

Towards Data-centric Graph Machine Learning

Xin Zheng¹, Shirui Pan²

¹ Monash University ² Griffith University

Tutorial Outline

Part 1: Introduction & Overview

- Why Data-centric Graph Machine Learning (DC-GML)
- Overview of DC-GML Framework

Al system = Code + Data (model/algorithm)

What is data-centric AI?

" Data-centric AI (DCAI) is the discipline of systematically engineering the data used to build an AI system." – –Andrew Ng

Fig. 1. General comparison between (a) model-centric AI and (b) data-centric AI.

Why data-centric AI matters

An example:

Inspecting steel sheets for defects		Steel defect detection	Solar panel	Surface inspection
	Baseline	76.2%	75.68%	85.05%
	Model-centric	+0% (76.2%)	+0.04% (75.72%)	+0.00% (85.05%)
Examples of defects	Data-centric	+16.9% (93.1%)	+3.06% (78.74%)	+0.4% (85.45%)

Data-centric improves more than model-centric!

Why data-centric AI matters

When model design becomes mature, the significance of both the size and quality of the data increases.

Core idea:

Engineering data to enable great "availability and quality" for serving and promoting model-related ML tasks.

Data-centric AI is attracting attentions...

• Exponentially growing DCAI research papers

DCAI Courses, Workshops, Competitions

Al Startups

Graphs: A typical & vital instantiation in DCAI

Example: A Social Network Graph

A Graph has nodes/vertices and edges:

- Nodes/vertices → a person in the social network
- Edges → Connection between people

Graphs have the ability of:

 Representing complex structural relationships among massive diverse entities in the real world

Graphs in real-world applications

Social Networks

Bibliography Networks

Protein Interaction Networks

Traffic Networks

Towards data-centric graph machine learning

Data-centric graph machine learning (DC-GML) aims to:

- Process, analyze, and understand graph data in entire lifecycle
- Enhancing the quality
- Uncovering the insights
- Developing comprehensive representations
- Working collaboratively with graph ML models under graph MLOps

Why data-centric GML matters

***** Taking graph OOD detection as example:

(b) Our proposed data-centric framework for graph OOD detection.

ID	OOD	Metric	GCLS	GCL_S+	Improv.		
		AUC↑	62.97	73.76	+17.14%		
ENZYMES	PROTEIN	AUPR↑	62.47	75.27	+20.49%		
		FPR95↓	93.33	88.33	-5.36%		
		AUC ↑	80.52	83.84	+4.12%		
IMDBM	IMDBB	AUPR↑	74.43	80.16	+7.70%		
		FPR95↓	38.67	38.33	-0.88%		
		AUC↑	75.00	97.31	+29.75%		
BZR	COX2	AUPR ↑	62.41	97.17	+55.70%		
		FPR95↓	47.50	15.00	-68.42%		
Model-centric GML method							
★ Data-centric GML method and improveme							

Overview of DC-GML Framework

Graph Data Improvement

Resources

More resources and details in our work

- Survey paper: Towards Data-centric Graph Machine Learning: Review and Outlook
- Github collection: https://github.com/Data-Centric-GraphML/awesome-papers

Data-centric Graph ML Review & Outlook

DC-GML GitHub Collection

Part 2: Frontiers of Graph Data Enhancement

Overview of Graph Data Enhancement

Core Strategy

aim to synthesize or modify graph data itself to improve availability and quality by comprehensively fixing potential issues of graph data.

Given a graph G = (A, X, Y), with several essential components of :

- 1) graph structure A;
- 2) node/edge attribute features X;
- 3) node/graph annotated labels Y;
- 4) the holistic graph **G** related scale

Outline for Graph Data Enhancement

- Overview of Graph Data Enhancement
- ***** Techniques with Case Studies :
 - Graph Structure Enhancement
 - Graph Feature Enhancement
 - Graph Label Enhancement
 - Graph Size Enhancement

Graph Structure Enhancement

Fig. 5. Illustration of graph structure enhancement methods.

- Graph Structure Learning: add, remove, and reweight the edges on noisy or incomplete structures
- Graph Sparsification: prune the redundant edges to avoid over-dense structures
- Graph Diffusion: establish links with global and long-range structural interactions

--Case Study on Graph Structure Enhancement

* Graph structure learning (GSL): learning graph structure from data when structure is

--Case Study on Graph Structure Enhancement

Existing methods: Supervised graph structure learning

--Case Study on Graph Structure Enhancement

More practical scenario: Unsupervised graph structure learning

aim to optimize the graph structure as an independent task and without label-based supervision.

--Case Study on Graph Structure Enhancement

Comparison: Supervised GSL vs. Unsupervised GSL

Advantages of UGSL: 🗹 Does not rely on labels 🗹 Unbiased learning 🗹 Task-agnostic

--Case Study on Graph Structure Enhancement

Proposed framework - SUBLIME

--Case Study on Graph Structure Enhancement

SUBLIME Performance on Node classification @ Structure Inference

Available	Mathad				Data	iset			
Data for GSL	Method	Cora	Citeseer	Pubmed	ogbn-arxiv	Wine	Cancer	Digits	20news
-	LR	60.8±0.0	62.2 ± 0.0	72.4 ± 0.0	52.5 ± 0.0	92.1±1.3	93.3±0.5	85.5±1.5	42.7±1.7
-	Linear SVM	58.9±0.0	58.3 ± 0.0	72.7 ± 0.1	51.8 ± 0.0	93.9±1.6	90.6 ± 4.5	87.1±1.8	40.3 ± 1.4
-	MLP	56.1±1.6	56.7 ± 1.7	71.4 ± 0.0	54.7 ± 0.1	89.7±1.9	92.9 ± 1.2	36.3 ± 0.3	38.6 ± 1.4
-	GCN _{knn} [22]	66.5 ± 0.4	68.3±1.3	70.4 ± 0.4	54.1 ± 0.3	93.2 ± 3.1	83.8 ± 1.4	91.3±0.5	41.3±0.6
-	GAT_{knn} [40]	66.2 ± 0.5	70.0 ± 0.6	69.6 ± 0.5	OOM	91.5 ± 2.4	95.1 ± 0.8	91.4 ± 0.1	45.0 ± 1.2
-	$SAGE_{knn}$ [15]	66.1±0.7	68.0 ± 1.6	68.7 ± 0.2	55.2 ± 0.4	$87.4 {\pm} 0.8$	93.7±0.3	91.6 ± 0.7	45.4 ± 0.4
Х, Ү	LDS [12]	71.5±0.8	71.5 ± 1.1	OOM	OOM	97.3 ± 0.4	94.4±1.9	92.5 ± 0.7	46.4±1.6
X, Y, A _{knn}	GRCN [53]	69.6±0.2	70.4 ± 0.3	70.6 ± 0.1	OOM	96.6 ± 0.4	95.4 ± 0.6	92.8 ± 0.2	41.8 ± 0.2
X, Y, A _{knn}	Pro-GNN [20]	69.2±1.4	69.8±1.7	OOM	OOM	95.1 ± 1.5	96.5 ± 0.1	93.9±1.9	45.7 ± 1.4
X, Y, A _{knn}	GEN [45]	69.1±0.7	70.7 ± 1.1	70.7 ± 0.9	OOM	96.9 ± 1.0	<u>96.8±0.4</u>	94.1 ± 0.4	47.1 ± 0.3
Χ, Υ	IDGL [7]	70.9±0.6	68.2 ± 0.6	70.1 ± 1.3	55.0 ± 0.2	<u>98.1±1.1</u>	95.1±1.0	93.2 ± 0.9	48.5 ± 0.6
Χ, Υ	SLAPS [11]	73.4±0.3	72.6 ± 0.6	$74.4{\pm}0.6$	56.6±0.1	96.6 ± 0.4	96.6 ± 0.2	94.4±0.7	50.4±0.7
A _{knn}	GDC [23]	68.1±1.2	68.8 ± 0.8	68.4 ± 0.4	OOM	96.1±1.0	95.9 ± 0.4	92.6 ± 0.5	46.4±0.9
Х	SLAPS-2s [11]	72.1±0.4	69.4±1.4	71.1 ± 0.5	54.2 ± 0.2	96.2 ± 2.1	95.9±1.2	93.6±0.8	47.7 ± 0.7
X	SUBLIME	<u>73.0±0.6</u>	73.1±0.3	<u>73.8±0.6</u>	<u>55.5±0.1</u>	98.2±1.6	97.2±0.2	<u>94.3±0.4</u>	<u>49.2±0.6</u>

--Case Study on Graph Structure Enhancement

SUBLIME Performance

IDGL

GDC

SUBLIME

X, Y, A

Α

X, A

Available	Method		Dataset							
Data for GSL	Methoa	Cora	Citeseer	Pubmed	ogbn-arxiv					
-	GCN	81.5	70.3	79.0	71.7±0.3					
-	GAT	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3	OOM					
-	SAGE	77.4±1.0	67.0 ± 1.0	76.6 ± 0.8	71.5 ± 0.3					
X, Y, A	LDS	83.9±0.6	74.8±0.3	OOM	OOM					
X, Y, A	GRCN	84.0±0.2	73.0 ± 0.3	78.9 ± 0.2	OOM					
X, Y, A	Pro-GNN	82.1±0.4	71.3 ± 0.4	OOM	OOM					
X, Y, A	GEN	82.3±0.4	73.5 ± 1.5	80.9 ± 0.8	OOM					

 84.0 ± 0.5

 83.6 ± 0.2

 84.2 ± 0.5

 73.1 ± 0.7

73.4±0.3

 73.5 ± 0.6

83.0±0.2

 78.7 ± 0.4

 81.0 ± 0.6

72.0±0.3

OOM

 71.8 ± 0.3

• Node classification @ structure refinement

•	Node	clustering	(a)	structure	refinement	
---	------	------------	-----	-----------	------------	--

Method		Cor	a		Citeseer						
Methou	C-ACC	NMI	F1	ARI	C-ACC	NMI	F1	ARI			
K-means	50.0	31.7	37.6	23.9	54.4	31.2	41.3	28.5			
SC	39.8	29.7	33.2	17.4	30.8	9.0	25.7	8.2			
GE	30.1	5.9	23.0	4.6	29.3	5.7	21.3	4.3			
DW	52.9	38.4	43.5	29.1	39.0	13.1	30.5	13.7			
DNGR	41.9	31.8	34.0	14.2	32.6	18.0	30.0	4.3			
M-NMF	42.3	25.6	32.0	16.1	33.6	9.9	25.5	7.0			
RMSC	46.6	32.0	34.7	20.3	51.6	30.8	40.4	26.6			
TADW	53.6	36.6	40.1	24.0	52.9	32.0	43.6	28.6			
VGAE	59.2	40.8	45.6	34.7	39.2	16.3	27.8	10.1			
ARGA	64.0	44.9	61.9	35.2	57.3	35.0	54.6	34.1			
MGAE	68.1	48.9	53.1	56.5	66.9	<u>41.6</u>	52.6	<u>42.5</u>			
AGC	68.9	<u>53.7</u>	<u>65.6</u>	44.8	67.0	41.1	62.5	41.5			
DAEGC	<u>70.4</u>	52.8	68.2	49.6	<u>67.2</u>	39.7	63.6	41.0			
SUBLIME	71.3	54.2	63.5	<u>50.3</u>	68.5	44.1	<u>63.2</u>	43.9			

Outline for Graph Data Enhancement

- Overview of Graph Data Enhancement
- ✤ Techniques with Case Studies :
 - Graph Structure Enhancement
 - Graph Feature Enhancement
 - Graph Label Enhancement
 - Graph Size Enhancement

Graph Feature Enhancement

Fig. 6. Illustration of graph feature enhancement methods.

- Graph Feature Completion: focuses on imputing the missing features
- Graph Feature Denoising: refining the noisy features.

-- Case study on Graph Feature Completion

Graph node noise exists widely

❑ The question is:

How to eliminate undesirable corruptions the input node attributes to enhance graph representation learning?

-- Case study on Graph Feature Completion

Framework of the proposed MAGNET

-- Case study on Graph Feature Completion

• First, mask matrix (M) generation

-- Case study on Graph Feature Completion

• Next, find a robust signal representation

-- Case study on Graph Feature Completion

• Finally, learning robust GRL

-- Case study on Graph Feature Completion

Test the performance with node classification tasks

	attribute injection									meta attack	C C
Module	Cora	Citeseer	PubMed	Coauthor-CS	Wiki-CS	Wisconsin	Texas	OGB- arxiv	Cora	Citeseer	PubMed
clean	$81.26{\scriptstyle\pm0.65}$	$71.77{\scriptstyle\pm0.29}$	79.01±0.44	$90.19{\scriptstyle \pm 0.48}$	77.62±0.26	$56.47{\scriptstyle\pm5.26}$	$65.14{\scriptstyle\pm1.46}$	$71.10{\scriptstyle \pm 0.21}$	81.26±0.65	71.77±0.29	79.01±0.44
GCN	69.06 ± 0.74	57.58±0.71	67.69±0.40	82.41±0.23	65.44±0.23	48.24±3.19	58.92 ± 2.02	68.42±0.15	75.07±0.64	55.32±2.22	72.88±0.30
APPNP	$68.46{\scriptstyle\pm0.81}$	$60.04{\scriptstyle\pm0.59}$	68.70 ± 0.47	71.14 ± 0.54	$56.53{\scriptstyle \pm 0.72}$	61.76±5.21	$59.46{\scriptstyle\pm0.43}$	OOM	73.49±0.59	55.67±0.28	70.63 ± 1.07
GNNGUARD	$61.96{\scriptstyle\pm0.30}$	54.94 ± 1.00	$68.50{\scriptstyle \pm 0.38}$	80.67 ± 0.88	65.69 ± 0.32	$46.86{\scriptstyle \pm 1.06}$	$59.19{\scriptstyle \pm 0.81}$	65.75±0.32	72.02 ± 0.61	57.64 ± 1.31	71.10 ± 0.32
ElasticGNN	$77.74{\scriptstyle \pm 0.79}$	$64.61{\scriptstyle\pm0.85}$	71.23 ± 0.21	79.91±1.39	64.18 ± 0.53	$53.33{\scriptstyle \pm 2.45}$	$59.77{\scriptstyle\pm3.24}$	41.34±0.38	79.25±0.50	67.29 ± 1.17	71.95 ± 0.52
AirGNN	76.22 ± 3.75	$62.14{\scriptstyle \pm 0.82}$	74.73 ± 0.43	80.18 ± 0.31	71.36 ± 0.20	61.56±0.72	59.46 ± 1.24	52.32±0.58	78.94 ± 0.45	65.58±0.63	78.58±0.71
MAGNETone	$75.88{\scriptstyle \pm 0.42}$	59.22 ± 0.34	68.97 ± 0.21	84.04 ± 0.56	70.83±0.29	55.49 ± 1.53	60.27 ± 1.73	68.24±0.30	77.11 ± 0.45	62.49±1.70	75.83 ± 2.05
MAGNETgae	79.07±0.56	64.79±0.73	75.41±0.35	86.50±0.37	72.40±0.21	64.31±2.60	60.81±2.18	68.68±0.03	79.04±0.50	67.40±0.73	78.63±0.32
MAGNETtrue	$78.48{\scriptstyle\pm0.67}$	$68.55{\scriptstyle \pm 0.74}$	75.63±0.56	89.23±0.40	75.50 ± 0.20	65.69±1.57	$60.54{\scriptstyle\pm2.16}$	$69.57{\scriptstyle\pm0.23}$	80.88±0.37	67.46±0.95	79.16±0.41

• The three baseline graph smoothing methods fail to denoise local corruption within the input.

- MAGNET-gae outperforms its competitors and recovers at most 94% prediction accuracy from the perturbed attributes.
- An accurate mask approximation can push the prediction performance of graph representation up to MAGNET true's scores.

Outline for Graph Data Enhancement

Overview of Graph Data Enhancement

✤ Techniques with Case Studies :

- Graph Structure Enhancement
- Graph Feature Enhancement
- Graph Label Enhancement
- Graph Size Enhancement

Background of Graph Label Enhancement

Real-world graphs are generally sparsely and noisily labeled

Noise in sparsely labeled graphs can <u>degrade</u> the performance of GNN:

- X The size of labels is limited and GNN will overfit to noisy labels
- X Noisy label information propagates to their unlabeled neighbors

Dai, E., Aggarwal, C., & Wang, S. (2021, August). NRGNN: Learning a label noise resistant graph neural network on sparsely and noisily labeled graphs. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 227-236).

Overview Graph Label Enhancement

Fig. 7. Illustration of graph label enhancement methods.

- > Graph Pseudo-labelling: enriching the label information to alleviate the scarce label issue
- > Graph Label Denoising: removing the redundant noisy label information to clean the noisy labels
- Graph Class-imbalanced Sampling: downsampling majority and/or synthesizing minority class labels to

tackle the class-imbalanced label issue

NRGNN: Learning on Sparsely and Noisily Labeled Graphs

--Case Study on Graph Label Enhancement

Preliminary Analysis

- Linking an unlabeled node with similar labeled nodes belonging to the same class can increase the robustness against label noise.
- Strategy: Extend the label set with accurate pseudo labels by selecting the predictions with high confidence score

Dai, E., Aggarwal, C., & Wang, S. (2021, August). NRGNN: Learning a label noise resistant graph neural network on sparsely and noisily labeled graphs. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 227-236).

NRGNN: Learning on Sparsely and Noisily Labeled Graphs

NRGNN Framework

The Proposed NRGNN contains:

--Case Study on Graph Label Enhancement

1) Edge predictor

Link unlabeled nodes with similar nodes having noisy/pseudo labels

2) Accurate pseudo label miner

Obtain accurate pseudo labels with high confidence score

3) GNN classifier

provide robust predictions

Dai, E., Aggarwal, C., & Wang, S. (2021, August). NRGNN: Learning a label noise resistant graph neural network on sparsely and noisily labeled graphs. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery & Data Mining (pp. 227-236).

Outline for Graph Data Enhancement

Overview of Graph Data Enhancement

✤ Techniques with Case Studies :

- Graph Structure Enhancement
- Graph Feature Enhancement
- Graph Label Enhancement
- Graph Size Enhancement

Graph Size Enhancement

Fig. 8. Illustration of graph data-centric size enhancement methods.

- **Graph Size Reduction:** the oversized large-scale graphs with redundant information \succ
- Graph Data Augmentation: small-scale graphs with limited data sources and insufficient information 40

Graph Size Enhancement

Fig. 8. Illustration of graph data-centric size enhancement methods.

- **Graph Size Reduction:** the oversized large-scale graphs with redundant information \succ
- Graph Data Augmentation: small-scale graphs with limited data sources and insufficient information 41

Background of Graph Condensation

--Case Study on Graph Size Enhancement

What is graph condensation?

aim to reduce the size of a large-scale graph by synthesizing a small-scale condensed graph

 \rightarrow \rightarrow <u>the small-scale condensed graph</u> achieves <u>comparable test performance</u> as the large-scale graph when training the same GNN model.

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graphfree Data. Advances in Neural Information Processing Systems (NeurIPS), 2023.

Background of Graph Condensation

--Case Study on Graph Size Enhancement

Requirements, Advantages, & Applications

1) Why need GC [Requirements]?

Modelling large-scale graphs hinders GNN development with heavy costs

	Table 1: Model serving space					
Datasets	Model size	Training graph size	Training feature size	Total serving size		
Arxiv	1.4MB	5.9MB	46.5MB	53.8MB		
Reddit	7.6MB	86.0MB	370.7MB	464.3MB		
Product	4.8MB	87.2MB	78.6MB	170.6MB		
Amazon2M	3.0MB	485.4MB	684.0MB	1.17GB		

X Heavy costs on: graph data storage, computation, and memory

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graphfree Data. Advances in Neural Information Processing Systems (NeurIPS), 2023.

Background of Graph Condensation

--Case Study on Graph Size Enhancement

Requirements, Advantages, & Applications

2) How GC benefit [Advantages]?

Using condensed graph as substitution to facilitate GNN training:

Alleviated graph data storage/computation/memory costs

3) What practical applications of GC [Applications]?

• Graph Neural Architecture Search (GraphNAS)

By searching on a small-scale condensed graph, accelerating new GNN architecture development in GraphNAS

•••

- Privacy Protection
- Adversarial Robustness

Our Solution: Structure-free Graph Condensation

--Case Study on Graph Size Enhancement

> Existing works :

$$\mathcal{T} = (\mathbf{X}, \mathbf{A}, \mathbf{Y}) \rightarrow \mathcal{T}' = (\mathbf{X}', \mathbf{A}', \mathbf{Y}'), \quad \text{GC}.$$

> Our SFGC:

$$\mathcal{T} = (\mathbf{X}, \mathbf{A}, \mathbf{Y}) \to \mathcal{S} = (\widetilde{\mathbf{X}}, \mathbf{I}, \widetilde{\mathbf{Y}}) = \mathcal{S} = (\widetilde{\mathbf{X}}, \widetilde{\mathbf{Y}}), \quad \text{SFGC}.$$

> Our Solution:

- ✓ Structure-free paradigm ———
- \checkmark Long-range parameter matching schema -

- Only synthesizes a small scaled node set to train a GNN/MLP
- Implicitly encodes topology structure into node attributes

Structure-free Graph Condensation

--Case Study on Graph Size Enhancement

Condensing large-scale graph into only node set without structures!

Figure 1. Overall pipeline of the proposed Structure-Free Graph Condensation (SFGC) framework

Experiments of SFGC

--Case Study on Graph Size Enhancement

Table 1: Node classification performance (ACC%±std) comparison between condensation methods and other graph size reduction methods with different condensation ratios. (Best results are in bold, and the second-bests are underlined.)

Datasets	Ratio (r)	Other	r Graph Size Re	eduction Baseli	ines		Condensation	Methods		Whole
	111110 (1)	Coarsening [13]	Random [31]	Herding [31]	K-Center [28]	DC-Graph [42]	GCOND-X [18]	GCOND [18]	SFGC (ours)	Dataset
Citeseer	0.9% 1.8% 3.6%	$52.2{\pm}0.4 \\ 59.0{\pm}0.5 \\ 65.3{\pm}0.5$	$54.4{\scriptstyle\pm4.4}\\64.2{\scriptstyle\pm1.7}\\69.1{\scriptstyle\pm0.1}$	$57.1{\scriptstyle\pm1.5}\\66.7{\scriptstyle\pm1.0}\\69.0{\scriptstyle\pm0.1}$	$52.4{\scriptstyle\pm2.8}\\64.3{\scriptstyle\pm1.0}\\69.1{\scriptstyle\pm0.1}$	$\begin{array}{c} 66.8{\pm}1.5\\ 66.9{\pm}0.9\\ 66.3{\pm}1.5\end{array}$	$\frac{71.4{\pm}0.8}{69.8{\pm}1.1}\\69.4{\pm}1.4$	$\frac{70.5{\scriptstyle\pm1.2}}{\frac{70.6{\scriptstyle\pm0.9}}{69.8{\scriptstyle\pm1.4}}}$	$71.4{\scriptstyle\pm0.5}\\72.4{\scriptstyle\pm0.4}\\70.6{\scriptstyle\pm0.7}$	$71.7{\pm}0.1$
Cora	1.3% 2.6% 5.2%	$\begin{array}{c} 31.2{\pm}0.2\\ 65.2{\pm}0.6\\ 70.6{\pm}0.1 \end{array}$	$\begin{array}{c} 63.6{\scriptstyle\pm3.7} \\ 72.8{\scriptstyle\pm1.1} \\ 76.8{\scriptstyle\pm0.1} \end{array}$	$\begin{array}{c} 67.0{\scriptstyle\pm1.3}\\ 73.4{\scriptstyle\pm1.0}\\ 76.8{\scriptstyle\pm0.1}\end{array}$	$\begin{array}{c} 64.0{\pm}2.3\\ 73.2{\pm}1.2\\ 76.7{\pm}0.1 \end{array}$	$\begin{array}{c} 67.3 \pm 1.9 \\ 67.6 \pm 3.5 \\ 67.7 \pm 2.2 \end{array}$	$\begin{array}{c} 75.9{\scriptstyle\pm1.2} \\ 75.7{\scriptstyle\pm0.9} \\ 76.0{\scriptstyle\pm0.9} \end{array}$	$\frac{79.8{\scriptstyle\pm1.3}}{80.1{\scriptstyle\pm0.6}}\\\overline{79.3{\scriptstyle\pm0.3}}$	$\begin{array}{c} \textbf{80.1}{\pm}0.4\\ \textbf{81.7}{\pm}0.5\\ \textbf{81.6}{\pm}0.8 \end{array}$	81.2±0.2
Ogbn-arxiv	0.05% 0.25% 0.5%	$\begin{array}{c} 35.4{\scriptstyle\pm 0.3} \\ 43.5{\scriptstyle\pm 0.2} \\ 50.4{\scriptstyle\pm 0.1} \end{array}$	$\begin{array}{c} 47.1{\scriptstyle\pm3.9}\\ 57.3{\scriptstyle\pm1.1}\\ 60.0{\scriptstyle\pm0.9}\end{array}$	$52.4{\scriptstyle\pm1.8}\\58.6{\scriptstyle\pm1.2}\\60.4{\scriptstyle\pm0.8}$	$\begin{array}{c} 47.2{\pm}3.0\\ 56.8{\pm}0.8\\ 60.3{\pm}0.4\end{array}$	$58.6{\scriptstyle\pm0.4}\\59.9{\scriptstyle\pm0.3}\\59.5{\scriptstyle\pm0.3}$	$\frac{\underline{61.3 \pm 0.5}}{\underline{64.2 \pm 0.4}}_{\overline{63.1 \pm 0.5}}$	$59.2{\scriptstyle\pm1.1} \\ 63.2{\scriptstyle\pm0.3} \\ \underline{64.0{\scriptstyle\pm0.4}}$	$\begin{array}{c} \textbf{65.5}{\scriptstyle\pm0.7} \\ \textbf{66.1}{\scriptstyle\pm0.4} \\ \textbf{66.8}{\scriptstyle\pm0.4} \end{array}$	71.4 ± 0.1
Flickr	0.1% 0.5% 1%	$\begin{array}{c} 41.9{\scriptstyle\pm0.2} \\ 44.5{\scriptstyle\pm0.1} \\ 44.6{\scriptstyle\pm0.1} \end{array}$	$\begin{array}{c} 41.8{\pm}2.0\\ 44.0{\pm}0.4\\ 44.6{\pm}0.2\end{array}$	$\begin{array}{c} 42.5{\scriptstyle\pm1.8} \\ 43.9{\scriptstyle\pm0.9} \\ 44.4{\scriptstyle\pm0.6} \end{array}$	$\begin{array}{c} 42.0{\pm}0.7\\ 43.2{\pm}0.1\\ 44.1{\pm}0.4\end{array}$	$\begin{array}{c} 46.3{\scriptstyle\pm0.2} \\ 45.9{\scriptstyle\pm0.1} \\ \underline{45.8{\scriptstyle\pm0.1}} \end{array}$	$\begin{array}{c} 45.9{\scriptstyle\pm0.1}\\ 45.0{\scriptstyle\pm0.2}\\ 45.0{\scriptstyle\pm0.1}\end{array}$	$\frac{46.5{\scriptstyle\pm0.4}}{47.1{\scriptstyle\pm0.1}}$	$\frac{46.6{\pm}0.2}{47.0{\pm}0.1}$ $\frac{47.1{\pm}0.1}{47.1{\pm}0.1}$	47.2±0.1
Reddit	$0.05\% \\ 0.1\% \\ 0.2\%$	$\begin{array}{c} 40.9{\scriptstyle\pm0.5}\\ 42.8{\scriptstyle\pm0.8}\\ 47.4{\scriptstyle\pm0.9}\end{array}$	$\begin{array}{c} 46.1{\pm}4.4\\ 58.0{\pm}2.2\\ 66.3{\pm}1.9\end{array}$	$\begin{array}{c} 53.1{\scriptstyle\pm2.5}\\ 62.7{\scriptstyle\pm1.0}\\ 71.0{\scriptstyle\pm1.6}\end{array}$	$\begin{array}{c} 46.6{\scriptstyle\pm2.3}\\ 53.0{\scriptstyle\pm3.3}\\ 58.5{\scriptstyle\pm2.1}\end{array}$	$\begin{array}{c} 88.2{\pm}0.2\\ 89.5{\pm}0.1\\ \textbf{90.5}{\pm}1.2 \end{array}$	$\frac{88.4{\pm}0.4}{89.3{\pm}0.1}\\88.8{\pm}0.4$	$\frac{88.0{\pm}1.8}{89.6{\pm}0.7}$	$\begin{array}{c} \textbf{89.7}{\scriptstyle \pm 0.2} \\ \textbf{90.0}{\scriptstyle \pm 0.3} \\ \underline{90.3{\scriptstyle \pm 0.3}} \end{array}$	93.9±0.0

• Generally, SFGC achieves the best performance on the node classification task with 13 of 15 cases (five datasets and three condensation ratios for each of them), illustrating the high quality and expressiveness of the condensed graph-free data synthesized by our SFGC

Zheng, X., Zhang, M., Chen, C., Nguyen, Q. V. H., Zhu, X., & Pan, S. (2023). Structure-free Graph Condensation: From Large-scale Graphs to Condensed Graphfree Data. Advances in Neural Information Processing Systems (NeurIPS), 2023.

Part 3: Frontiers of Graph Data Exploitation

Outline for Graph Data Exploitation

- Overview of Graph Data Exploitation
- ***** Techniques with Case Studies :
 - Graph Self-supervised Learning
 - Graph Semi-supervised Learning
 - Graph Active Learning
 - Graph Transfer Learning

Overview of Graph Data Exploitation

Despite much effort on improving graph data quality, new graph data with high dynamics, complexity, diversity comes every day...

Core Question:

□ What if directly graph data enhancement not feasible?

U What if after enhancement, it's still not enough to instruct the graph model development?

Overview of Graph Data Exploitation

Category of Graph Data Exploitation :

Outline for Graph Data Exploitation

- Overview of Graph Data Exploitation
- ***** Techniques with Case Studies :
 - Graph Self-supervised Learning
 - Graph Semi-supervised Learning
 - Graph Active Learning
 - Graph Transfer Learning

Motivation of Graph Self-supervised Learning

When lacking of sufficient supervision signals, the potential problems are...

Expensive cost of data collection and annotation Poor generalization

Vulnerable to label-related adversarial attacks

Predictor variable

Typical Categories of GSSL

(2) Auxiliary Property-based

Typical Categories of GSSL

Existing Problems - Slow Computation with Node Comparison

Most contrastive-learning approaches

- rely on node-to-node comparison
- require heavy gradient computation

Existing Problems - Slow Computation with Node Comparison

Existing typical Deep Graph Infomax (DGI) framework

<u>MI maximization</u> between nodes and <u>summary vector</u>

$$\mathcal{L}_{\text{DGI}} = \frac{1}{2N} (\sum_{i=1}^{N} \log \mathcal{D}(\vec{z_i, s}) + \log(1 - \mathcal{D}(\vec{z_i, s}))),$$

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural Information Processing Systems (NeurIPS), *35*, 10809-10820.

Rethinking Existing DGI

--Case Study on Graph Self-supervised Learning

Our important findings:

- Value in summary vector s almost becomes constant vector with no variance
- DGI loss can be further simplified as BCE loss

Activation		Statistics	Cora	Ci	teSeer	PubMed
		Mean	0.50		0.50	0.50
ReLU/LReL	U/PReLU	Std	1.3e-03	1.	.0e-04	4.0e-04
		Range	1.4e-03	8.	.0e-04	1.5e-03
		Mean	0.62		0.62	0.62
Sigmoid		Std	5.4e-05	2.	.9e-05	6.6e-05
		Range	3.6e-03	3.	.0e-03	3.2e-03
Dataset	0	0.2	0.4	0.6	0.8	1.0
Cora	70.3±0.7	82.4±0.2	82.3±0.3	82.5±0.4	82.3±0.3	82.5±0.1
CiteSeer	61.8 ± 0.8	71.7 ± 0.6	71.9 ± 0.7	71.6 ± 0.9	71.7 ± 1.0	71.6 ± 0.8
PubMed	68.3±1.5	77.8 ± 0.5	77.9 ± 0.8	77.7±0.9	77.4±1.1	77.2±0.9

Set ${\boldsymbol{\mathcal E}}$ to 1 for $s={\boldsymbol{\varepsilon}} I=I$, and remove w in $\ {\mathfrak D}(z_i,\vec{s})=z_i\cdot w\cdot \vec{s},$

$$\mathcal{L}_{DGI} = \frac{1}{2N} \left(\sum_{i=1}^{N} \log \mathcal{D}(z_i, s) + \log(1 - \mathcal{D}(\tilde{z}_i, s)) \right),$$
$$= \frac{1}{2N} \left(\sum_{i=1}^{N} \log(z_i \cdot s) + \log(1 - \tilde{z}_i \cdot s)) \right),$$
$$= \frac{1}{2N} \left(\sum_{i=1}^{N} \log(sum(z_i)) + \log(1 - sum(\tilde{z}_i)) \right),$$

Our Solution: Group Discrimination (GD)

--Case Study on Graph Self-supervised Learning

Summarisation (e.g., sum):

$$\blacksquare \mathcal{R}^{1 \times D} \square \mathcal{R}^{1 \times 1}$$

Positive Group:

Summarised Node representations generated with original or augmented graph.

> Negative Group:

Summarised Node representations generated with corrupted graph.

Our Solution: Group Discrimination (GD)

--Case Study on Graph Self-supervised Learning

Use a very simple **BCE** loss to conduct discrimination

$$\begin{split} \mathcal{L}_{BCE} &= -\frac{1}{2N} (\sum_{i=1}^{2N} y_i \log h_i + (1-y_i) \log(1-h_i)) \\ & \text{If positive} \to \textbf{y} = \textbf{1}, \, \textbf{else} \to \textbf{y} = \textbf{0} \end{split}$$

where $h_i \in \mathcal{R}^{1 \times 1}$ is the summarised node embedding/binary prediction for a node i

A very simple binary classification task: discriminating positive/negative samples

Proposed Framework: Graph Group Discrimination (GGD)

--Case Study on Graph Self-supervised Learning

Zheng, Y., Pan, S., Lee, V., Zheng, Y., & Yu, P. S. (2022). Rethinking and scaling up graph contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural Information Processing Systems (NeurIPS), *35*, 10809-10820.

Performance of Graph Group Discrimination (GGD)

Small-to-Medium scale Dataset

--Case Study on Graph Self-supervised Learning

Data	Method	Cora	CiteSeer	PubMed	Comp	Photo
X, A, Y	GCN	81.5	70.3	79.0	76.3±0.5	87.3±1.0
X, A, Y	GAT	83.0±0.7	72.5 ± 0.7	79.0 ± 0.3	79.3 ± 1.1	86.2±1.5
X, A, Y	SGC	81.0±0.0	71.9 ± 0.1	78.9 ± 0.0	74.4 ± 0.1	86.4 ± 0.0
X, A, Y	CG3	83.4±0.7	73.6±0.8	80.2 ± 0.8	79.9 ± 0.6	89.4±0.5
X, A	DGI	81.7±0.6	71.5 ± 0.7	77.3±0.6	75.9±0.6	83.1±0.5
X, A	GMI	82.7±0.2	73.0 ± 0.3	80.1 ± 0.2	76.8 ± 0.1	85.1±0.1
X, A	MVGRL	82.9±0.7	72.6 ± 0.7	79.4±0.3	79.0 ± 0.6	87.3±0.3
X, A	GRACE	80.0±0.4	71.7 ± 0.6	79.5 ± 1.1	71.8 ± 0.4	81.8 ± 1.0
X, A	BGRL	80.5±1.0	71.0 ± 1.2	79.5 ± 0.6	89.2 ± 0.9	91.2 ± 0.8
X, A	GBT	81.0±0.5	$70.8 {\pm} 0.2$	79.0 ± 0.1	88.5±1.0	91.1±0.7
X, A	GGD	84.1±0.4	73.0±0.6	81.3 ±0.8	90.1 ±0.9	92.5 ±0.6

Time Consumption Improvement (epoch per second)

Memory Consumption	Improvement (I	MB)
--------------------	----------------	-----

Method	Cora	CiteSeer	PubMed	Comp	Photo
DGI	0.085	0.134	0.158	0.171	0.059
GMI	0.394	0.497	2.285	1.297	0.637
MVGRL	0.123	0.171	0.488	0.663	0.468
GRACE	0.056	0.092	0.893	0.546	0.203
BGRL	0.085	0.094	0.147	0.337	0.273
GBT	0.073	0.072	0.103	0.492	0.173
GGD	0.010	0.021	0.015	0.016	0.009
Improve	7.3-39.4×	3.4-23.7×	6.9-152.3×	10.7-15.3×	19.2-70.8×

Method	Cora	CiteSeer	PubMed	Comp	Photo
DGI	4,189	8,199	11,471	7,991	4,946
GMI	4,527	5,467	14,697	10,655	5,219
MVGRL	5,381	5,429	6,619	6,645	6,645
GRACE	1,913	2,043	12,597	8,129	4,881
BGRL	1,627	1,749	2,299	5,069	3,303
GBT	1,651	1,799	2,461	5,037	2,641
GGD	1,475	1,587	1,629	1,787	1,637
Improve	10.7-72.6%	11.8-80.6%	27.2-85.8%	64.5-83.2%	38.0-75.4%

Performance of Graph Group Discrimination (GGD)

--Case Study on Graph Self-supervised Learning

Using only 0.18 seconds and 69.8% less memory to reach SOTA.

10783 faster than existing methods.

Method	Valid	Test	Memory	Time	Total
Supervised GCN	73.0±0.2	71.7±0.3	-	-	-
MLP Node2vec	57.7±0.4 71.3±0.1	55.5 ± 0.2 70.1 ± 0.1		-	-
DGI GRACE(10k epos) BGRL(10k epos) GBT(300 epos)	71.3 ± 0.1 72.6 ± 0.2 72.5 ± 0.1 71.0 ± 0.1	70.3 ± 0.2 71.5 ± 0.1 71.6 ± 0.1 70.1 ± 0.2	- - OOM (Full-graph) 14,959MB	- - / 6.47	- - / 1,941.00
GGD(1 epo)	72.7±0.3	71.6±0.5	4,513MB 69.8%	0.18	0.18 10,783×

Fast convergence \rightarrow converge with only 1 epoch

Outline for Graph Data Exploitation

- Overview of Graph Data Exploitation
- ***** Techniques with Case Studies :
 - Graph Self-supervised Learning
 - Graph Semi-supervised Learning
 - Graph Active Learning
 - Graph Transfer Learning

Background of Graph Semi-supervised Learning

- Scaph Semi-supervised Learning: Only limited labels are provided
 - Core idea from DC-GML view:

Learn to fully leverage/exploit the unlabeled part and collaborate with the labeled part

Methodology: Regularization & Pseudo Labelling

Category of Graph Semi-supervised Learning

Category from DC-GML view

Table 6. Summary of methods in graph semi-supervised learning.

Graph Semi-supervised Learning	Techniques	Categories
Zhu et al. [223]	Graph Laplacian regularization	Regularization-based
Zhou et al. [216]	Graph Laplacian regularization	Regularization-based
Zhou et al. [217]	Local smoothness under homophily	Regularization-based
Li et al. [82]	Self-training with training set extension	Pseudo-labelling
NodeAug [171]	KL divergence-based consistency	Regularization-based
GRAND [39]	L2 distance-based consistency	Regularization-based
M3S [148]	Clustering-based pseudo label generation	Pseudo-labelling
SimP-GCN [68]	Feature-level similarity in pairwise distance	Regularization-based
GCN-LPA [166]	Edge weights with graph structure regularization	Regularization-based
CG^{3} [162]	Self-supervised objective based regularization	Regularization-based
GCPN [163]	Contrastive and possion learning based regularization	Regularization-based
Meta-PN [32]	Adaptive label propagator based on label propagation	Pseudo-labelling
CycProp [88]	High-quality contextual node selection	Pseudo-labelling

Outline for Graph Data Exploitation

Overview of Graph Data Exploitation

***** Techniques with Case Studies :

- Graph Self-supervised Learning
- Graph Semi-supervised Learning
- Graph Active Learning
- Graph Transfer Learning

Background of Graph Active Learning

Given the fixed cost (e.g., human labour and expert knowledge) for label, how can we fully make

the best use of such labelling budget?

* Graph Active Learning: dynamically select the samples to label during the training procedure

In the practical active learning process, the nodes to label are selected automatically by the models following several selection criteria.

Category of Graph Active Learning

Category from DC-GML view

Table 7. Summary of methods in graph active learning.

Graph Active Learning	Techniques	Categories
AGE [13]	Information entropy, density, and centrality rules	Rule-based
ANRMAB [42]	Multi-armed bandit mechanism	Rule-based
ActiveHNE [24]	Multi-armed bandit mechanism on heterogeneous graphs	Rule-based
FeatProp [183]	Closest cluster center based labelling	Clustering-based
ATNE [65]	Active transfer learning based node selection	Rule-based
ASGN [50]	Sample diversity based node selection	Rule-based
GPA [54]	GCN-based policy network	RL-based
MetAL [103]	Meta-gradients estimation	Meta Learning-based
SEAL [85]	Adversarial learning with divergence value	Adversarial-based
GRAIN [205]	Diversified influence maximization objective	Influence-based
RIM [204]	Label reliability based influence score scaling	Influence-based
Attent [219]	Active graph alignment	Influence-based
ALG [202]	Clustering-based density & Attention-based score	Metric-based
ALLIE [27]	Integrated graph coarsening and focal loss	RL-based
BIGENE [207]	Q-value decomposition with batch sampling selection	RL-based
IGP [203]	Information gain propagation for soft labelling	Influence-based
JuryGCN [75]	Jackknife uncertainty estimation	Influence-based

Outline for Graph Data Exploitation

Overview of Graph Data Exploitation

✤ Techniques with Case Studies :

- Graph Self-supervised Learning
- Graph Semi-supervised Learning
- Graph Active Learning
- Graph Transfer Learning

Background of Graph Transfer Learning

* Graph Transfer Learning

- Graph data distribution shift between the training and test graph data widely exits.
- Shifts might encompass attributes like node features, graph structures, and label distributions.

According to whether label spaces of graphs is changed or not, the category

- a) Close-set shift: label space unchanged
- b) Open-set shift: new label classes emerge

Fig. 9. Illustration of graph transfer learning in graph data-centric close-set shift and open-set shift.

Category of Graph Transfer Learning

Category from DC-GML view

Table 8. Summary of methods in graph transfer learning.

Graph Transfer Learning	Techniques	Categories
DANE [206]	Adversarial learning regularization	Close-set shift
UDA-GCN [181]	Adversarial learning with dual-GNN	Close-set shift
ACDNE [142]	Node affinity & topological proximity preservation	Close-set shift
OpenWGL [182]	Variational graph autoencoder	Open-set shift
PGL [101]	Class space decomposition	Open-set shift
SRGNN [221]	Central moment discrepancy (CMD) measurement	Close-set shift
SOGA [104]	Mutual information maximization	Close-set shift
DGDA [14]	Domain and semantic seperation	Close-set shift
SRNC [222]	Unified domain adaption GNN	Close-set/Open-set shifts

Part 4: Frontiers of Graph Data-centric MLOps

Outline for Graph Data-centric MLOps

Overview of Graph Data-centric MLOps

***** Techniques :

- Graph Data Crowdsourcing and Synthesis
- Graph Data Understanding, Visualization, and Valuation
- Graph Data Privacy and Security
- Graph MLOps
- ✤ Case Study in Graph MLOps:

[NeurIPS-2023] "GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels"

Outline for Graph Data-centric MLOps

Phases	Goals	Methods & Tools				
Graph Data Collection	Graph Data Crowdsourcing	Amazon Mechanical Turk [4], Tang et al. [152], Cao et al. [15]				
	Graph Data Synthesis	SBMs [145], Koller et al. [78], Ying et al. [188], Unsupervised methods [106, 120], Semi-supervised methods [38, 111, 132, 155]				
Graph Data Exploration Graph Data Maintenance	Graph Data Understanding & Visualization	NetworkX [31], igraph [60] Neo4j [107]				
	Graph Data Valuation	GraphSVX [37]				
	Graph Data Privacy	TrustworthyGNN [200], Zhang et al. [197], Liu et al. [92], Yu et al. [192], Mulle et al. [105], PGAS [198], Federatedscope-GNN [174], Tan et al. [151]				
	Graph Data Security	Sandhu et al. [135], Abidi et al. [1], Li et al. [87]				
Graph MLOps		Kubeflow [81], Amazon SageMaker [6], Amazon Neptune [179]				

Graph data-centric view Graph MLOps

Outline for Graph Data-centric MLOps

Phases	Goals	Methods & Tools				
Graph Data Collection	Graph Data Crowdsourcing	Amazon Mechanical Turk [4], Tang et al. [152], Cao et al. [15]				
	Graph Data Synthesis	SBMs [145], Koller et al. [78], Ying et al. [188], Unsupervised methods [106, 120], Semi-supervised methods [38, 111, 132, 155]				
Graph Data Exploration	Graph Data Understanding & Visualization	NetworkX [31], igraph [60] Neo4j [107]				
	Total Semi-supervised methods [3]Semi-supervised methods [3]Semi-supervised methods [3]Semi-supervised methods [3]Semi-supervised methods [3]NetworkX [31], igraph [60]Neo4j [107]Graph Data ValuationGraph Data ValuationGraph Data PrivacyGraph Data PrivacyMulle et al. [92], Yu et al. [192]Mulle et al. [105], PGAS [192]					
Graph Data Maintenance	Graph Data Privacy	TrustworthyGNN [200], Zhang et al. [197], Liu et al. [92], Yu et al. [192], Mulle et al. [105], PGAS [198], Federatedscope-GNN [174], Tan et al. [151]				
	Graph Data Security	Sandhu et al. [135], Abidi et al. [1], Li et al. [87]				
Graph MLOps		Kubeflow [81], Amazon SageMaker [6], Amazon Neptune [179]				

Graph data-centric view Graph MLOps

Graph Data Maintenance

• Key to practical deployment of GNNs — GNN Evaluation

Background of GNN Model Evaluation

--Case Study on Graph MLOps

For instance,

Understanding and evaluating GNN models' performance is a vital step for GNN model deployment and serving.

(a) Conventional GNN Model Evaluation

in financial transaction networks: GNN model designers: expect their developed GNNs to excel in identifying newly emerging suspicious transactions

 Users: ensure how they could trust welltrained GNNs to know suspicious transactions within their own data

77

In conventional model evaluation of GNNs, we have:

- 1) Seen test graph G_{te} in the same distribution as the train graph G_{tr}
- 2) Known test graph labels for computing performance metric, e.g., Accuracy (ACC)

Background of GNN Model Evaluation

--Case Study on Graph MLOps

However, in real-world scenarios, the test graphs are typically "unseen & lacking annotations"

(b) Real-world GNN Model Evaluation

In real-world model evaluation of GNNs, we:

- X CAN NOT access the ground-truth labels of the test graph G_{te}
- X CAN NOT compute performance metric, e.g., Accuracy (ACC)
- X DO NOT know whether potential distribution shifts from the train graph G_{tr}

Background of GNN Model Evaluation

--Case Study on Graph MLOps

Given above scenarios, a natural question, i.e., "GNN model evaluation problem" arises:

In the absence of labels in an unseen test graph, can we estimate the performance of a welltrained GNN model?

Definition of GNN Model Evaluation

--Case Study on Graph MLOps

Definition of GNN Model Evaluation. Given the observed training graph S, its well-trained model GNN_S^* , and an unlabeled unseen graph T as inputs, the **goal** of GNN model evaluation aims to learn an accuracy estimation model $f_{\phi}(\cdot)$ parameterized by ϕ as:

$$\operatorname{Acc}(\mathcal{T}) = f_{\phi}(\operatorname{GNN}_{\mathcal{S}}^*, \mathcal{T}), \tag{2}$$

where $f_{\phi} : (\text{GNN}_{S}^{*}, \mathcal{T}) \to a$ and $a \in \mathbb{R}$ is a scalar denoting the overall node classification accuracy $\text{Acc}(\mathcal{T})$ for all unlabeled nodes of \mathcal{T} . When the context is clear, we will use $f_{\phi}(\mathcal{T})$ for simplification.

To solve above problems,

We propose a two-stage GNN model evaluation framework with a "GNNEvaluator"

Note that our principal goal is to estimate well-trained GNN models' performance, rather than improve the generalization ability of new GNN models. In the whole evaluation process, the in-service GNN model is fixed

GNNEvaluator: Evaluating GNN Performance On Unseen Graphs Without Labels

--Case Study on Graph MLOps

Figure.1 Overall two-stage framework of the proposed GNN model evaluation with GNNEvaluator

• Stage-1: DiscGraph set construction

incorporating training-test graph discrepancies into DiscGraph node attributes X_{disc}^{i} , structures A_{disc}^{i} , and accuracy labels y_{disc}^{i}

• Stage-2: GNNEvaluator training and inference

GNNEvaluator, train on DiscGraphs and output estimated ACC on the real-world test graph T

Experiments on GNNEvaluator

--Case Study on Graph MLOps

The performance of our proposed GNNEvaluator in evaluating well-trained GNNs' node classification accuracy under all test evaluation cases and models

Table 1: Mean Absolute Error (MAE) performance of different GNN models across five random seeds. (GNNs are well-trained on the ACMv9 dataset and evaluated on the unseen and unlabeled Citationv2 and DBLPv8 datasets, *i.e.*, $A \rightarrow C$ and $A \rightarrow D$, respectively. Best results are in bold.)

Methods	ACMv9→Citationv2						ACMv9→DBLPv8						
memous	GCN	SAGE	GAT	GIN	MLP	Avg.	GCN	SAGE	GAT	GIN	MLP	Avg.	
ATC-MC [8]	4.49	8.40	4.37	18.40	34.33	14.00	21.96	24.20	30.30	24.06	26.62	25.43	
ATC-MC-c [8]	2.41	5.74	4.67	22.00	51.41	17.25	31.15	30.55	30.18	29.71	45.81	33.48	
ATC-NE [8]	3.97	8.02	4.28	17.35	38.87	14.50	22.93	24.78	30.50	23.74	31.13	26.62	
ATC-NE-c [8]	4.44	6.09	3.30	23.95	44.62	16.48	34.42	28.31	27.02	30.28	39.28	31.86	
Thres. $(\tau = 0.7)$ [6]	32.64	35.81	33.63	50.76	35.28	37.63	9.59	12.14	14.30	32.67	39.72	21.68	
Thres. $(\tau = 0.8)$ [6]	26.30	29.60	26.18	49.25	35.87	33.44	2.63	7.44	14.47	32.20	40.31	19.41	
Thres. $(\tau = 0.9)$ [6]	17.56	21.34	16.38	46.53	36.08	27.58	8.20	7.42	16.07	31.47	40.56	20.74	
AutoEval-G [6]	18.94	26.19	26.12	50.86	32.40	30.90	2.77	2.54	7.25	48.68	29.95	18.24	
GNNEvaluator (Ours)	4.85	4.11	12.23	10.14	22.20	<u>10.71</u>	11.80	14.88	6.36	13.78	17.49	12.86	

Table 2: Mean Absolute Error (MAE) performance of different GNN models across five random seeds. (GNNs are well-trained on the Citationv2 dataset and evaluated on the unseen and unlabeled ACMv9 and DBLPv8 datasets, i.e., $C \rightarrow A$ and $C \rightarrow D$, respectively.Best results are in bold.)

Methods	Citationv2→ACMv9						Citationv2→DBLPv8					
	GCN	SAGE	GAT	GIN	MLP	Avg.	GCN	SAGE	GAT	GIN	MLP	Avg.
ATC-MC [8]	9.50	13.40	8.28	35.51	43.40	22.02	22.57	1.37	21.87	29.24	35.20	22.05
ATC-MC-c [8]	6.93	11.75	6.70	38.93	57.43	24.35	33.67	4.92	28.23	30.89	52.59	30.06
ATC-NE [8]	8.86	13.04	7.87	34.88	47.49	22.42	23.97	1.86	23.74	28.96	39.72	23.65
ATC-NE-C [8]	7.73	13.94	7.63	41.17	62.96	26.69	37.16	4.66	29.43	31.66	58.95	32.37
Thres. $(\tau = 0.7)$ [6]	37.33	36.61	31.68	58.91	34.33	39.77	10.70	23.05	12.74	34.60	38.29	23.88
Thres. $(\tau = 0.8)$ [6]	29.62	28.95	22.77	57.48	34.53	34.67	5.65	15.01	7.61	34.36	38.43	20.21
Thres. $(\tau = 0.9)$ [6]	19.59	19.06	11.37	55.72	34.56	28.06	10.65	8.28	8.07	34.00	38.44	19.89
AutoEval-G [6]	23.01	31.24	26.74	59.66	35.02	28.28	2.57	16.52	6.96	19.20	32.24	24.59
GNNEvaluator (Ours)	5.45	8.53	9.61	29.77	28.52	<u>16.38</u>	11.64	7.02	5.58	6.46	22.87	<u>10.71</u>

- Experiments on 3 real-world graph datasets in 6 cases potential domain shift, each evaluating 5 models:
- Consistent outstanding performance over all GNN models and cases!

Part 5: Future Directions & Conclusion

Exploration of complex and dynamic graph data

Heterophilic Graph

Luo, L., Haffari, G., & Pan, S. (2023, February). Graph sequential neural ode process for link prediction on dynamic and sparse graphs. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining (pp. 778-786).
Zheng, X., Liu, Y., Pan, S., Zhang, M., Jin, D., & Yu, P. S. (2022). Graph neural networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082.

General and automatic graph data improvement.

Liu, Y., Ding, K., Wang, J., Lee, V., Liu, H., & Pan, S. (2023). Learning Strong Graph Neural Networks with Weak Information. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23).

- Standardized graph data benchmarks
- Collaborative development of graph data and model
- Comprehensive graph data lifecycle management pipelines

Exploration of complex and dynamic graph data

General and automatic graph data improvement

Standardized graph data benchmarks

Collaborative development of graph data and model

Comprehensive graph data lifecycle management pipelines

Promising Data-centric Graph Machine Learning (DC-GML)

Three Core Research Questions

Comprehensive Taxonomy

Graph Data Improvement

Fig. 2. The framework and taxonomy of data-centric graph machine learning (DC-GML).

Extensive & Open Potentials of DC-GML

- A. Standardized graph machine learning workflow
- B. Enhanced graph data understanding
- C. Better graph learning model performance
- D. Wider graph data application range

... continual and broader applications in DC-GML...

Towards Data-centric Graph Machine Learning

Xin Zheng¹, Shirui Pan²

¹ Monash University

² Griffith University

Data-centric Graph ML Review & Outlook

DC-GML GitHub Collection