budget?

8-

% Graph Active Learning: dynamically select the samples to label during the training procedure

In the practical active learning process, the nodes to label are selected automatically by the models
following several selection criteria

Graph Active '—eam'"g - % Category from DC-GML view:
/‘\ . supervise fr%’rj;srl‘ggg?g R / b d
—, inpu o ulie-pase
// | < ‘ Model - Vo Vg
G gt TR S « Reinforcement learning-based,
G w:::h In;:tia / i.%be = update to be labeled .
(iteration = 0) -4 a query * Influence funCtlon'baSed,
* Grouﬁ%f‘ruth 5 s
/1 o superv;e o tabets «  Other hybrid methods
g
// AN m) | Model Vi Vo
Ng— select ~ Selected nodes
Updated G to be labeled
s R = T

Ground Truth
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Category of Graph Active Learning

% Category from DC-GML view

Table 7. Summary of methods in graph active learning.

Graph Active Learning Techniques Categories

AGE [13] Information entropy, density, and centrality rules Rule-based
ANRMAB [42] Multi-armed bandit mechanism Rule-based
ActiveHNE [24] Multi-armed bandit mechanism on heterogeneous graphs Rule-based
FeatProp [183] Closest cluster center based labelling Clustering-based
ATNE [65] Active transfer learning based node selection Rule-based
ASGN [50] Sample diversity based node selection Rule-based

GPA [54] GCN-based policy network RL-based

MetAL [103] Meta-gradients estimation Meta Learning-based
SEAL [85] Adversarial learning with divergence value Adversarial-based
GRAIN [205] Diversified influence maximization objective Influence-based
RIM [204] Label reliability based influence score scaling Influence-based
Attent [219] Active graph alignment Influence-based
ALG [202] Clustering-based density & Attention-based score Metric-based
ALLIE [27] Integrated graph coarsening and focal loss RL-based
BIGENE [207] Q-value decomposition with batch sampling selection RL-based

IGP [203] Information gain propagation for soft labelling Influence-based

JuryGCN [75]

Jackknife uncertainty estimation

Influence-based
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Outline for Graph Data Exploitation

s Overview of Graph Data Exploitation
+ Techniques with Case Studies :

* Graph Self-supervised Learning
 Graph Semi-supervised Learning
« Graph Active Learning

« Graph Transfer Learning
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Background of Graph Transfer Learning

% Graph Transfer Learning
« Graph data distribution shift between the training and test graph data widely exits.
« Shifts might encompass attributes like node features, graph structures, and label distributions.

According to whether label spaces of graphs is changed or not, the category

a) Close-set shift: label space unchanged

b) Open-set shift: new label classes emerge Graph Transfer Learning
/ \>/ input supervise §ﬁo%?ggg‘
. . : ‘ Model
class-1 | \_ BN \ / N - O class-1 | : \ / M class-1 // / \ p -
CI?.S.S-Z N // i <7 < \ / \/ / clz.a.s's-2 : / \\/ > CI?‘S'S-Z ~Nal—
classk | /\ \ - - N /] dlassk | | v \\\ ; 7 classk Training G (Source)
—R ] V\ - I ——a/ class-k+1; transfer
<N e : -
Training G Testing G (T: arggt) : T_esting G (Targgt) . \\ input output
(Source) in close-set shift . in open-set shift _T% / - Model - I
\ /\\ Predictions
Fig. 9. lllustration of graph transfer learning in graph data-centric close-set shift and open-set shift. Testing G (Target)
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Category of Graph Transfer Learning

% Category from DC-GML view

Table 8. Summary of methods in graph transfer learning.

Graph Transfer Learning

Techniques

Categories

DANE [206]
UDA-GCN [181]
ACDNE [142]
OpenWGL [182]
PGL [101]
SRGNN [221]
SOGA [104]
DGDA [14]
SRNC [222]

Adversarial learning regularization

Adversarial learning with dual-GNN

Node affinity & topological proximity preservation
Variational graph autoencoder

Class space decomposition

Central moment discrepancy (CMD) measurement
Mutual information maximization

Domain and semantic seperation

Unified domain adaption GNN

Close-set shift
Close-set shift
Close-set shift
Open-set shift
Open-set shift
Close-set shift
Close-set shift
Close-set shift
Close-set/Open-set shifts
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Part 4: Frontiers of

Graph Data-centric MLOps



Outline for Graph Data-centric MLOps

s Overview of Graph Data-centric MLOps
s Techniques :
« Graph Data Crowdsourcing and Synthesis
« Graph Data Understanding, Visualization, and Valuation
« Graph Data Privacy and Security
« Graph MLOps

% Case Study in Graph MLOps:

[NeurlPS-2023] “GNNEvaluator: Evaluating GNN Performance On Unseen Graphs
Without Labels”
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Outline for Graph Data-centric MLOps

Graph data-centric view

Phases Goals Methods & Tools Graph MLOps
, Amazon Mechanical Turk [4], e .
, Graph Data Crowdsourcing ' \
Graph Data Collection Tang et al. [152], Cao et al. [15] ‘ /\> /N N
1 \ ’_-\/l L] ./

SBMs [145], Koller et al. [78], Ying et al. [188], . —

Graph Data Synthesis Unsupervised methods [106, 120], Graph Data Collection
Semi-supervised methods [38, 111, 132, 155]

) ) o NetworkX [31], igraph [60]
, Graph Data Understanding & Visualization '
Graph Data Exploration Neo4j [107]

Graph Data Valuation GraphSVX [37] I

Trustworthy GNN [200], Zhang et al. [197],

. Liu et al. [92], Yu et al. [192],
. Graph Data Privacy
Graph Data Maintenance Mulle et al. [105], PGAS [198], '

Federatedscope-GNN [174], Tan et al. [151]

Graph Data Securit Sandhu et al. [135], Abidi et al. [1], / N S
rap ata Security . : S ) - 5
Li et al. [87] //\\ < - AI)\ @ K
Kubeflow [81], Amazon SageMaker [6], . e )
Graph MLOps Graph Data Maintenance

Amazon Neptune [179]
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Outline for Graph Data-centric MLOps

h 1 hod : Graph data-centric view
Phases Goals Methods & Tools Graph MLOps

) Amazon Mechanical Turk [4], B T .
, Graph Data Crowdsourcing { \
Graph Data Collection Tang et al. [152], Cao et al. [15] : /\; /\\.\/l N

SBMs [145], Koller et al. [78], Ying et al. [188], . —

Graph Data Synthesis Unsupervised methods [106, 120], Graph Data Collection
Semi-supervised methods [38, 111, 132, 155]

) ) o NetworkX [31], igraph [60]
, Graph Data Understanding & Visualization '
Graph Data Exploration Neo4j [107]

Graph Data Valuation GraphSVX [37] i

Trustworthy GNN [200], Zhang et al. [197],

. Liu et al. [92], Yu et al. [192],
. Graph Data Privacy
Graph Data Maintenance Mulle et al. [105], PGAS [198], '

Federatedscope-GNN [174], Tan et al. [151]

Graph Data Securit Sandhu et al. [135], Abidi et al. [1], / N S
rap ata Security . : S ) - 5
— Li et al. [87] S //\\ //\ - AiA @ K 3
(CrApa MILO * Kubeflow [81], Amazon SageMaker [6], . l:l ___________ e )
ra S
p i Amazon Neptune [179] Graph Data Maintenance

¥ Key to practical deployment of GNNs —— GNN Evaluation
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Background of GNN Model Evaluation

--Case Study on Graph MLOps
Understanding and evaluating GNN models’ performance is a vital step for GNN model

deployment and serving.

For instance,
well-trained & fixed Pred. labels  GT. labels

GNNg,_ ‘IE GNNg:_ N . %T in financial transaction networks:
ruft}lnﬂdﬁlﬁbﬂsj If‘ftf'ftflgbils': :éw;> : — AC"':#Z\:II—‘:;;S . GNN model designers: expect their
: : training | : : testing | [ [ developed GNNs to excel in identifying newly
! ! ! ! <~ B emerging suspicious transactions
00 l L] 1
Train Graph G,, Test Graph G, Users: ensure how they could trust well-
trained GNNs to know suspicious
(a) Conventional GNN Model Evaluation transactions within their own data

In conventional model evaluation of GNNs, we have:
1) Seen test graph G, in the same distribution as the train graph G,

2) Known test graph labels for computing performance metric, e.g., Accuracy (ACC)

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural 7

Information Processing Systems (NeurlPS), 2023.



Background of GNN Model Evaluation

--Case Study on Graph MLOps
However, in real-world scenarios, the test graphs are typically “unseen & lacking annotations”

? without node labels well-trained & fixed Pred. labels

, ? . label
testing GNNG:I, - <—— No GT. apets
<——>> :
. X
O v
. ?
Unlabeled & Unseen B—>2? ACC= e tota'l e
Test Graph G,

(b) Real-world GNN Model Evaluation

In real-world model evaluation of GNNs, we:

X CAN NOT access the ground-truth labels of the test graph G,

X CAN NOT compute performance metric, e.g., Accuracy (ACC)

X DO NOT know whether potential distribution shifts from the train graph G,

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural 78
Information Processing Systems (NeurlPS), 2023.



Background of GNN Model Evaluation

--Case Study on Graph MLOps
Given above scenarios, a natural question, i.e., “GNN model evaluation problem” arises:

In the absence of labels in an unseen test graph, can we estimate the performance of a well-

trained GNN model?

Unseen Test Graph T

Pred. labelsy GT

labels y

~
[ B<>x—0
1 : well-trained & fixed i k=
! 1 inference <l ; #v nodes
: l_» GNN; ACC= # total nodes
i : | .
|l | B [}
with node labels B<—~—> B

well-trained & fixed

GNNj -

GNNEvaluator

estimation

*

7 without node labels

ACC~ 71.63%

(a-2) The proposed GNN model evaluation (w/o unseen test graph labels).

I
Unseen Test Graph T

? Without node labels

GCN}

l

GAT;

GNNEvaluator

GraphSAGE;

N/

r' ------------
I ACC (T, GCN) :
/I ~7163% @ !
Y e e o P s M
ACC (T, GAT)
~ 70.01%

\ ACC (T, GraphSAGE)
~ 69.54%

(b) An applicable case of the proposed GNNEvaluator.

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural 79

Information Processing Systems (NeurlPS), 2023.



Definition of GNN Model Evaluation

--Case Study on Graph MLOps

Definition of GNN Model Evaluation. Given the observed training graph S, its well-trained model
GNN, and an unlabeled unseen graph 7 as inputs, the goal of GNN model evaluation aims to learn
an accuracy estimation model fy(-) parameterized by ¢ as:

Ace(T) = f6(GNNg, T), (2)

where f4 : (GNNg,7) — a and a € R is a scalar denoting the overall node classification accuracy
Acc(T) for all unlabeled nodes of 7. When the context is clear, we will use f(7) for simplification.

2 S

To solve above problems,

We propose a two-stage GNN model evaluation framework with a “GNNEvaluator”

Note that our principal goal is to estimate well-trained GNN models’ performance, rather than improve the

generalization ability of new GNN models. In the whole evaluation process, the in-service GNN model is fixed

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural 80
Information Processing Systems (NeurlPS), 2023.



GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels
--Case Study on Graph MLOps

] Discrepancy Function
T * i
> GNN;; wsiiin Ly - s DiscGraph Set G gisc
i ,
[ =n- nal Xdisc ............... train
fixed — (s D(- i NG C 4 >, ——p| GNNEvaluator
- — Z](neza ( ) /:---'-----'::;? E
.b GNN}, — = P
i H !
| & Ydisc (2, | h i
P ACC | ———> | il
Ay (mge Drop) | A, (Sub-Graph) :' Gt T i H i
------------- ‘~A—A~-A»--A.- 1 ] 1 : l'
). Guseleunsisias) : % 1 pm——
- —_— : i : :llsc 9 '\\! _____________ AR Unseen Graph T
: 1 L .
— ‘ : a0 .. | Estimated Accuracy (7T)
OO [ :
Seed Graph Sg.q Az (Attr-Mask) | Ay (Node-Mix) :. ________ 1
Meta-graph Set Geta @ Discrepancy attributes @ Accuracy labels €) Structures
Stage-1 DiscGraph set construction Stage-2 GNNEvaluator training & inference

Figure.1 Overall two-stage framework of the proposed GNN model evaluation with GNNEvaluator

« Stage-1: DiscGraph set construction

incorporating training-test graph discrepancies into DiscGraph node attributes XJ;.., structures AL;.., and
accuracy labels y};..

» Stage-2: GNNEvaluator training and inference

GNNEvaluator, train on DiscGraphs and output estimated ACC on the real-world test graph T

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural 81
Information Processing Systems (NeurlPS), 2023.



Experiments on GNNEvaluator

--Case Study on Graph MLOps
The performance of our proposed GNNEvaluator in evaluating well-trained GNNs’ node classification accuracy under all
test evaluation cases and models

Table 1: Mean Absolute Error (MAE) performance of different GNN models across five random

seeds. (GNNss are well-trained on the ACMv9 dataset and evaluated on the unseen and unlabeled Citationv2 and DBLPv8 datasets, i.e., A—C
and A—D, respectively. Best results are in bold.)

Methods ACMv9—Citationv2 ACMv9—DBLPv8
GCN SAGE GAT GIN MLP Avg. GCN SAGE GAT GIN MLP Avg
ATC-MC [§] 449 840 437 1840 3433 1400 2196 2420 3030 24.06 2662 2543
ATC-MC-c [8] 241 574 467 2200 5141 1725 3115 3055 30.18 2971 4581 33.48 * . .
ATC-NE 8] 397 802 428 1735 3887 1450 2293 2478 3050 2374 3113 2662 %° Expe riments on 3 real-world g raph datasets in
ATC-NE-c [8] 444 609 330 2395 4462 1648 3442 2831 27.02 3028 3928 31.86
Thres. (1 = 0.7) %} 3264 3581 3363 5076 3528 37.63 9.59 12.14 1430 3267 3972 21.68 i ) ]
Thres. (1 = 0.8) [6] 2630 29.60 26.18 4925 3587 3344 263 744 1447 3220 4031 19.41
Thres. (1 = 0.9) [8] 1756 2134 1638 4653 3608 27.58 820 742 1607 3147 4056 20.74 6 cases pOtentlaI domain Shlft’ each
AutoEval-G [€] 1894 2619 26.12 5086 3240 3090 277 254 725 4868 2995 1824
GNNEvaluator (Ours) 4.85 4.1 1223 10.14 2220 1071 11.80 1488 636 13.78 1749 12.86 eva | u at| n g 5 m Od e | S:

Table 2: Mean Absolute Error (MAE) performance of different GNN models across five random N . .
seeds. (GNNss are well-trained on the Citationv2 dataset and evaluated on the unseen and unlabeled ACMv9 and DBLPvS datasets, i.e., C—A ”‘ Con S I S ten t OUtS t a n dl n g p erf Or m a n Ce O Ver a / l

and C— D, respectively.Best results are in bold.)

_— Citationv2—ACMv9 Citationv2—DBLPvS GNN models and cases!
GCN SAGE GAT GIN MLP Avg. GCN SAGE GAT GIN MLP Avg.

ATC-MC [5)] 950 1340 828 3551 4340 2202 2257 137 2187 2924 3520 2205

ATC-MC-c [§] 693 1175 670 3893 5743 2435 3367 492 2823 3089 5259 30.06

ATC-NE [§] 886 1304 787 3488 4749 2242 2397 186 2374 2896 3972 23.65

ATC-NE-C [§] 773 1394 763 4117 6296 2669 3716 466 2943 3166 5895 32.37

Thres. (7 = 0.7) [6] 37.33 36.61 31.68 5891 3433 3977 1070 23.05 1274 34.60 3829 23.88
Thres. (1 = 0.8) [6] 29.62 2895 2277 5748 3453 3467 565 1501 7.61 3436 3843 2021
Thres. (7 = 0.9) [6] 1959 19.06 11.37 55.72 34.56 28.06 10.65 8.28 8.07 34.00 3844 19.89
AutoEval-G [6] 23.01 31.24 26.74 59.66 35.02 2828 257 1652 696 19.20 3224 24.59

GNNEvaluator (Ours) 545  8.53 9.61 29.77 28,52 1638 11.64 7.02 558 6.46 2287 10.71

Zheng, X., Zhang, M., Chen, C., Molaei, S., Zhou, C., & Pan, S. (2023). GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels. Advances in Neural 82
Information Processing Systems (NeurlPS), 2023.



Part 5: Future Directions & Conclusion



Promising Future Directions

“ Exploration of complex and dynamic graph data

0'6 0'@ 2 |issing 0 e@ 0 @ 2
(] = | G
3 @ & B @ 4)

0% 80%  100%]| 0% 30% 100%
1 1 > | | l >
L I J| L =P )

p g ng ag Y
Train Test Train Test
Time Time
Dynamic Graph

e Customers
-QFraudsters -D

Heterophilic Graph

[1] Luo, L., Haffari, G., & Pan, S. (2023, February). Graph sequential neural ode process for link prediction on dynamic and sparse graphs. In Proceedings of the Sixteenth ACM

International Conference on Web Search and Data Mining (pp. 778-786).

[2] Zheng, X., Liu, Y., Pan, S., Zhang, M., Jin, D., & Yu, P. S. (2022). Graph neural networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082.
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Promising Future Directions

“ General and automatic graph data improvement.

Weak structure

Extremely weak
information

m

m =

(d) HE BB

35

Weak features

Liu, Y., Ding, K., Wang, J., Lee, V., Liu, H., & Pan, S. (2023). Learning Strong Graph Neural Networks with Weak Information. In Proceedings of the 29th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD ’23).

Ideal information

Weak labels
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Promising Future Directions

“ Standardized graph data benchmarks
> Collaborative development of graph data and model

“ Comprehensive graph data lifecycle management pipelines

Training

Vi il

| il

GNN Model -

; Evaluation

* Design
rrn— I l — <N

Graph Data /"j‘ ¢ {:}

Engineering "ll {:} Deployment

Evaluation ‘ Hyperparameter
Tuning
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Promising Future Directions

s+ Exploration of complex and dynamic graph data

+ General and automatic graph data improvement

+ Standardized graph data benchmarks

s Collaborative development of graph data and model

s Comprehensive graph data lifecycle management pipelines



Conclusion

Promising Data-centric Graph Machine Learning (DC-GML)

..........................................................................................................................................

How To Enhance Graph Data How To Learn From Graph Data
: Availability and Quality? With Limited-availability and Low-quality?
R \/\ J — \/\ . ' /1
A 2 S K = Eeaesss———) @ /LK
Ny AVECRS , A :
Graph Data Improvement Graph MLOpS Graph Data Exploitation
I~
A
\/ \ / \>
/s s
VA

..........................................................................................................................................
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Conclusion

Three Core Research Questions

RQ1: How to enhance graph data availability and quality?

A

Enhanced Graph Data

RQ2: How to learn from graph data with limited-availability and low-quality?

1

Enhanced Graph Data Z>Z> Enhanced Graph ML Models

RQ3: How to build graph MLOps systems from the graph data-centric view?

!

Systematic & Comprehensive
Data-centric Graph Machine Learning (DC-GML)



Conclusion

Comprehensive Taxonomy

Graph Data Improvement

1" Graph Structure Enhancement

L

" Graph Feature Enhancement

Graph Structure Learning || Graph Sparsification || Graph Diffusion

Graph Feature Completion || Graph Feature Denoising
" Graph Label Enhancement

Graph Pseudo-labelling || Graph Label Denoising || Graph Class-imbalanced Sampling

#— Graph Size Enhancement

Graph Size Reduction [[ Graph Data Augmentation

Graph Data Exploitation Graph Data Collection
Graph Data Crowdsourcing & Synthesis

Graph Self-supervised Learning Graph Data Exploration

. e e b l—o Graph Data Understanding, Visualization & Valuation

[ gt it Eeaming Graph Data Maintenance

" Graph Transfer Learning s Graph Data Privacy & Security

Fig. 2. The framework and taxonomy of data-centric graph machine learning (DC-GML).
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Conclusion

Extensive & Open Potentials of DC-GML

A. Standardized graph machine learning workflow
B. Enhanced graph data understanding
C. Better graph learning model performance

D. Wider graph data application range

Recommender Systems Chemistry
APPLICATION .
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